Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 99
Filtrer
1.
iScience ; 27(8): 110445, 2024 Aug 16.
Article de Anglais | MEDLINE | ID: mdl-39108709

RÉSUMÉ

Bone marrow (BM) is the dominant site of hematopoiesis after 20 post-conception weeks (PCWs), but the intricacies of hematopoietic development in fetal BM up to birth and its involvement in malignancies remain unknown. Here, we compared the single-cell transcriptomic profile of BM hematopoietic stem and progenitor cells (HSPCs) at the early (12-14 PCW), middle (19-22 PCW) second trimester, and the neonatal stage. The stemness of hematopoietic stem cell and multipotent progenitor (HSC/MPP) is established at the middle second trimester, then maintained until birth. Furthermore, differentiation potentials toward three lineages are enhanced after the middle second trimester for birth, accompanied by the upregulation of aerobic metabolism. Notably, decreased stemness in HSCs/MPPs and higher interferon signals in progenitors at the early second trimester rendered the HSPCs more proximal to leukemogenesis. Collectively, our work elucidated the dynamics of fetal hematopoiesis in preparation for birth, offering valuable insights into the pathological processes underlying leukemia.

2.
Cancer ; 2024 Aug 13.
Article de Anglais | MEDLINE | ID: mdl-39136180

RÉSUMÉ

BACKGROUND: PDGFRB fusions in acute lymphoblastic leukemia (ALL) is rare. The authors identified 28 pediatric PDGFRB-positive ALL. They analyzed the features, outcomes, and prognostic factors of this disease. METHODS: This multicenter, retrospective study included 6457 pediatric patients with newly diagnosed PDGFRB fusion ALL according to the CCCG-ALL-2015 and CCCG-ALL-2020 protocols from April 2015 to April 2022 in 20 hospitals in China. Of these patients, 3451 were screened for PDGFRB fusions. RESULTS: Pediatric PDGFRB-positive ALL accounted for only 0.8% of the 3451 cases tested for PDGFRB. These patients included 21 males and seven females and 24 B-ALL and 4 T-ALL; the median age was 10 years; and the median leukocyte count was 29.8 × 109/L at baseline. Only one patient had eosinophilia. Three patients had an IKZF1 deletion, three had chromosome 5q31-33 abnormalities, and one suffered from a complex karyotype. The 3-year event-free survival (EFS), overall survival (OS), and cumulative incidence of relapse (CIR) were 33.1%, 65.5%, and 32.1%, respectively, with a median follow-up of 25.5 months. Twenty patients were treated with chemotherapy plus tyrosine-kinase inhibitors (TKIs) and eight were treated without TKI. Complete remission (CR) rates of them were 90.0% and 63.6%, respectively, but no differences in EFS, OS, or CIR. Univariate analyses showed patients with IKZF1 deletion or measurable residual disease (MRD) ≥0.01% after induction had inferior outcomes (p < .05). CONCLUSIONS: Pediatric PDGFRB-positive ALL has a poor outcome associated with high-risk features. Chemotherapy plus TKIs can improve the CR rate, providing an opportunity for lower MRD levels and transplantation. MRD ≥0.01% was a powerful adverse prognostic factor, and stratified treatment based on MRD may improve survival for these patients. PLAIN LANGUAGE SUMMARY: Pediatric acute lymphoblastic leukemia patients with PDGFRB fusions are associated with high-risk clinical features such as older age, high white blood cell count at diagnosis, high measurable residual disease after induction therapy, and increased risk of leukemia relapse. Chemotherapy plus tyrosine-kinase inhibitors can improve the complete remission rate and provide an opportunity for lower measurable residual disease (MRD) levels and transplantation for pediatric PDGFRB-positive acute lymphoblastic leukemia (ALL) patients. The MRD level was also a powerful prognostic factor for pediatric PDGFRB-positive ALL patients.

3.
JOR Spine ; 7(3): e1349, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-38993524

RÉSUMÉ

Background: Inflammatory cytokines have been reported to be related to intervertebral disc degeneration (IVDD) in several previous studies. However, it remains unclear about the causal relationship between inflammatory cytokines and IVDD. This study employs Mendelian randomization (MR) to analyze the causal link between inflammatory cytokines and the risk of IVDD. Method: We used genetic variants associated with inflammatory cytokines from a meta-analysis of genome-wide association study (GWAS) in 8293 Finns as instrumental variables and IVDD data were sourced from the FinnGen consortium. The main analytical approach utilized Inverse-Variance Weighting (IVW) with random effects to assess the causal relationship. Additionally, complementary methods such as MR-Egger, weighted median, simple mode, weighted mode, and MR pleiotropy residual sum and outlier were employed to enhance the robustness of the final results. Result: We found interferon-gamma (IFN-γ, p = 2.14 × 10-6, OR = 0.870, 95% CI = 0.821-0.921), interleukin-1 beta (IL-1b, p = 0.012, OR = 0.951, 95% CI = 0.914-0.989), interleukin-4 (IL-4, p = 0.034, OR = 0.946, 95% CI = 0.899-0.996), interleukin-18 (IL-18, p = 0.028, OR = 0.964, 95% CI = 0.934-0.996), granulocyte colony-stimulating factor (GCSF, p = 0.010, OR = 0.919, 95% CI = 0.861-0.980), and Stromal cell-derived factor 1a (SDF1a, p = 0.014, OR = 1.072, 95% CI = 1.014-1.134) were causally associated with risk of IVDD. Conclusion: Our MR analyses found a potential causal relationship between six inflammation cytokines (IFN-γ, IL-1b, IL-4, IL-18, SDF1a, and GCSF) and altered IVDD risk.

4.
Cancer Lett ; 596: 217018, 2024 Aug 01.
Article de Anglais | MEDLINE | ID: mdl-38844062

RÉSUMÉ

Relapse and treatment resistance pose significant challenges in the management of pediatric B cell acute lymphoblastic leukemia (B-ALL) and acute myeloid leukemia (AML). The efficacy of immunotherapy in leukemia remains limited due to factors such as the immunosuppressive tumor microenvironment (TME) and lack of suitable immunotherapeutic targets. Thus, an in-depth characterization of the TME in pediatric leukemia is warranted to improve the efficacy of immunotherapy. Here, we used single-cell RNA sequencing (scRNA-seq) to characterize the TME of pediatric B-ALL and AML, focusing specifically on bone-marrow-derived T cells. Moreover, we investigated the transcriptome changes during the initiation, remission, and relapse stages of pediatric AML. Our findings revealed that specific functional expression programs correlated with fluctuations in various T cell subsets, which may be associated with AML progression and relapse. Furthermore, our analysis of cellular communication networks led to the identification of VISTA, CD244, and TIM3 as potential immunotherapeutic targets in pediatric AML. Finally, we detected elevated proportions of γδ T cells and associated functional genes in samples from pediatric patients diagnosed with B-ALL and AML, which could inform the development of novel therapeutic approaches, potentially focusing on γδ T cells.


Sujet(s)
Leucémie aigüe myéloïde , Analyse sur cellule unique , Microenvironnement tumoral , Humains , Microenvironnement tumoral/immunologie , Microenvironnement tumoral/génétique , Analyse sur cellule unique/méthodes , Enfant , Leucémie aigüe myéloïde/génétique , Leucémie aigüe myéloïde/immunologie , Leucémie aigüe myéloïde/anatomopathologie , Transcriptome , Récepteur cellulaire-2 du virus de l'hépatite A/génétique , Récepteur cellulaire-2 du virus de l'hépatite A/métabolisme , Analyse de profil d'expression de gènes/méthodes , Enfant d'âge préscolaire , Mâle , Femelle , Antigènes B7/génétique , Adolescent , Leucémie-lymphome lymphoblastique à précurseurs B/génétique , Leucémie-lymphome lymphoblastique à précurseurs B/immunologie , Leucémie-lymphome lymphoblastique à précurseurs B/anatomopathologie , Régulation de l'expression des gènes dans la leucémie
5.
Epilepsia Open ; 9(4): 1416-1425, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38795316

RÉSUMÉ

OBJECTIVES: Existing data regarding the risk of COVID-19 infection and its effects on seizure control in patients with epilepsy (PWE) are inconclusive. Our research aims to investigate the PWE who are susceptible to COVID-19 and what factors contribute to seizure exacerbation. METHODS: From Dec 28, 2022 to Feb 19, 2023, a cross-sectional questionnaire survey among adult PWE was conducted. The demographics, epilepsy-related information, COVID-19-related variables, and seizure outcomes after COVID-19 infection were collected. Multivariate logistic analyses were performed to determine the risk factors associated with COVID-19 infection and exacerbated seizures. RESULTS: Of 1557 PWE, 829 (53.2%) were infected with COVID-19 and 136 (16.4%) developed seizure exacerbation after COVID-19 infection. Overweight/obesity (OR 1.372, 95% CI 1.075-1.753, p = 0.011), immunocompromised (OR 3.301, 95% CI 1.093-9.974, p = 0.031), active epilepsy (OR 1.700, 95% CI 1.378-2.097, p < 0.001), and antiseizure medication (ASM) polytherapy (OR 1.314, 95% CI 1.065-1.621, p = 0.011) were associated with COVID-19 infection. Active epilepsy (OR 4.696, 95% CI 2.568-8.586, p < 0.001) and fever-associated seizures (OR 4.298, 95%CI 2.659-6.946, p < 0.001) were associated with seizure exacerbation. SIGNIFICANCE: PWE with overweight/obesity, immunocompromised, active epilepsy, and ASM polytherapy were at higher risk of COVID-19 infection. Once infected with COVID-19, seizures were exacerbated in PWE with active epilepsy and fever-associated seizures. PLAIN LANGUAGE SUMMARY: Patients with epilepsy (PWE) do not appear to be more susceptible to COVID-19 infection than general population. Once infected with COVID-19, 16.4% of PWE had seizure exacerbation. The PWE who have experienced seizures within the past 12 months before infection tend to contract COVID-19 more often, and are more likely to experience seizure exacerbations following COVID-19 infection.


Sujet(s)
COVID-19 , Épilepsie , Crises épileptiques , Humains , COVID-19/complications , COVID-19/épidémiologie , Femelle , Mâle , Épilepsie/épidémiologie , Adulte , Études transversales , Adulte d'âge moyen , Facteurs de risque , Crises épileptiques/épidémiologie , Crises épileptiques/étiologie , SARS-CoV-2 , Anticonvulsivants/usage thérapeutique , Enquêtes et questionnaires
7.
Blood Sci ; 6(2): e00186, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-38681968

RÉSUMÉ

Juvenile myelomonocytic leukemia (JMML) is a disorder characterized by the simultaneous presence of myeloproliferative and myelodysplastic features, primarily affecting infants and young children. Due to the heterogeneous genetic background among patients, the current clinical and laboratory prognostic features are insufficient for accurately predicting outcomes. Thus, there is a pressing need to identify novel prognostic indicators. Red cell distribution width (RDW) is a critical parameter reflecting the variability in erythrocyte size. Recent studies have emphasized that elevated RDW serves as a valuable predictive marker for unfavorable outcomes across various diseases. However, the prognostic role of RDW in JMML remains unclear. Patients with JMML from our single-center cohort between January 2008 and December 2019 were included. Overall, 77 patients were eligible. Multivariate Cox proportional hazard models showed that patients with red cell distribution width coefficient of variation (RDW-CV) >17.35% at diagnosis were susceptible to much worse overall survival rate (hazard ratio [HR] = 5.22, confidence interval [CI] = 1.50-18.21, P = .010). Besides, the combination of RDW elevation and protein phosphatase non-receptor type 11 (PTPN11) mutation was likely to predict a subgroup with the worst outcomes in our cohort. RDW is an independent prognostic variable in JMML subjects. RDW may be regarded as an inexpensive biomarker to predict the clinical outcome in patients with JMML.

8.
Cell Commun Signal ; 22(1): 240, 2024 Apr 25.
Article de Anglais | MEDLINE | ID: mdl-38664711

RÉSUMÉ

BACKGROUND: The repair of peripheral nerve injury poses a clinical challenge, necessitating further investigation into novel therapeutic approaches. In recent years, bone marrow mesenchymal stromal cell (MSC)-derived mitochondrial transfer has emerged as a promising therapy for cellular injury, with reported applications in central nerve injury. However, its potential therapeutic effect on peripheral nerve injury remains unclear. METHODS: We established a mouse sciatic nerve crush injury model. Mitochondria extracted from MSCs were intraneurally injected into the injured sciatic nerves. Axonal regeneration was observed through whole-mount nerve imaging. The dorsal root ganglions (DRGs) corresponding to the injured nerve were harvested to test the gene expression, reactive oxygen species (ROS) levels, as well as the degree and location of DNA double strand breaks (DSBs). RESULTS: The in vivo experiments showed that the mitochondrial injection therapy effectively promoted axon regeneration in injured sciatic nerves. Four days after injection of fluorescently labeled mitochondria into the injured nerves, fluorescently labeled mitochondria were detected in the corresponding DRGs. RNA-seq and qPCR results showed that the mitochondrial injection therapy enhanced the expression of Atf3 and other regeneration-associated genes in DRG neurons. Knocking down of Atf3 in DRGs by siRNA could diminish the therapeutic effect of mitochondrial injection. Subsequent experiments showed that mitochondrial injection therapy could increase the levels of ROS and DSBs in injury-associated DRG neurons, with this increase being correlated with Atf3 expression. ChIP and Co-IP experiments revealed an elevation of DSB levels within the transcription initiation region of the Atf3 gene following mitochondrial injection therapy, while also demonstrating a spatial proximity between mitochondria-induced DSBs and CTCF binding sites. CONCLUSION: These findings suggest that MSC-derived mitochondria injected into the injured nerves can be retrogradely transferred to DRG neuron somas via axoplasmic transport, and increase the DSBs at the transcription initiation regions of the Atf3 gene through ROS accumulation, which rapidly release the CTCF-mediated topological constraints on chromatin interactions. This process may enhance spatial interactions between the Atf3 promoter and enhancer, ultimately promoting Atf3 expression. The up-regulation of Atf3 induced by mitochondria further promotes the expression of downstream regeneration-associated genes and facilitates axon regeneration.


Sujet(s)
Facteur de transcription ATF-3 , Axones , Cassures double-brin de l'ADN , Ganglions sensitifs des nerfs spinaux , Cellules souches mésenchymateuses , Mitochondries , Régénération nerveuse , Espèces réactives de l'oxygène , Nerf ischiatique , Régulation positive , Animaux , Facteur de transcription ATF-3/génétique , Facteur de transcription ATF-3/métabolisme , Mitochondries/métabolisme , Mitochondries/génétique , Espèces réactives de l'oxygène/métabolisme , Axones/métabolisme , Régénération nerveuse/génétique , Régulation positive/génétique , Souris , Cellules souches mésenchymateuses/métabolisme , Cellules souches mésenchymateuses/cytologie , Nerf ischiatique/traumatismes , Nerf ischiatique/anatomopathologie , Ganglions sensitifs des nerfs spinaux/métabolisme , Souris de lignée C57BL , Mâle
9.
Cancer Cell ; 42(4): 552-567.e6, 2024 Apr 08.
Article de Anglais | MEDLINE | ID: mdl-38593781

RÉSUMÉ

Leukemia can arise at various stages of the hematopoietic differentiation hierarchy, but the impact of developmental arrest on drug sensitivity is unclear. Applying network-based analyses to single-cell transcriptomes of human B cells, we define genome-wide signaling circuitry for each B cell differentiation stage. Using this reference, we comprehensively map the developmental states of B cell acute lymphoblastic leukemia (B-ALL), revealing its strong correlation with sensitivity to asparaginase, a commonly used chemotherapeutic agent. Single-cell multi-omics analyses of primary B-ALL blasts reveal marked intra-leukemia heterogeneity in asparaginase response: resistance is linked to pre-pro-B-like cells, with sensitivity associated with the pro-B-like population. By targeting BCL2, a driver within the pre-pro-B-like cell signaling network, we find that venetoclax significantly potentiates asparaginase efficacy in vitro and in vivo. These findings demonstrate a single-cell systems pharmacology framework to predict effective combination therapies based on intra-leukemia heterogeneity in developmental state, with potentially broad applications beyond B-ALL.


Sujet(s)
Leucémies , Leucémie-lymphome lymphoblastique à précurseurs B , Humains , Asparaginase/pharmacologie , Pharmacologie des réseaux , Leucémie-lymphome lymphoblastique à précurseurs B/traitement médicamenteux , Leucémie-lymphome lymphoblastique à précurseurs B/génétique , Transduction du signal , Leucémies/traitement médicamenteux
10.
EJHaem ; 5(2): 333-345, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-38633121

RÉSUMÉ

ETV6::RUNX1 is the most common fusion gene in childhood acute lymphoblastic leukaemia (ALL) and is associated with favorable outcomes, especially in low-risk children. However, as many as 10% of children relapse within 3 years, and such early relapses have poor survival. Identifying children at risk for early relapse is an important challenge. We interrogated data from 87 children with low-risk ETV6::RUNX1-positive B-cell ALL and with available preserved bone marrow samples (discovery cohort). We profiled somatic point mutations in a panel of 559 genes and genome-wide transcriptome and single-nucleotide variants. We found high TIMD4 expression (> 85th-percentile value) at diagnosis was the most important independent prognostic factor of early relapse (hazard ratio [HR] = 5.07 [1.76, 14.62]; p = 0.03). In an independent validation cohort of low-risk ETV6::RUNX1-positive B-cell ALL (N = 68) high TIMD4 expression at diagnosis had an HR = 4.78 [1.07, 21.36] (p = 0.04) for early relapse. In another validation cohort including 78 children with low-risk ETV6::RUNX1-negative B-cell ALL, high TIMD4 expression at diagnosis had an HR = 3.93 [1.31, 11.79] (p = 0.01). Our results suggest high TIMD4 expression at diagnosis in low-risk B-cell ALL in children might be associated with high risk for early relapse.

11.
Clin Cancer Res ; 30(6): 1143-1151, 2024 Mar 15.
Article de Anglais | MEDLINE | ID: mdl-38170574

RÉSUMÉ

PURPOSE: Patient-tailored minimal residual disease (MRD) monitoring based on circulating tumor DNA (ctDNA) sequencing of leukemia-specific mutations enables early detection of relapse for pre-emptive treatment, but its utilization in pediatric acute myelogenous leukemia (AML) is scarce. Thus, we aim to examine the role of ctDNA as a prognostic biomarker in monitoring response to the treatment of pediatric AML. EXPERIMENTAL DESIGN: A prospective longitudinal study with 50 children with AML was launched, and sequential bone marrow (BM) and matched plasma samples were collected. The concordance of mutations by next-generation sequencing-based BM-DNA and ctDNA was evaluated. In addition, progression-free survival (PFS) and overall survival (OS) were estimated. RESULTS: In 195 sample pairs from 50 patients, the concordance of leukemia-specific mutations between ctDNA and BM-DNA was 92.8%. Patients with undetectable ctDNA were linked to improved OS and PFS versus detectable ctDNA in the last sampling (both P < 0.001). Patients who cleared their ctDNA post three cycles of treatment had similar PFS compared with persistently negative ctDNA (P = 0.728). In addition, patients with >3 log reduction but without clearance in ctDNA were associated with an improved PFS as were patients with ctDNA clearance (P = 0.564). CONCLUSIONS: Thus, ctDNA-based MRD monitoring appears to be a promising option to complement the overall assessment of pediatric patients with AML, wherein patients with continuous ctDNA negativity have the option for treatment de-escalation in subsequent therapy. Importantly, patients with >3 log reduction but without clearance in ctDNA may not require an aggressive treatment plan due to improved survival, but this needs further study to delineate.


Sujet(s)
ADN tumoral circulant , Leucémie aigüe myéloïde , Humains , Enfant , ADN tumoral circulant/génétique , Maladie résiduelle/génétique , Maladie résiduelle/diagnostic , Études prospectives , Études longitudinales , Leucémie aigüe myéloïde/diagnostic , Leucémie aigüe myéloïde/génétique , Leucémie aigüe myéloïde/anatomopathologie , Appréciation des risques , Marqueurs biologiques tumoraux/génétique
12.
Blood ; 143(4): 320-335, 2024 Jan 25.
Article de Anglais | MEDLINE | ID: mdl-37801708

RÉSUMÉ

ABSTRACT: T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive cancer with resistant clonal propagation in recurrence. We performed high-throughput droplet-based 5' single-cell RNA with paired T-cell receptor (TCR) sequencing of paired diagnosis-relapse (Dx_Rel) T-ALL samples to dissect the clonal diversities. Two leukemic evolutionary patterns, "clonal shift" and "clonal drift" were unveiled. Targeted single-cell DNA sequencing of paired Dx_Rel T-ALL samples further corroborated the existence of the 2 contrasting clonal evolution patterns, revealing that dynamic transcriptional variation might cause the mutationally static clones to evolve chemotherapy resistance. Analysis of commonly enriched drifted gene signatures showed expression of the RNA-binding protein MSI2 was significantly upregulated in the persistent TCR clonotypes at relapse. Integrated in vitro and in vivo functional studies suggested that MSI2 contributed to the proliferation of T-ALL and promoted chemotherapy resistance through the posttranscriptional regulation of MYC, pinpointing MSI2 as an informative biomarker and novel therapeutic target in T-ALL.


Sujet(s)
Leucémie-lymphome lymphoblastique à précurseurs T , Protéines de liaison à l'ARN , Humains , Évolution clonale/génétique , Résistance aux médicaments antinéoplasiques/génétique , Leucémie-lymphome lymphoblastique à précurseurs T/traitement médicamenteux , Leucémie-lymphome lymphoblastique à précurseurs T/génétique , Leucémie-lymphome lymphoblastique à précurseurs T/métabolisme , Récepteurs aux antigènes des cellules T/génétique , Récidive , Protéines de liaison à l'ARN/génétique , Protéines de liaison à l'ARN/métabolisme , Lymphocytes T/métabolisme
13.
iScience ; 26(12): 108561, 2023 Dec 15.
Article de Anglais | MEDLINE | ID: mdl-38144459

RÉSUMÉ

Hematopoietic stem cell (HSC) surface markers improve the understanding of cell identity and function. Here, we report that human HSCs can be distinguished by their expression of the CEA Cell Adhesion Molecule 5 (CEACAM5, CD66e), which serves as a marker and a regulator of HSC function. CD66e+ cells exhibited a 5.5-fold enrichment for functional long term HSCs compared to CD66e- cells. CD66e+CD34+CD90+CD45RA- cells displayed robust multi-lineage repopulation and serial reconstitution ability in immunodeficient mice compared to CD66e-CD34+CD90+CD45RA-cells. CD66e expression also identified almost all repopulating HSCs within the CD34+CD90+CD45RA- population. Together, these results indicated that CEACAM5 is a marker that enriches functional human hematopoietic stem cells capable of long-term multi-lineage engraftment.

14.
Toxics ; 11(12)2023 Dec 07.
Article de Anglais | MEDLINE | ID: mdl-38133396

RÉSUMÉ

This study was aimed at investigating the pathogenesis of chronic obstructive pulmonary disease (COPD) caused by smoking-based on bioinformatics analysis and in vitro experimental evidence. The GEO, GEO2R, TargetScan, miRDB, miRWalk, DAVID, and STRING databases were used for bioinformatics analysis. The mRNA expression and the protein levels were determined by real-time PCR and ELISA. After taking the intersection of the diversified results of the databases, four differentially expressed miRNAs (hsa-miR-146a, hsa-miR-708, hsa-miR-150, and hsa-miR-454) were screened out. Subsequently, a total of 57 target genes of the selected miRNAs were obtained. The results of DAVID analysis showed that the selected miRNAs participated in COPD pathogenesis through long-term potentiation, the TGF-ß signaling pathway, the PI3K-Akt signaling pathway, etc. The results of STRING prediction showed that TP53, EP300, and MAPK1 were the key nodes of the PPI network. The results of the confirmatory experiment showed that, compared with the control group, the mRNA expression of ZEB1, MAPK1, EP300, and SP1 were up-regulated, while the expression of MYB was down-regulated and the protein levels of ZEB1, MAPK1, and EP300 were increased. Taken together, miRNAs (hsa-miR-146a, hsa-miR-708, hsa-miR-150, and hsa-miR-454) and their regulated target genes and downstream protein molecules (ZEB1, EP300, and MAPK1) may be closely related to the pathological process of COPD.

15.
Hemasphere ; 7(12): e979, 2023 Dec.
Article de Anglais | MEDLINE | ID: mdl-38026790

RÉSUMÉ

Lysine methyltransferase 2A-rearranged acute myeloid leukemia (KMT2A-r AML) is a special entity in the 2022 World Health Organization classification of myeloid neoplasms, characterized by high relapse rate and adverse outcomes. Current risk stratification was established on the treatment response and translocation partner of KMT2A. To study the transcriptomic feature and refine the current stratification of pediatric KMT2A-r AML, we analyzed clinical and RNA sequencing data of 351 patients. By implementing least absolute shrinkage and selection operator algorithm, we identified 7 genes (KIAA1522, SKAP2, EGFL7, GAB2, HEBP1, FAM174B, and STARD8) of which the expression levels were strongly associated with outcomes. We then developed a transcriptome-based score, dividing patients into 2 groups with distinct gene expression patterns and prognosis, which was further validated in an independent cohort and outperformed the LSC17 score. We also found cell cycle, oxidative phosphorylation, and metabolism pathways were upregulated in patients with inferior outcomes. By integrating clinical characteristics, we proposed a simple-to-use prognostic scoring system with excellent discriminability, which allowed us to distinguish allogeneic hematopoietic stem cell transplantation candidates more precisely. In conclusion, pediatric KMT2A-r AML is heterogenous on transcriptomic level and the newly proposed scoring system combining clinical characteristics and transcriptomic features can be instructive in clinical routines.

16.
BMC Bioinformatics ; 24(1): 450, 2023 Nov 28.
Article de Anglais | MEDLINE | ID: mdl-38017410

RÉSUMÉ

BACKGROUND: Acute myeloid leukaemia (AML) is characterised by the malignant accumulation of myeloid progenitors with a high recurrence rate after chemotherapy. Blasts (leukaemia cells) exhibit a complete myeloid differentiation hierarchy hiding a wide range of temporal information from initial to mature clones, including genesis, phenotypic transformation, and cell fate decisions, which might contribute to relapse in AML patients. METHODS: Based on the landscape of AML surface antigens generated by mass cytometry (CyTOF), we combined manifold analysis and principal curve-based trajectory inference algorithm to align myelocytes on a single-linear evolution axis by considering their phenotype continuum that correlated with differentiation order. Backtracking the trajectory from mature clusters located automatically at the terminal, we recurred the molecular dynamics during AML progression and confirmed the evolution stage of single cells. We also designed a 'dispersive antigens in neighbouring clusters exhibition (DANCE)' feature selection method to simplify and unify trajectories, which enabled the exploration and comparison of relapse-related traits among 43 paediatric AML bone marrow specimens. RESULTS: The feasibility of the proposed trajectory analysis method was verified with public datasets. After aligning single cells on the pseudotime axis, primitive clones were recognized precisely from AML blasts, and the expression of the inner molecules before and after drug stimulation was accurately plotted on the trajectory. Applying DANCE to 43 clinical samples with different responses for chemotherapy, we selected 12 antigens as a general panel for myeloblast differentiation performance, and obtain trajectories to those patients. For the trajectories with unified molecular dynamics, CD11c overexpression in the primitive stage indicated a good chemotherapy outcome. Moreover, a later initial peak of stemness heterogeneity tended to be associated with a higher risk of relapse compared with complete remission. CONCLUSIONS: In this study, pseudotime was generated as a new single-cell feature. Minute differences in temporal traits among samples could be exhibited on a trajectory, thus providing a new strategy for predicting AML relapse and monitoring drug responses over time scale.


Sujet(s)
Antigènes de surface , Leucémie aigüe myéloïde , Enfant , Humains , Récidive tumorale locale , Leucémie aigüe myéloïde/génétique , Phénotype , Récidive
17.
Int J Hematol ; 118(6): 737-744, 2023 Dec.
Article de Anglais | MEDLINE | ID: mdl-37733171

RÉSUMÉ

BACKGROUND: Acute myeloid leukemia (AML) and hyperleukocytosis have an unfavorable prognosis, but the impact of hyperleukocytosis on the prognosis of pediatric AML remains uncertain. We investigated the clinical characteristics and prognosis of pediatric AML with hyperleukocytosis, defined as WBC ≥ 50 × 109/L. METHODS: A total of 132 patients with newly diagnosed childhood AML with hyperleukocytosis were consecutively enrolled at our center from September 2009 to August 2021 to investigate prognostic factors and clinical outcomes. RESULTS: Hyperleukocytosis occurred in 27.4% of AML patients. Pediatric patients with hyperleukocytosis had similar CR and OS rates to those without hyperleukocytosis, but had a lower EFS rate. In our study, rates of CR1, mortality, relapsed/refractory disease, and HSCT were comparable between AML patients with WBC counts of 50-100 × 109/L and ≥ 100 × 109/L. AML patients with a WBC count of 50-100 × 109/L had a similar 5-year OS rate to patients with a WBC count ≥ 100 × 109/L (74.6% vs. 75.4%, P = 0.921). Among all patients with hyperleukocytosis, the FAB M5 subtype was associated with significantly inferior survival, and the prognosis of CBF-AML was good. CONCLUSIONS: Pediatric AML patients with hyperleukocytosis have the similar prognosis regardless of whether their WBC count is 50-100 × 109/L or ≥ 100 × 109/L.


Sujet(s)
Leucémie aigüe monoblastique , Leucémie aigüe myéloïde , Humains , Enfant , Hyperleucocytose , Numération des leucocytes , Pronostic , Leucémie aigüe monoblastique/complications , Études rétrospectives
18.
Nat Commun ; 14(1): 4373, 2023 07 20.
Article de Anglais | MEDLINE | ID: mdl-37474525

RÉSUMÉ

Mesenchymal stem cells (MSCs) possess potent immunomodulatory activity and have been extensively investigated for their therapeutic potential in treating inflammatory disorders. However, the mechanisms underlying the immunosuppressive function of MSCs are not fully understood, hindering the development of standardized MSC-based therapies for clinical use. In this study, we profile the single-cell transcriptomes of MSCs isolated from adipose tissue (AD), bone marrow (BM), placental chorionic membrane (PM), and umbilical cord (UC). Our results demonstrate that MSCs undergo a progressive aging process and that the cellular senescence state influences their immunosuppressive activity by downregulating PD-L1 expression. Through integrated analysis of single-cell transcriptomic and proteomic data, we identify GATA2 as a regulator of MSC senescence and PD-L1 expression. Overall, our findings highlight the roles of cell aging and PD-L1 expression in modulating the immunosuppressive efficacy of MSCs and implicating perinatal MSC therapy for clinical applications in inflammatory disorders.


Sujet(s)
Antigène CD274 , Cellules souches mésenchymateuses , Humains , Femelle , Grossesse , Régulation négative , Antigène CD274/génétique , Antigène CD274/métabolisme , Multi-omique , Protéomique , Placenta/métabolisme , Vieillissement de la cellule/génétique , Cellules souches mésenchymateuses/métabolisme
20.
Cytokine ; 166: 156191, 2023 06.
Article de Anglais | MEDLINE | ID: mdl-37002970

RÉSUMÉ

OBJECTIVE: This study was aimed to screen and identify miRNAs that could regulate human CTGF gene and downstream cascade reaction Rac1/MLK3/JNK/AP-1/Collagen I by bioinformatics and experimental means. METHODS: TargetScan and Tarbase were used to predict miRNAs that may have regulatory effects on human CTGF gene. The dual-luciferase reporter gene assay was employed to verify the results obtained in bioinformatics. Human alveolar basal epithelial A549 cells were exposed to silica (SiO2) culture medium for 24 h to establish an in vitro model of pulmonary fibrosis, and bleomycin (BLM) of 100 ng/mL was used as a positive control. The miRNA and mRNA expression levels were determined by RT-qPCR, and the protein levels were measured by western blot in hsa-miR-379-3p overexpression group or not. RESULTS: A total of 9 differentially expressed miRNAs that might regulate the human CTGF gene were predicted. Hsa-miR-379-3p and hsa-miR-411-3p were selected for the subsequent experiments. The results of the dual-luciferase reporter assay showed that hsa-miR-379-3p could bind to CTGF, but hsa-miR-411-3p could not. Compared with the control group, SiO2 exposure (25 and 50 µg/mL) could significantly reduce the expression level of hsa-miR-379-3p in A549 cells. SiO2 exposure (50 µg/mL) could significantly increase the mRNA expression levels of CTGF, Collagen I, Rac1, MLK3, JNK, AP1, and VIM in A549 cells, while CDH1 level was significantly decreased. Compared with SiO2 + NC group, the mRNA expression levels of CTGF, Collagen I, Rac1, MLK3, JNK, AP1, and VIM were significantly decreased, and CDH1 level was significantly higher when hsa-miR-379-3p was overexpressed. At the same time, overexpression of hsa-miR-379-3p improved the protein levels of CTGF, Collagen I, c-Jun and phospho-c-Jun, JNK1 and phospho-JNK1 significantly compared with SiO2 + NC group. CONCLUSION: Hsa-miR-379-3p was demonstrated for the first time that could directly target and down-regulate human CTGF gene, and further affect the expression levels of key genes and proteins in Rac1/MLK3/JNK/AP-1/Collagen I cascade reaction.


Sujet(s)
Facteur de croissance du tissu conjonctif , microARN , Humains , Cellules A549 , Collagène/métabolisme , Facteur de croissance du tissu conjonctif/génétique , Facteur de croissance du tissu conjonctif/métabolisme , microARN/génétique , Protéine G rac1/génétique , Protéine G rac1/métabolisme , ARN messager , Silice/métabolisme , Facteur de transcription AP-1/génétique , Facteur de transcription AP-1/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE