Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 242
Filtrer
1.
J Colloid Interface Sci ; 672: 266-278, 2024 Oct 15.
Article de Anglais | MEDLINE | ID: mdl-38843679

RÉSUMÉ

Diabetic wound, which is chronic skin disease, poses a significant challenge in clinical practice because of persistent inflammation and impaired angiogenesis. Recently, hydrogen has emerged as a novel therapeutic agent due to its superior antioxidant and anti-inflammatory properties. In this study, we engineered a poly (lactic-co-glycolic acid) (PLGA) electrospun nanofibre membrane loaded with citric acid (CA) and iron (Fe) nanoparticles, referred to as Fe@PLGA + CA. Our in vitro assays demonstrated that the Fe@PLGA + CA membrane continuously generated and released hydrogen molecules via a chemical reaction between Fe and CA in an acidic microenvironment created by CA. We also discovered that hydrogen can ameliorate fibroblast migration disorders by reducing the levels of matrix metalloproteinase 9 (MMP9). Furthermore, we confirmed that hydrogen can scavenge or biochemically neutralise accumulated reactive oxygen species (ROS), inhibit pro-inflammatory responses, and induce anti-inflammatory reactions. This, in turn, promotes vessel formation, wound-healing and accelerates skin regeneration. These findings open new possibilities for using elemental iron in skin dressings and bring us one step closer to implementing hydrogen-releasing biomedical materials in clinical practice.


Sujet(s)
Hydrogène , Nanofibres , Copolymère d'acide poly(lactique-co-glycolique) , Cicatrisation de plaie , Cicatrisation de plaie/effets des médicaments et des substances chimiques , Copolymère d'acide poly(lactique-co-glycolique)/composition chimique , Nanofibres/composition chimique , Hydrogène/composition chimique , Hydrogène/pharmacologie , Animaux , Fer/composition chimique , Nanoparticules métalliques/composition chimique , Membrane artificielle , Souris , Humains , Espèces réactives de l'oxygène/métabolisme , Taille de particule , Propriétés de surface
2.
Animals (Basel) ; 14(11)2024 May 31.
Article de Anglais | MEDLINE | ID: mdl-38891687

RÉSUMÉ

Fasting-induced molting (FIM) is a common method used to improve the laying performance of aged laying hens. Nevertheless, this approach may impose various stresses on chickens, such as disruptions in intestinal flora and inflammation issues within the intestines. However, the impact of an imbalance in intestinal flora on intestinal health during the FIM process remains elusive. Therefore, intestinal injury, the microbiome, and the metabolome were analyzed individually and integrated to elucidate the impact of the intestinal flora on intestinal health during the FIM process. The findings indicated that fasting resulted in a notable reduction in villus height and villus/crypt ratio, coupled with elevated levels of intestinal inflammation and permeability. During the fasting period, microbiota compositions changed. The abundance of Escherichia_Shigella increased, while the abundance of Ruminococcaceae_UCG-013 and Lactobacillus decreased. Escherichia_Shigella was positively correlated with Citrinin and Sterobilin, which lead to intestinal inflammation. Ruminococcaceae_UCG-013 and Lactobacillus exhibited positive correlations with Lanthionine and reduced Glutathione, thereby reducing intestinal inflammation. This study screened the intestinal probiotics, Ruminococcaceae UCG-013 and Lactobacillus, that influence gut health during the fasting period, providing an experimental basis for improving gut microbiota and reducing intestinal inflammation during the FIM process.

3.
Bioresour Technol ; 406: 131056, 2024 Jun 28.
Article de Anglais | MEDLINE | ID: mdl-38945503

RÉSUMÉ

This study addressed the treatment of high ammonia, low biodegradable chemical oxygen demand (bCOD) anaerobically digested molasses wastewater, utilizing an aerobic granular sludge (AGS) reactor. The AGS achieved 99 % ammonia removal regardless of the bCOD supplementation. By adding low ammonia (<60 mg/L), high bCOD raw molasses wastewater (before anaerobic digestion) as a carbon source, enhanced nitrogen removal, increasing from 10 % to 97 %, and improved sludge settleability via bio-induced calcite precipitation were observed. Functional genes prediction suggested two potential denitrification pathways, including heterotrophic denitrification by Paracoccus and Thauera, and autotrophic denitrification, specifically sulfide-oxidizing autotrophic denitrification by Thiobacillus. An increase in the relative abundance of microorganisms involved in heterotrophic denitrification was observed with the addition of high bCOD raw molasses wastewater. Consequently, incorporating raw molasses wastewater into the AGS presents a sustainable approach to achieve mixotrophic denitrification, maintain stable granular sludge and ensure stable treatment performance when treating anaerobically digested molasses wastewater.

4.
Ecol Evol ; 14(6): e11549, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38855313

RÉSUMÉ

Plant's life history can evolve in response to variation in climate spatio-temporally, but numerous multiple-species studies overlook species-specific (especially a foundation species) ecological effects and genetic underpinnings. For a species to successfully invade a region, likely to become a foundation species, life-history variation of invasive plants exerts considerable ecological and evolutionary impacts on invaded ecosystems. We examined how an invasive foundation plant, Spartina alterniflora, varied in its life history along latitudinal gradient using a common gardens experiment. Two common gardens were located at range boundary in tropical zone and main distribution area of S. alterniflora in temperate zone in China. Within each population/garden, we measured the onset time of three successive phenological stages constituting the reproductive phase and a fitness trait. In the low-latitude garden with higher temperature, we found that reproductive phase was advanced and its length prolonged compared to the high-latitude garden. This could possibly due to lower plasticity of maturity time. Additionally, plasticity in the length of the reproductive phase positively related with fitness in the low-latitude garden. Marginal population from tropic had the lowest plasticity and fitness, and the poor capacity to cope with changing environment may result in reduction of this population. These results reflected genetic divergence in life history of S. alterniflora in China. Our study provided a novel view to test the center-periphery hypothesis by integration across a plant's life history and highlighted the significance in considering evolution. Such insights can help us to understand long-term ecological consequences of life-history variation, with implications for plant fitness, species interaction, and ecosystem functions under climate change.

5.
Front Biosci (Landmark Ed) ; 29(5): 198, 2024 May 21.
Article de Anglais | MEDLINE | ID: mdl-38812324

RÉSUMÉ

BACKGROUND: DELLA protein is a crucial factor which played pivotal roles in regulating numerous intriguing biological processes in plant development and abiotic stress responses. However, little is known about the function and information of DELLA protein in Chinese cabbage. METHODS: Using 5 DELLA gene sequences in Arabidopsis Thaliana as probes, 5 DELLA genes in Chinese cabbage were identified by Blast search in Chinese cabbage database (Brassica database (BRAD)). The National Center for Biotechnology Information (NCBI), ExPaSy, SWISS-MODEL, DNAMAN, MEGA 11, PlantCARE were used to identify and analyze the DELLA gene family of Chinese cabbage. Gene expression was analyzed by quantitative real-time polymerase chain reaction (qRT-PCR). The function of BraA10gRGL3 was verified by overexpression and phenotypic analysis of BraA10gRGL3 and yeast hybrid. RESULTS: In this study, 5 BraDELLAs homologous to Arabidopsis thaliana were identified and cloned based on the Brassica database, namely, BraA02gRGL1, BraA05gRGL2, BraA10gRGL3, BraA06gRGA and BraA09gRGA. All BraDELLAs contain the DELLA, TVHYNP, and GRAS conserved domains. Cis-element analysis revealed that the promoter regions of these 5 DELLA genes all contain light-responsive elements, TCT motif, I-box, G-box, and box 4, which are associated with GA signaling. Transcriptome analysis results proved that the expression of BraA02gRGL1, BraA05gRGL2, and BraA10gRGL3 in Y2 at different growth stages were lower than them in Y7, which is consistent with the phenotype that Y7 exhibited stronger stress tolerance than Y2. It is worth emphasizing that even through the overexpression of BraA10gRGL3-Y7 in Arabidopsis resulted in smaller leaf size and lower fresh weight compared to the wild type (WT) Arabidopsis: Columbia, a stronger response to abiotic stresses was observed in BraA10gRGL3-Y7. It indicated that BraA10gRGL3-Y7 can improve the stress resistance of plants by inhibiting their growth. Moreover, the yeast two-hybrid experiment confirmed that BraA10gRGL3-Y7 can interacted with BraA05gGID1a-Y7, BraA04gGID1b1, BraA09gGID1b3-Y2, and BraA06gGID1c, whereas BraA10gRGL3-Y2 cannot interact with any BraGID1. CONCLUSIONS: Collectively, BraDELLAs play important role in plant development and response to abiotic stress. The differences in amino acid sequences between BraA10gRGL3-Y2 and BraA10gRGL3-Y7 may result in variations in their protein binding sites, thus affecting their interaction with the BraGID1 family proteins. This systematic analysis lays the foundation for further study of the functional characteristics of DELLA genes of Chinese cabbage.


Sujet(s)
Arabidopsis , Régulation de l'expression des gènes végétaux , Protéines végétales , Protéines végétales/génétique , Protéines végétales/métabolisme , Arabidopsis/génétique , Arabidopsis/croissance et développement , Brassica rapa/génétique , Brassica rapa/croissance et développement , Brassica rapa/métabolisme , Stress physiologique/génétique , Phylogenèse , Protéines d'Arabidopsis/génétique , Protéines d'Arabidopsis/métabolisme , Analyse de profil d'expression de gènes , Végétaux génétiquement modifiés/génétique , Gènes de plante , Génome végétal
6.
Science ; 384(6699): 987-994, 2024 May 31.
Article de Anglais | MEDLINE | ID: mdl-38815009

RÉSUMÉ

Human skin sensing of mechanical stimuli originates from transduction of mechanoreceptors that converts external forces into electrical signals. Although imitating the spatial distribution of those mechanoreceptors can enable developments of electronic skins capable of decoupled sensing of normal/shear forces and strains, it remains elusive. We report a three-dimensionally (3D) architected electronic skin (denoted as 3DAE-Skin) with force and strain sensing components arranged in a 3D layout that mimics that of Merkel cells and Ruffini endings in human skin. This 3DAE-Skin shows excellent decoupled sensing performances of normal force, shear force, and strain and enables development of a tactile system for simultaneous modulus/curvature measurements of an object through touch. Demonstrations include rapid modulus measurements of fruits, bread, and cake with various shapes and degrees of freshness.


Sujet(s)
Mécanorécepteurs , Peau artificielle , Toucher , Dispositifs électroniques portables , Humains , Mécanorécepteurs/physiologie , Cellules de Merkel/physiologie , Peau/innervation , Phénomènes physiologiques de la peau
7.
Sci Robot ; 9(90): eadp5682, 2024 May 29.
Article de Anglais | MEDLINE | ID: mdl-38809997

RÉSUMÉ

Bioinspiration from avian eyes allows development of artificial vision systems with foveated and multispectral imaging.


Sujet(s)
Biomimétique , Oiseaux , Vision , Animaux , Vision/physiologie , Biomimétique/instrumentation , Oeil , Robotique/instrumentation , Humains , Conception d'appareillage , Matériaux biomimétiques
8.
Adv Healthc Mater ; 13(17): e2304087, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38531346

RÉSUMÉ

Volumetric muscle loss (VML) is a severe form of muscle trauma that exceeds the regenerative capacity of skeletal muscle tissue, leading to substantial functional impairment. The abnormal immune response and excessive reactive oxygen species (ROS) accumulation hinder muscle regeneration following VML. Here, an interfacial cross-linked hydrogel-poly(ε-caprolactone) nanofiber composite, that incorporates both biophysical and biochemical cues to modulate the immune and ROS microenvironment for enhanced VML repair, is engineered. The interfacial cross-linking is achieved through a Michael addition between catechol and thiol groups. The resultant composite exhibits enhanced mechanical strength without sacrificing porosity. Moreover, it mitigates oxidative stress and promotes macrophage polarization toward a pro-regenerative phenotype, both in vitro and in a mouse VML model. 4 weeks post-implantation, mice implanted with the composite show improved grip strength and walking performance, along with increased muscle fiber diameter, enhanced angiogenesis, and more nerve innervation compared to control mice. Collectively, these results suggest that the interfacial cross-linked nanofiber-hydrogel composite could serve as a cell-free and drug-free strategy for augmenting muscle regeneration by modulating the oxidative stress and immune microenvironment at the VML site.


Sujet(s)
Hydrogels , Muscles squelettiques , Nanofibres , Régénération , Animaux , Nanofibres/composition chimique , Souris , Régénération/effets des médicaments et des substances chimiques , Hydrogels/composition chimique , Hydrogels/pharmacologie , Polyesters/composition chimique , Stress oxydatif/effets des médicaments et des substances chimiques , Souris de lignée C57BL , Espèces réactives de l'oxygène/métabolisme , Mâle , Cellules RAW 264.7 , Macrophages/métabolisme , Structures d'échafaudage tissulaires/composition chimique
9.
Environ Res ; 251(Pt 1): 118573, 2024 Jun 15.
Article de Anglais | MEDLINE | ID: mdl-38431070

RÉSUMÉ

Anaerobically digested sludge supernatant, characterized by its high ammonia and low biodegradable chemical oxygen demand (COD) content, has raised concerns when returned to mainstream treatment lines due to potential impacts on effluent quality. Addressing this, an aerobic granular sludge (AGS) reactor adopted nitritation/denitritation with external COD addition was utilized and achieved a considerable nitrogen treatment capacity of 4.2 kg N/m3/d, reaching over 90% removal efficiencies for both ammonia and total inorganic nitrogen. This study applied progressively increased nitrogen loading to select for a microbial community that exhibited high nitrogen oxidation and reduction rates, demonstrating peak rates of 0.5 g N/g VSS/d and 3 g N/g VSS/d, respectively. The enrichment of highly efficient microbial community was achieved along with the increased biomass density peaked at 17 g/L MLVSS, with the system retaining small-sized granular sludge at 0.5 mm. The primary ammonia oxidizing bacteria was Nitrosomonas, while Thauera was the dominated denitrifiers. Quantitative polymerase chain reaction analyses reinforced the enhanced nitrogen removal capacity based on the progressively increased abundance of nitrogen cycling functional genes. The high nitrogen treatment capacity, synergistic attributes of high specific microbial activities and the substantial biomass retention, suggest the AGS's efficacy and capacity in ammonia rich wastewater treatment.


Sujet(s)
Ammoniac , Bioréacteurs , Azote , Eaux d'égout , Bioréacteurs/microbiologie , Eaux d'égout/microbiologie , Ammoniac/métabolisme , Azote/métabolisme , Élimination des déchets liquides/méthodes , Eaux usées/microbiologie , Eaux usées/composition chimique , Aérobiose , Bactéries/métabolisme , Bactéries/génétique , Polluants chimiques de l'eau/métabolisme
10.
Sci Total Environ ; 926: 171980, 2024 May 20.
Article de Anglais | MEDLINE | ID: mdl-38537814

RÉSUMÉ

Granular activated carbon (GAC), a porous carbon-based material, provides increased attachment space for functional microorganisms and enhances nitrogen removal by facilitating extracellular electron transfer in the anammox process. This study investigates the effects of GAC on the biosynthesis of microbial extracellular secretions (MESs) and explores the roles of these secretions in anammox activities. Four lab-scale reactors were operated: two downstream UASB reactors (D1 and D2) receiving effluents from the upstream UASB reactors (U1: no-GAC, U2: yes-GAC). Our results indicate that MESs were enhanced with the addition of GAC. The effluent from U2 exhibited a 59.62 % higher amino acid content than that from U1. These secretions contributed to an increase in the nitrogen loading rate (NLR) in the downstream reactors. Specifically, NLR in D1 increased from 130.5 to 142.7 g N/m3/day, and in D2, it escalated from 137.5 to 202.8 g N/m3/day, likely through acting as cross-feeding substrates or vital nutrients. D2 also showed increased anammox bacterial activity, enriched Ca. Brocadia population and hao gene abundance. Furthermore, this study revealed that D2 sludge has significantly higher extracellular polymeric substances (EPS) (48.71 mg/g VSS) and a larger average granule size (1.201 ± 0.119 mm) compared to D1 sludge. Overall, GAC-stimulated MESs may have contributed to the enhanced performance of the anammox process.


Sujet(s)
Charbon de bois , Eaux d'égout , Eaux d'égout/microbiologie , Charbon de bois/métabolisme , Oxydation anaérobie de l'ammonium , Bioréacteurs/microbiologie , Bactéries/métabolisme , Anaérobiose , Azote/métabolisme , Oxydoréduction
11.
Surg Innov ; 31(3): 274-285, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38468453

RÉSUMÉ

OBJECTIVE: To study the value of high-quality care in operating room during operation of patients with rectal cancer and the effect of this nursing model on postoperative rehabilitation. METHODS: This study recruited 72 patients with rectal cancer, including 36 in the control group and 36 in the observation group. Patients in the control group received routine care, and those in the observation group received high-quality care in operating room. RESULTS: The anxiety score (5.50 ± .77 vs 10. 08 ± 1.13), stress score (6.97 ± .60 vs 8.61 ± .99), and depression score (4.02 ± .65 vs 5.50 ± .91) in the observation group were less than the control group after treatment (P < .05). The measured values of diastolic blood pressure (73.19 ± 1.96 vs 86.13 ± 2.0), systolic blood pressure (121.08 ± 1.62 vs 130.63 ± 2.84), heart rate (73.05 ± 1.63 vs 87.11 ± 2.91) and adrenaline E(E) (58.40 ± 3.02 vs 61.42 ± 3.86) in the observation group were less than the control group after treatment (P < .05). The cooperation degree (94.44 vs 75.00) in the observation group was greater than the control group, but the operation time (308.47 ± 9.92 vs 339.47 ± 12.70), postoperative intestinal function recovery time (16.30 ± 1.14 vs 30.94 ± 2.10) and length of stay (10.47 ± 1.85 vs 13.33 ± 1.95) were all shorter than the control group (P < .05). The nasopharyngeal temperature in the observation group was greater than the control group at 30 minutes during operation (36.16 ± .50 vs 35.19 ± .40) and after operation, and fear score (2.22 ± .42 vs 3.63 ± .72) was less than the control group (P < .05). CONCLUSION: The application of high-quality care in the operating room during rectal cancer surgery has a significantly good clinical outcome.


Sujet(s)
Tumeurs du rectum , Humains , Tumeurs du rectum/chirurgie , Femelle , Mâle , Adulte d'âge moyen , Blocs opératoires/normes , Sujet âgé , Adulte , Complications postopératoires , Soins postopératoires/normes
12.
Natl Sci Rev ; 11(3): nwad314, 2024 Mar.
Article de Anglais | MEDLINE | ID: mdl-38312384

RÉSUMÉ

Flexible devices and functional systems with elaborated three-dimensional (3D) architectures can endow better mechanical/electrical performances, more design freedom, and unique functionalities, when compared to their two-dimensional (2D) counterparts. Such 3D flexible devices/systems are rapidly evolving in three primary directions, including the miniaturization, the increasingly merged physical/artificial intelligence and the enhanced adaptability and capabilities of heterogeneous integration. Intractable challenges exist in this emerging research area, such as relatively poor controllability in the locomotion of soft robotic systems, mismatch of bioelectronic interfaces, and signal coupling in multi-parameter sensing. By virtue of long-time-optimized materials, structures and processes, natural organisms provide rich sources of inspiration to address these challenges, enabling the design and manufacture of many bioinspired 3D flexible devices/systems. In this Review, we focus on bioinspired 3D flexible devices and functional systems, and summarize their representative design concepts, manufacturing methods, principles of structure-function relationship and broad-ranging applications. Discussions on existing challenges, potential solutions and future opportunities are also provided to usher in further research efforts toward realizing bioinspired 3D flexible devices/systems with precisely programmed shapes, enhanced mechanical/electrical performances, and high-level physical/artificial intelligence.

13.
Chemosphere ; 346: 140598, 2024 Jan.
Article de Anglais | MEDLINE | ID: mdl-37926161

RÉSUMÉ

S(IV)-based systems used for advanced oxidation processes (AOPs) have been constructed for the degradation of organic contaminants via oxysulfur radicals, including SO3•-, SO4•-, and SO5•-. Although SO5•- is proposed as an active species in AOPs processes, research on the reactivity of SO5•- has remained unclear. In this work, 53 target aromatic micropollutants (AMPs), including 13 phenols, 27 amines, and 13 PPCPs were selected to determine the second-order reaction rate constants for SO5•- using the competitive kinetics method, in which the [Formula: see text] values, observed at pH 4 ranged from (2.44 ± 0.00) × 105 M-1 s-1 to (4.41 ± 0.28) × 107 M-1 s-1. Quantitative structure-activity relationship (QSAR) models for the oxidation of AMPs by SO5•- were developed based on 40 [Formula: see text] values of amines and phenols, and their molecular descriptors, using the stepwise multiple linear regression method. This comprehensive model exhibited the excellent goodness-of-fit (Radj2 = 0.802), robustness (QLOO2 = 0.749), and predictability (Qext2 = 0.656), and the one-electron oxidation potential (Eox), energy of the highest occupied molecular orbital energy (EHOMO), and most positive net atomic charge on the carbon atoms (qC+) were considered the most influential descriptors for the comprehensive model, indicating that SO5•- oxidizes pollutants via single electron transfer reaction and exhibits a strong oxidation capacity, especially for pollutants containing electron-donating groups. Moreover, the [Formula: see text] values of 13 PPCPs were predicted using this comprehensive model, which suggested the practical application significance of the QSAR model. This study emphasizes the direct oxidation capacity of SO5•-, which is important to evaluate and simulate AOPs based on S(IV).


Sujet(s)
Polluants chimiques de l'eau , Purification de l'eau , Relation quantitative structure-activité , Eau , Polluants chimiques de l'eau/analyse , Oxydoréduction , Amines , Purification de l'eau/méthodes , Phénols/analyse
14.
Soc Neurosci ; 18(5): 312-330, 2023 12.
Article de Anglais | MEDLINE | ID: mdl-37909114

RÉSUMÉ

Environmental factors, such as culture, are known to shape individual variation in brain activity including spontaneous activity, but less is known about their population-level effects. Eastern and Western cultures differ strongly in their cultural norms about relationships between individuals. For example, the collectivism, interdependence and tightness of Eastern cultures relative to the individualism, independence and looseness of Western cultures, promote interpersonal connectedness and coordination. Do such cultural contexts therefore influence the group-level variability of their cultural members' spontaneous brain activity? Using novel methods adapted from studies of inter-subject neural synchrony, we compare the group-level variability of resting state EEG dynamics in Chinese and Canadian samples. We observe that Chinese subjects show significantly higher inter-subject correlation and lower inter-subject distance in their EEG power spectra than Canadian subjects, as well as lower variability in theta power and alpha peak frequency. We demonstrate, for the first time, different relationships among subjects' resting state brain dynamics in Chinese and Canadian samples. These results point to more idiosyncratic neural dynamics among Canadian participants, compared with more shared neural features in Chinese participants.


Sujet(s)
Encéphale , Comparaison interculturelle , Culture (sociologie) , Électroencéphalographie , Humains , Encéphale/physiologie , Peuples d'Asie de l'Est , Individualité
15.
Plants (Basel) ; 12(22)2023 Nov 17.
Article de Anglais | MEDLINE | ID: mdl-38005779

RÉSUMÉ

Nitrate transporters (NRTs) actively take up and transform nitrate (N) to form a large family with many members and distinct functions in plant growth and development. However, few studies have identified them in the context of low nitrate concentrations in Chinese cabbage (Brassica rapa L. ssp. Pekinensis), an important vegetable in China. This study focuses on the identification and analysis of the nitrate transporter 1 (NRT1) gene family as well as various aspects, including its phylogenic distribution, chromosomal position, gene structure, conserved motifs, and duplication pattern. Using bioinformatics methods, we identified and analyzed 84 BrNRT1 genes distributed on ten chromosomes. Furthermore, we conducted an analysis of the expression profile of the NRT1 gene in various tissues of Chinese cabbage exposed to varying nitrate concentrations. A phylogenetic analysis revealed that BrNRT1s members are distributed in six distinct groups. Based on an analysis of gene structure and conserved motifs, it can be inferred that BrNRT1 exhibits a generally conserved structural pattern. The promoters of BrNRT1 were discovered to contain moosefs (MFS) elements, suggesting their potential role in the regulation of NO3- transport across the cell membrane in Chinese cabbage. A transcriptome study and a subsequent RT-qPCR analysis revealed that the expression patterns of some BrNRT1 genes were distinct to specific tissues. This observation implies these genes may contribute to nitrate uptake and transport in various tissues or organs. The results offer fundamental insights into investigating the NRT1 gene family in Chinese cabbage. These results provide basic information for future research on the functional characterization of NRT1 genes in Chinese cabbage and the elucidation of the molecular mechanisms underlying low nitrogen tolerance in Chinese cabbage.

16.
Sci Robot ; 8(84): eadh7852, 2023 Nov 22.
Article de Anglais | MEDLINE | ID: mdl-38019929

RÉSUMÉ

Octopuses can whip their soft arms with a characteristic "bend propagation" motion to capture prey with sensitive suckers. This relatively simple strategy provides models for robotic grasping, controllable with a small number of inputs, and a highly deformable arm with sensing capabilities. Here, we implemented an electronics-integrated soft octopus arm (E-SOAM) capable of reaching, sensing, grasping, and interacting in a large domain. On the basis of the biological bend propagation of octopuses, E-SOAM uses a bending-elongation propagation model to move, reach, and grasp in a simple but efficient way. E-SOAM's distal part plays the role of a gripper and can process bending, suction, and temperature sensory information under highly deformed working states by integrating a stretchable, liquid-metal-based electronic circuit that can withstand uniaxial stretching of 710% and biaxial stretching of 270% to autonomously perform tasks in a confined environment. By combining this sensorized distal part with a soft arm, the E-SOAM can perform a reaching-grasping-withdrawing motion across a range up to 1.5 times its original arm length, similar to the biological counterpart. Through a wearable finger glove that produces suction sensations, a human can use just one finger to remotely and interactively control the robot's in-plane and out-of-plane reaching and grasping both in air and underwater. E-SOAM's results not only contribute to our understanding of the function of the motion of an octopus arm but also provide design insights into creating stretchable electronics-integrated bioinspired autonomous systems that can interact with humans and their environments.

17.
J Nanobiotechnology ; 21(1): 435, 2023 Nov 19.
Article de Anglais | MEDLINE | ID: mdl-37981675

RÉSUMÉ

BACKGROUND: Bacterial infection, complex wound microenvironment and persistent inflammation cause delayed wound healing and scar formation, thereby disrupting the normal function and appearance of skin tissue, which is one of the most problematic clinical issues. Although Ag NPs have a strong antibacterial effect, they tend to oxidize and form aggregates in aqueous solution, which reduces their antibacterial efficacy and increases their toxicity to tissues and organs. Current research on scar treatment is limited and mainly relies on growth factors and drugs to reduce inflammation and scar tissue formation. Therefore, there is a need to develop methods that effectively combine drug delivery, antimicrobial and anti-inflammatory agents to modulate the wound microenvironment, promote wound healing, and prevent skin scarring. RESULTS: Herein, we developed an innovative Ag nanocomposite hydrogel (Ag NCH) by incorporating Ag nanoparticles (Ag NPs) into a matrix formed by linking catechol-modified hyaluronic acid (HA-CA) with 4-arm PEG-SH. The Ag NPs serve dual functions: they act as reservoirs for releasing Ag/Ag+ at the wound site to combat bacterial infections, and they also function as cross-linkers to ensure the sustained release of basic fibroblast growth factor (bFGF). The potent antibacterial effect of the Ag NPs embedded in the hydrogel against S.aureus was validated through comprehensive in vitro and in vivo analyses. The microstructural analysis of the hydrogels and the in vitro release studies confirmed that the Ag NCH possesses smaller pore sizes and facilitates a slower, more sustained release of bFGF. When applied to acute and infected wound sites, the Ag NCH demonstrated remarkable capabilities in reshaping the immune and regenerative microenvironment. It induced a shift from M1 to M2 macrophage polarization, down-regulated the expression of pro-inflammatory factors such as IL-6 and TNF-α, and up-regulated the expression of anti-inflammatory IL-10. Furthermore, the Ag NCH played a crucial role in regulating collagen deposition and alignment, promoting the formation of mature blood vessels, and significantly enhancing tissue reconstruction and scarless wound healing processes. CONCLUSIONS: We think the designed Ag NCH can provide a promising therapeutic strategy for clinical applications in scarless wound healing and antibacterial therapy.


Sujet(s)
Cicatrice , Nanoparticules métalliques , Humains , Antibactériens/pharmacologie , Préparations à action retardée , Inflammation , Nanogels , Argent/pharmacologie , Cicatrisation de plaie , Nanocomposites
18.
Front Pharmacol ; 14: 1279512, 2023.
Article de Anglais | MEDLINE | ID: mdl-37841907

RÉSUMÉ

With the growing number of individuals regularly using e-cigarettes, it has become increasingly important to understand the psychobiological effects of nicotine salts. Nicotine increases the release of dopamine (DA) into the nucleus accumbens (NAc), causing feelings of satisfaction. However, the differences in the DA-increasing effects of different nicotine salts have not been reported. In this study, we used a G protein-coupled receptor-activated DA fluorescent probe (GRABDA1m) and optical fiber photometric recording equipment to monitor the dynamic changes and kinetics of DA release in the NAc of mice exposed to different e-cigarette aerosols, including nicotine, nicotine benzoate, nicotine tartrate, nicotine lactate, nicotine levulinic acid, nicotine malate, and nicotine citrate. The results of this study were as follows: 1) Different types of nicotine salts could increase the release of DA in the NAc. 2) The slopes and half-effective concentrations of the fitted curves were different, suggesting that each nicotine salt had a difference in the efficiency of increasing DA release with concentration changes. 3) The absorption rates of different nicotine salts containing the same original nicotine concentration were significantly different by measuring the blood nicotine content. The effect of nicotine salts on increasing DA was directly proportional to the blood nicotine level. In conclusion, by observing the effects of nicotine salts on DA release in real time in vivo, differences in the pharmacological effects of nicotine salts are revealed to better understand the mechanism underlying the regulatory effects of nicotine salts on the brain.

19.
Front Microbiol ; 14: 1252785, 2023.
Article de Anglais | MEDLINE | ID: mdl-37808324

RÉSUMÉ

Introduction: Peppermint contains substantial bioactive ingredients belonging to the phytoestrogens, and its effects on the production of late-laying hens deserve more attention. This study evaluated the effects of dietary peppermint extract (PE) supplementation on egg production and quality, yolk fatty acid composition, antioxidant capacity, and cecal microbiota in late-phase laying hens. Method: PE powder was identified by UPLC-MS/MS analysis. Two hundred and sixteen laying hens (60 weeks old) were randomly assigned to four treatments, each for 28 days: (i) basal diet (control group, CON); (ii) basal diet + 0.1% PE; (iii) basal diet + 0.2% PE; and (iv) basal diet + 0.4% PE. Egg, serum, and cecal samples were collected for analysis. Results: Dietary PE supplementation increased the laying rate, serum triglyceride, immunoglobulin G, and total antioxidant capacity, while 0.2 and 0.4% PE supplementation increased eggshell thickness, serum total protein level, and superoxide dismutase activity of laying hens compared with the CON group (P < 0.05). PE addition in diets increased the C14:0, C18:3n3, C18:3n6, C23:0, C24:0, and C24:1n9 contents in the yolk. In addition, the egg yolk saturated fatty acid content was higher (P < 0.05) in the 0.2 and 0.4% PE groups compared with the CON and 0.1% PE groups. The microbiota analysis revealed that the cecal phylum Proteobacteria was decreased (P < 0.05) in the PE-supplemented groups. A total of 0.4% PE supplementation increased the cecal richness of gram-positive bacteria and decreased the richness of gram-negative and potentially pathogenic bacteria compared with the 0.1% PE group (P < 0.05). Microbial function prediction analysis showed that the cecal microbiota of the PE group was mainly enriched by fatty acid degradation, fatty acid metabolism, amino sugar metabolism, nucleotide sugar metabolism, and other pathways. Regression analysis suggested that 0.28-0.36% PE supplementation was the optimal level for improving egg production and quality, antioxidant capacity, and yolk fatty acid in late-phase laying hens. Discussion: Dietary PE supplementation improved egg production and quality (including yolk fatty acid composition) by increasing serum IgG and antioxidant capacity and modulating the intestinal microbiota in late-phase laying hens.

20.
J Agric Food Chem ; 71(37): 13662-13671, 2023 Sep 20.
Article de Anglais | MEDLINE | ID: mdl-37668543

RÉSUMÉ

A study of different grapevine tissues and organs (root, stem, leaf, fruit) water isotope fractionation models from high-quality wine grapes produced in the Helan Mountains, a key wine-producing area in northwestern China, was undertaken. Results showed that δ2H values of local groundwater sources were more negative than rivers and precipitation. Soil water δ2H and δ18O values were significantly higher than those of other environmental water sources. Water from the soil surface layer (0-30 cm, δ2H and δ18O values) was more positive than the deeper layer (30-60 cm), indicating that soil water has undergone a positive fractionation effect. δ2H and δ18O values of tissues and organs from different grape varieties followed a similar pattern but were more negative than the local atmospheric precipitation line (slope between 4.1 to 5.2). The 2H and 18O fractionation relationship in grapevine organs was similar, and 18O has a higher fractionation effect than 2H. δ2H and δ18O values showed a strong fractionation effect during the transportation of water to different grape organs (trend of stem > fruit > leaf). This study showed that 18/16O fractionation in grapes is more likely to occur under drought conditions and provides a theoretical basis to improve traceability accuracy and origin protection of wine production areas.


Sujet(s)
Vitis , Isotopes de l'oxygène , Hydrogène , Sécheresses , Sol , Eau
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE