Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 80
Filtrer
1.
J Oral Rehabil ; 2024 Aug 12.
Article de Anglais | MEDLINE | ID: mdl-39135294

RÉSUMÉ

BACKGROUND: Aberrant occlusion and aging are two main risks for temporomandibular joint (TMJ) degeneration. OBJECTIVE: To assess the combined impact of occlusion and age on TMJ disc. METHODS: To avoid the confounding impact of gender, presently, 126 female C57BL/6J mice, 63 youngsters, 6-week old and 63 adults, 28-week old, were used. An experimental bilateral anterior crossbite (BAC) relation was created by installing metal tubes onto the mandibular incisors. Mice were sacrificed at 3, 7 and 11 weeks (n = 9). Additionally, the installed tubes were removed at 7 weeks in removal groups and the TMJs were sampled after another 4 weeks (n = 9). Disc changes were detected by histomorphology, immunohistochemistry, and western blot assays. RESULTS: Disc deformation was obvious in BAC groups. The typical change was hyperplasia at the posterior region of the disc where there was significant infiltration of inflammatory cells. Expressions of the inflammatory markers, including tumour necrosis factor-α and interleukin-1ß, and the catabolic markers, including fibronectin (FN), FN N-terminal fragments, and vascular endothelial growth factor-A, were all increased. The changes were more obvious in adults than in youngsters. Removal of BAC attenuated inflammatory and catabolic changes in the youngsters, but the inflammatory markers recovered little in the adults. CONCLUSION: TMJ disc responds to BAC by degeneration and inflammation, and respond to BAC removal by rehabilitation. Adult discs show severer degeneration responses to BAC and a lower level of anti-inflammatory capability to BAC removal than the youngster's discs. Animals cannot be equated with humans. The human disc response to occlusion changes worth further exploration.

2.
J Chem Phys ; 161(2)2024 Jul 14.
Article de Anglais | MEDLINE | ID: mdl-38973762

RÉSUMÉ

Electrocatalytic CO2 reduction reaction (CO2RR) for CH4 production presents a promising strategy to address carbon neutrality, and the incorporation of a second metal has been proven effective in enhancing catalyst performance. Nevertheless, there remains limited comprehension regarding the fundamental factors responsible for the improved performance. Herein, the critical role of Pd in electrocatalytic CO2 reduction to CH4 on Cu-based catalysts has been revealed at a molecular level using in situ surface-enhanced Raman spectroscopy (SERS). A "borrowing" SERS strategy has been developed by depositing Cu-Pd overlayers on plasmonic Au nanoparticles to achieve the in situ monitoring of the dynamic change of the intermediate during CO2RR. Electrochemical tests demonstrate that Pd incorporation significantly enhances selectivity toward CH4 production, and the Faradaic efficiency (FE) of CH4 is more than two times higher than that for the catalysts without Pd. The key intermediates, including *CO2-, *CO, and *OH, have been directly identified under CO2RR conditions, and their evolution with the electrochemical environments has been determined. It is found that Pd incorporation promotes the activation of both CO2 and H2O molecules and accelerates the formation of abundant active *CO and hydrogen species, thus enhancing the CH4 selectivity. This work offers fundamental insights into the understanding of the molecular mechanism of CO2RR and opens up possibilities for designing more efficient electrocatalysts.

3.
J Biomed Mater Res A ; 2024 Jul 23.
Article de Anglais | MEDLINE | ID: mdl-39044597

RÉSUMÉ

Over the past few decades, there have been advancements in the development of high-performance tissue adhesives as alternatives to traditional sutures and staples for rapid and effective wound closure post-surgery. While tissue adhesives offer advantages such as ease of use, short application time, and minimal tissue damage, they also face challenges related to biocompatibility, biodegradability, and adhesive strength. In this study, L-lysine diisocyanate (LDI) and trimethylolpropane (TMP) were utilized as the primary raw materials to produce a prepolymer terminated with NCO, resulting in the development of a new biocompatible polyurethane tissue adhesive (TMP-LDI). Additionally, SiO2 nanoparticles were incorporated into the prepolymer, significantly enhancing the adhesive strength of the TMP-LDI tissue adhesive through the "nanobridging effect," achieving a strength of 170.4 kPa. Furthermore, the SiO2/TMP-LDI tissue adhesive exhibited satisfactory temperature change during curing and degradation performance. In vitro and in vivo studies demonstrated that SiO2/TMP-LDI exhibited good biocompatibility, efficient hemostasis, antimicrobial properties, and the ability to promote wound healing. This research presents a novel approach for the development of tissue adhesives with superior adhesive performance.

4.
Int Endod J ; 2024 Jul 30.
Article de Anglais | MEDLINE | ID: mdl-39080721

RÉSUMÉ

AIM: The purpose of this study was to investigate the role of calcium-sensing receptor (CaSR) in the angiogenic differentiation of lipopolysaccharide (LPS)-treated human dental pulp cells (hDPCs). METHODOLOGY: The LPS-induced hDPCs were cultured in the medium with different combinations of CaSR agonist R568 and antagonist Calhex231. The cell proliferation, migration, and angiogenic capacity were measured by Cell Counting Kit-8 (CCK-8), scratch wound healing, and tube formation assays, respectively. Enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction (qRT-PCR), and western blot were conducted to determine the gene/protein expression of CaSR, inflammatory mediators, and angiogenic-associated markers. The activation of phosphoinositide 3-kinase (PI3K) and protein kinase B (Akt) was assessed by western blot analysis. RESULTS: The cell proliferation was elevated in response to R568 or Calhex231 exposure, but an enhanced cell migration was only found in cultures supplemented with Calhex231. Furthermore, R568 was found to potentiate the formation of vessel-like structure, up-regulated the protein expression of tumour necrosis factor (TNF)-α, vascular endothelial growth factor (VEGF), and stromal cell-derived factor (SDF)-1; comparable influences were also observed in R568-stimulated cells in the presence of PI3K inhibitor LY294002. In contrast, Calhex231 obviously inhibited the tube formation and VEGF protein level, whereas promoted the production of IL-6, TNF-α, and eNOS; however, in the presence of LY294002, Calhex231 showed a significant promotion on the protein expression of CaSR, VEGF, and SDF-1. In addition, R568 exhibited a promotive action on the Akt phosphorylation, which can be reversed by LY294002. CONCLUSIONS: Our results demonstrated that CaSR can regulate the angiogenic differentiation of LPS-treated hDPCs with an involvement of the PI3K/Akt signalling pathway.

5.
J Mech Behav Biomed Mater ; 157: 106629, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-38889531

RÉSUMÉ

In this paper, the Ti6Al4V alloy surface was modified via ceramic conversion treatment (CCT) with or without a pre-deposited silver layer. After characterizing the surface morphologies, microstructure and phase constituents of the ceramic oxide layer formed at 620 °C, we investigated the surface hardness and the cross-sectional nano-hardness profile under the oxide layer. The static load-bearing capacity of the oxide layers was examined by applying discrete loads via a Vickers indenter and observing the indentations. A scratch test was used to evaluate the load-bearing capacity and the adhesion/cohesion of the oxide layers. The wettability of the surface changed due to the incorporation of silver and the change of surface morphology. Reciprocating friction and wear test was used to assess the tribological properties. Small and dispersed silver nanoparticles and clusters were found in the oxide layer of the Ag pre-deposited Ti6Al4V samples, and they had much better tribological properties in terms of reduced coefficient of friction and wear volume. With the assistance of silver, the efficiency of the CCT was significantly improved.


Sujet(s)
Alliages , Céramiques , Friction , Test de matériaux , Phénomènes mécaniques , Argent , Propriétés de surface , Titane , Alliages/composition chimique , Titane/composition chimique , Argent/composition chimique , Céramiques/composition chimique , Dureté , Essais Mécaniques
6.
Anal Chem ; 96(17): 6784-6793, 2024 04 30.
Article de Anglais | MEDLINE | ID: mdl-38632870

RÉSUMÉ

Hepatitis B virus (HBV) is a major cause of liver cirrhosis and hepatocellular carcinoma, with HBV surface antigen (HBsAg) being a crucial marker in the clinical detection of HBV. Due to the significant harm and ease of transmission associated with HBV, HBsAg testing has become an essential part of preoperative assessments, particularly for emergency surgeries where healthcare professionals face exposure risks. Therefore, a timely and accurate detection method for HBsAg is urgently needed. In this study, a surface-enhanced Raman scattering (SERS) sensor with a sandwich structure was developed for HBsAg detection. Leveraging the ultrasensitive and rapid detection capabilities of SERS, this sensor enables quick detection results, significantly reducing waiting times. By systematically optimizing critical factors in the detection process, such as the composition and concentration of the incubation solution as well as the modification conditions and amount of probe particles, the sensitivity of the SERS immune assay system was improved. Ultimately, the sensor achieved a sensitivity of 0.00576 IU/mL within 12 min, surpassing the clinical requirement of 0.05 IU/mL by an order of magnitude. In clinical serum assay validation, the issue of false positives was effectively addressed by adding a blocker. The final sensor demonstrated 100% specificity and sensitivity at the threshold of 0.05 IU/mL. Therefore, this study not only designed an ultrasensitive SERS sensor for detecting HBsAg in actual clinical serum samples but also provided theoretical support for similar systems, filling the knowledge gap in existing literature.


Sujet(s)
Antigènes de surface du virus de l'hépatite B , Analyse spectrale Raman , Antigènes de surface du virus de l'hépatite B/sang , Analyse spectrale Raman/méthodes , Humains , Virus de l'hépatite B/isolement et purification , Nanoparticules métalliques/composition chimique , Hépatite B/sang , Hépatite B/diagnostic , Propriétés de surface , Limite de détection
7.
J Am Chem Soc ; 146(18): 12538-12546, 2024 May 08.
Article de Anglais | MEDLINE | ID: mdl-38656110

RÉSUMÉ

There is growing acknowledgment that the properties of the electrochemical interfaces play an increasingly pivotal role in improving the performance of the hydrogen evolution reaction (HER). Here, we present, for the first time, direct dynamic spectral evidence illustrating the impact of the interaction between interfacial water molecules and adsorbed hydroxyl species (OHad) on the HER properties of Ni(OH)2 using Au/core-Ni(OH)2/shell nanoparticle-enhanced Raman spectroscopy. Notably, our findings highlight that the interaction between OHad and interfacial water molecules promotes the formation of weakly hydrogen-bonded water, fostering an environment conducive to improving the HER performance. Furthermore, the participation of OHad in the reaction is substantiated by the observed deprotonation step of Au@2 nm Ni(OH)2 during the HER process. This phenomenon is corroborated by the phase transition of Ni(OH)2 to NiO, as verified through Raman and X-ray photoelectron spectroscopy. The significant redshift in the OH-stretching frequency of water molecules during the phase transition confirms that surface OHad disrupts the hydrogen-bond network of interfacial water molecules. Through manipulation of the shell thickness of Au@Ni(OH)2, we additionally validate the interaction between OHad and interfacial water molecules. In summary, our insights emphasize the potential of electrochemical interfacial engineering as a potent approach to enhance electrocatalytic performance.

8.
Anal Chem ; 96(10): 4275-4281, 2024 Mar 12.
Article de Anglais | MEDLINE | ID: mdl-38409670

RÉSUMÉ

Surface-enhanced Raman scattering (SERS) can overcome the existing technological limitations, such as complex processes and harsh conditions in gaseous small-molecule detection, and advance the development of real-time gas sensing at room temperature. In this study, a SERS-based hydrogen bonding induction strategy for capturing and sensing gaseous acetic acid is proposed for the detection demands of gaseous acetic acid. This addresses the challenges of low adsorption of gaseous small molecules on SERS substrates and small Raman scattering cross sections and enables the first SERS-based detection of gaseous acetic acid by a portable Raman spectrometer. To provide abundant hydrogen bond donors and acceptors, 4-mercaptobenzoic acid (4-MBA) was used as a ligand molecule modified on the SERS substrate. Furthermore, a sensing chip with a low relative standard deviation (RSD) of 4.15% was constructed, ensuring highly sensitive and reliable detection. The hydrogen bond-induced acetic acid trapping was confirmed by experimental spectroscopy and density functional theory (DFT). In addition, to achieve superior accuracy compared to conventional methods, an innovative analytical method based on direct response hydrogen bond formation (IO-H/Iref) was proposed, enabling the detection of gaseous acetic acid at concentrations as low as 60 ppb. The strategy demonstrated a superior anti-interference capability in simulated breath and wine detection systems. Moreover, the high reusability of the chip highlights the significant potential for real-time sensing of gaseous acetic acid.

9.
Nano Lett ; 24(9): 2681-2688, 2024 Mar 06.
Article de Anglais | MEDLINE | ID: mdl-38408023

RÉSUMÉ

Perovskite light-emitting diodes (PeLEDs) have emerged as promising candidates for lighting and display technologies owing to their high photoluminescence quantum efficiency and high carrier mobility. However, the performance of planar PeLEDs is limited by the out-coupling efficiency, predominantly governed by photonic losses at device interfaces. Most notably, the plasmonic loss at the metal electrode interfaces can account for up to 60% of the total loss. Here, we investigate the use of plasmonic nanostructures to improve the light out-coupling in PeLEDs. By integrating these nanostructures with PeLEDs, we have demonstrated an effectively reduced plasmonic loss and enhanced light out-coupling. As a result, the nanostructured PeLEDs exhibit an average 1.5-fold increase in external quantum efficiency and an ∼20-fold improvement in device lifetime. This finding offers a generic approach for enhancing light out-coupling, promising great potential to go beyond existing performance limitations.

10.
Chem Sci ; 15(8): 2697-2711, 2024 Feb 22.
Article de Anglais | MEDLINE | ID: mdl-38404398

RÉSUMÉ

Plasmonic nanocavities exhibit exceptional capabilities in visualizing the internal structure of a single molecule at sub-nanometer resolution. Among these, an easily manufacturable nanoparticle-on-mirror (NPoM) nanocavity is a successful and powerful platform for demonstrating various optical phenomena. Exciting advances in surface-enhanced spectroscopy using NPoM nanocavities have been developed and explored, including enhanced Raman, fluorescence, phosphorescence, upconversion, etc. This perspective emphasizes the construction of NPoM nanocavities and their applications in achieving higher enhancement capabilities or spatial resolution in dark-field scattering spectroscopy and plasmon-enhanced spectroscopy. We describe a systematic framework that elucidates how to meet the requirements for studying light-matter interactions through the creation of well-designed NPoM nanocavities. Additionally, it provides an outlook on the challenges, future development directions, and practical applications in the field of plasmon-enhanced spectroscopy.

11.
Biosens Bioelectron ; 251: 116101, 2024 May 01.
Article de Anglais | MEDLINE | ID: mdl-38324971

RÉSUMÉ

Abnormal levels of uric acid (UA) in urine serve as warning signs for gout and metabolic cardiovascular diseases, necessitating the monitoring of UA levels for early prevention. However, the current analytical methods employed suffer from limitations in terms of inadequate suitability for home-based applications and the requirement of non-invasive procedures. In this approach, creatinine, a metabolite with a constant excretion rate, was incorporated as an endogenous internal standard (e-IS) for calibration, presenting a rapid, pretreatment-free, and accurate strategy for quantitative determination of UA concentrations. By utilizing urine creatinine as an internal reference value to calibrate the signal fluctuation of surface-enhanced Raman spectroscopy (SERS) of UA, the quantitative accuracy can be significantly improved without the need for an external internal standard. Due to the influence of the medium, UA, which carries a negative charge, is selectively adsorbed by Au@Ag nanoparticles functionalized with hexadecyltrimethylammonium chloride (CTAC) in this system. Furthermore, a highly convenient detection method was developed, which eliminates the need for pre-processing and minimizes matrix interference by simple dilution. The method was applied to the urine detection of different volunteers, and the results were highly consistent with those obtained using the UA colorimetric kit (UACK). The detection time of SERS was only 30 s, which is 50 times faster than UACK. This quantitative strategy of using urinary creatinine as an internal standard to correct the SERS intensity of uric acid is also expected to be extended to the quantitative detection needs of other biomarkers in urine.


Sujet(s)
Techniques de biocapteur , Nanoparticules métalliques , Humains , Acide urique/urine , Créatinine/urine , Analyse spectrale Raman/méthodes , Nanoparticules métalliques/composition chimique , Argent/composition chimique
12.
Osteoarthritis Cartilage ; 32(6): 666-679, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38403153

RÉSUMÉ

OBJECTIVE: Ageing and aberrant biomechanical stimulation are two major risk factors for osteoarthritis (OA). One of the main characteristics of aged cartilage is cellular senescence. One of the main characteristics of osteoarthritic joints is cartilage degeneration. The cells in the temporomandibular joint (TMJ) cartilage are zonally arranged. The deep zone cells are differentiated from the superficial zone cells (SZCs). The purpose of the present study was to investigate whether degenerative shear stress (SS) stimulates the senescence programme in TMJ SZCs, and to determine which miRNA is involved in this process. METHOD: SZCs were isolated from the TMJ condyles of 3-week-old rats and treated with continuous passaging or SS. RNA sequencing was conducted to identify miRNA(s) that overlap with those involved in the replication senescence process and the SS-induced degeneration programme. Unilateral anterior crossbite (UAC), which is TMJ-OA inducible, was applied to 2-month-old and 12-month-old mice for 3 weeks. The effect of TMJ local injection of agomiR-708-5p was evaluated histologically. RESULTS: Both replication and SS treatment induced SZC senescence. miR-708-5p was identified. Knocking down miR-708-5p in SS-treated SZCs led to more severe senescence by alleviating the inhibitory impact of miR-708-5p on the TLR4/NF-κB pathway. miR-708-5p expression in mouse TMJ cartilage decreased with age. UAC induced more severe osteoarthritic cartilage lesions in 12-month-old mice than in 2-month-old mice. Injection of agomiR-708-5p suppressed UAC-induced osteoarthritic cartilage lesions. CONCLUSIONS: Age-related miR-708-5p deficiency is involved in the mechanically stimulated OA process. Intra-articular administration of agomiR-708-5p is a promising new strategy for OA treatment.


Sujet(s)
Chondrocytes , Condyle mandibulaire , microARN , Facteur de transcription NF-kappa B , Récepteur de type Toll-4 , Animaux , Femelle , Souris , Rats , Cartilage articulaire/métabolisme , Cartilage articulaire/anatomopathologie , Vieillissement de la cellule/génétique , Chondrocytes/métabolisme , Condyle mandibulaire/anatomopathologie , Souris de lignée C57BL , microARN/génétique , Facteur de transcription NF-kappa B/métabolisme , Arthrose/génétique , Arthrose/métabolisme , Arthrose/anatomopathologie , Rat Sprague-Dawley , Transduction du signal , Articulation temporomandibulaire/anatomopathologie , Articulation temporomandibulaire/métabolisme , Récepteur de type Toll-4/génétique , Récepteur de type Toll-4/métabolisme
13.
J Vasc Access ; : 11297298231194859, 2024 Jan 02.
Article de Anglais | MEDLINE | ID: mdl-38166452

RÉSUMÉ

Intracavitary electrocardiogram (IC-ECG) guidance is widely used for peripherally inserted central catheter (PICC) placement. The P wave variation has rarely been reported in persistent left superior vena cava (PLSVC). Here, we report a PLSVC case of P wave variation in PICC placement guided by IC-ECG. In this case, the P wave variation of the PLSVC was quite different from that of the right superior vena cava (RSVC). The tip of the catheter was located at the lower segment of the left superior vena cava according to postoperative radiography examination. PICC functioned normally, and no complications occurred.

14.
J Am Chem Soc ; 145(37): 20381-20388, 2023 Sep 20.
Article de Anglais | MEDLINE | ID: mdl-37668654

RÉSUMÉ

Realizing the dual emission of fluorescence-phosphorescence in a single system is an extremely important topic in the fields of biological imaging, sensing, and information encryption. However, the phosphorescence process is usually in an inherently "dark state" at room temperature due to the involvement of spin-forbidden transition and the rapid non-radiative decay rate of the triplet state. In this work, we achieved luminescent harvesting of the dark phosphorescence processes by coupling singlet-triplet molecular emitters with a rationally designed plasmonic cavity. The achieved Purcell enhancement effect of over 1000-fold allows for overcoming the triplet forbidden transitions, enabling radiation enhancement with selectable emission wavelengths. Spectral results and theoretical simulations indicate that the fluorescence-phosphorescence peak position can be intelligently tailored in a broad range of wavelengths, from visible to near-infrared. Our study sheds new light on plasmonic tailoring of molecular emission behavior, which is crucial for advancing research on plasmon-tailored fluorescence-phosphorescence spectroscopy in optoelectronics and biomedicine.

15.
Cell Death Dis ; 14(8): 568, 2023 08 26.
Article de Anglais | MEDLINE | ID: mdl-37633920

RÉSUMÉ

Sustained activation of DNA damage response (DDR) signaling has been demonstrated to play vital role in chemotherapy failure in cancer. However, the mechanism underlying DDR sustaining in cancer cells remains unclear. In the current study, we found that the expression of the DDUP microprotein, encoded by the CTBP1-DT lncRNA, drastically increased in cisplatin-resistant ovarian cancer cells and was inversely correlated to cisplatin-based therapy response. Using a patient-derived human cancer cell model, we observed that DNA damage-induced DDUP foci sustained the RAD18/RAD51C and RAD18/PCNA complexes at the sites of DNA damage, consequently resulting in cisplatin resistance through dual RAD51C-mediated homologous recombination (HR) and proliferating cell nuclear antigen (PCNA)-mediated post-replication repair (PRR) mechanisms. Notably, treatment with an ATR inhibitor disrupted the DDUP/RAD18 interaction and abolished the effect of DDUP on prolonged DNA damage signaling, which resulted in the hypersensitivity of ovarian cancer cells to cisplatin-based therapy in vivo. Altogether, our study provides insights into DDUP-mediated aberrant DDR signaling in cisplatin resistance and describes a potential novel therapeutic approach for the management of platinum-resistant ovarian cancer.


Sujet(s)
Tumeurs de l'ovaire , ARN long non codant , Femelle , Humains , Cisplatine/usage thérapeutique , Protéines de liaison à l'ADN/génétique , Tumeurs de l'ovaire/traitement médicamenteux , Tumeurs de l'ovaire/génétique , Antigène nucléaire de prolifération cellulaire , ARN long non codant/génétique , Ubiquitin-protein ligases ,
16.
FASEB J ; 37(8): e23004, 2023 08.
Article de Anglais | MEDLINE | ID: mdl-37440279

RÉSUMÉ

The superficial zone cells in mandibular condylar cartilage are proliferative. The present purpose was to delineate the relation of calcium-sensing receptor (CaSR) and parathyroid hormone-related peptide nuclear localization sequence (PTHrP87-139 ), and their role in the proliferation behaviors of the superficial zone cells. A gain- and loss-of-function strategy were used in an in vitro fluid flow shear stress (FFSS) model and an in vivo bilateral elevation bite model which showed mandibular condylar cartilage thickening. CaSR and PTHrP87-139 were modulated through treating the isolated superficial zone cells with activator/SiRNA and via deleting CaSR or parathyroid hormone-related peptide (PTHrP) gene in mice with the promoter gene of proteoglycan 4 (Prg4-CreERT2 ) in the tamoxifen-inducible pattern with or without additional injection of Cinacalcet, the CaSR agonist, or PTHrP87-139 peptide. FFSS stimulated CaSR and PTHrP expression, and accelerated proliferation of the Prg4-expressing superficial zone cells, in which process CaSR acted as an up-streamer of PTHrP. Proteoglycan 4 specific knockout of CaSR or PTHrP reduced the cartilage thickness, suppressed the proliferation and early differentiation of the superficial zone cells, and inhibited cartilage thickening and matrix production promoted by bilateral elevation bite. Injections of CaSR agonist Cinacalcet could not improve the phenotype caused by PTHrP mutation. Injections of PTHrP87-139 peptide rescued the cartilage from knockout of CaSR gene. CaSR modulates proliferation of the superficial zone cells in mandibular condylar cartilage through activation of PTHrP nuclear localization sequence. Our data support the therapeutic target of CaSR in promoting PTHrP production in superficial zone cartilage.


Sujet(s)
Protéine apparentée à l'hormone parathyroïdienne , Récepteurs-détecteurs du calcium , Souris , Animaux , Protéine apparentée à l'hormone parathyroïdienne/génétique , Protéine apparentée à l'hormone parathyroïdienne/métabolisme , Récepteurs-détecteurs du calcium/génétique , Récepteurs-détecteurs du calcium/métabolisme , Chondrocytes/métabolisme , Cartilage/métabolisme , Articulation temporomandibulaire/métabolisme , Protéoglycanes/métabolisme , Prolifération cellulaire
17.
Bioorg Med Chem ; 90: 117373, 2023 07 15.
Article de Anglais | MEDLINE | ID: mdl-37329678

RÉSUMÉ

N6-methyladenosine (m6A) is the most common mRNA modification in mammalians. The function and dynamic regulation of m6A depends on the "writer", "readers" and "erasers". YT521-B homology domain family (YTHDF) is a class of m6A binding proteins, including YTHDF1, YTHDF2 and YTHDF3. In recent years, the modification of m6A and the molecular mechanism of YTHDFs have been further understood. Growing evidence has shown that YTHDFs participate in multifarious bioprocesses, particularly tumorigenesis. In this review, we summarized the structural characteristics of YTHDFs, the regulation of mRNA by YTHDFs, the role of YTHDF proteins in human cancers and inhibition of YTHDFs.


Sujet(s)
Protéines de transport , Tumeurs , Animaux , Humains , Protéines de liaison à l'ARN/génétique , Protéines de liaison à l'ARN/métabolisme , ARN messager/métabolisme , Facteurs de transcription/métabolisme , Adénosine/composition chimique , Mammifères/métabolisme , Tumeurs/traitement médicamenteux
18.
Chem Commun (Camb) ; 59(38): 5779-5782, 2023 May 09.
Article de Anglais | MEDLINE | ID: mdl-37096554

RÉSUMÉ

Based on label-free SERS technology, the relationship between the Raman signals of pathogenic Vibrio microorganisms and purine metabolites was analyzed in detail. A deep learning CNN model was successfully developed, achieving a high accuracy rate of 99.7% in the identification of six typical pathogenic Vibrio species within 15 minutes, providing a new method for pathogen identification.


Sujet(s)
, Analyse spectrale Raman , Analyse spectrale Raman/méthodes
19.
FASEB J ; 37(4): e22888, 2023 04.
Article de Anglais | MEDLINE | ID: mdl-36961420

RÉSUMÉ

The temporomandibular joint (TMJ) cartilage is biomechanical sensitive. Cells in TMJ cartilage are zonally arranged, earlier differentiated in the super zone and late differentiated in the deep zone. The purpose was to detect the zonal interdependence in TMJ cartilage under dental biomechanical stimulations. Here, we obtained the Sox9CreER ; Rosa26tdTomato and Col10CreER ; Rosa26tdTomato mice to label super zone Sox9-expressing (Sox9+ ) or deep zone Col10-expressing (Col10+ ) cells by tdTomato (TdT), and Sox9CreER ; Rosa26DTA and Col10CreER ; Rosa26DTA mice to ablate Sox9+ or Col10+ cells selectively. These mice were subjected to unilateral anterior crossbite (UAC) or bilateral anterior elevation (BAE) dental stimulation, which promoted terminal differentiation or proliferation of TMJ chondrocytes, respectively. In both UAC and BAE models, the Sox9-TdT+ cells performed as proliferation and mature differentiation, showing as expressing Ki67 and Col-X, respectively; while the Col10-TdT+ cells performed as terminal differentiation, showing as expressing osteocalcin (OCN). In both Sox9+ - and Col10+ -cells ablation groups, there were reductions in cell number, cartilage thickness and matrix amount, subchondral bone loss, and condylar deformation. The UAC-promoted terminal differentiation was enhanced, and the BAE-promoted cellular proliferation was ruined. Impressively, when Col10+ cells were ablated, the UAC-promoted DAP3 expression, an anoikis marker, was further increased, while the BAE-suppressed DAP3 expression was instead greatly increased. These findings demonstrated that the cartilage zones function interdependently. The super zone harbors the cells that undergo differentiation to deep zone cells, the deep zone contains load-bearing matrix which is structural essential for the cells located inside or superficial.


Sujet(s)
Cartilage articulaire , Souris , Animaux , Cartilage articulaire/métabolisme , Articulation temporomandibulaire/métabolisme , Chondrocytes/métabolisme , Différenciation cellulaire
20.
Nat Protoc ; 18(3): 883-901, 2023 03.
Article de Anglais | MEDLINE | ID: mdl-36599962

RÉSUMÉ

The dynamics and chemistry of interfacial water are essential components of electrocatalysis because the decomposition and formation of water molecules could dictate the protonation and deprotonation processes on the catalyst surface. However, it is notoriously difficult to probe interfacial water owing to its location between two condensed phases, as well as the presence of external bias potentials and electrochemically induced reaction intermediates. An atomically flat single-crystal surface could offer an attractive platform to resolve the internal structure of interfacial water if advanced characterization tools are developed. To this end, here we report a protocol based on the combination of in situ Raman spectroscopy and ab initio molecular dynamics (AIMD) simulations to unravel the directional molecular features of interfacial water. We present the procedures to prepare single-crystal electrodes, construct a Raman enhancement mode with shell-isolated nanoparticle, remove impurities, eliminate the perturbation from bulk water and dislodge the hydrogen bubbles during in situ electrochemical Raman experiments. The combination of the spectroscopic measurements with AIMD simulation results provides a roadmap to decipher the potential-dependent molecular orientation of water at the interface. We have prepared a detailed guideline for the application of combined in situ Raman and AIMD techniques; this procedure may take a few minutes to several days to generate results and is applicable to a variety of disciplines ranging from surface science to energy storage to biology.


Sujet(s)
Simulation de dynamique moléculaire , Analyse spectrale Raman , Eau/composition chimique , Électrodes , Hydrogène
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE