Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 11 de 11
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Food Chem X ; 22: 101272, 2024 Jun 30.
Article de Anglais | MEDLINE | ID: mdl-38550891

RÉSUMÉ

Moringa oleifera Lam. leaves are a new raw food material rich in polysaccharides. These polysaccharides exhibit various biological properties, including antioxidant, hypoglycemic and immunoregulatory effects. However, the use of Moringa oleifera Lam. leaves polysaccharides (MOLP) may be limited by their large molecular weight (MW) and presence of numerous impurities, such as pigments. Research has indicated that degraded polysaccharides usually exhibit high biological activity because of changes in physical structure and chemical properties. In this study, we focused on the extraction of a degraded-modified fraction from MOLP using the Ultraviolet/ Hydrogen peroxide (UV/H2O2) method. Specifically, the physicochemical properties and glycosidic bond composition of a particular fraction (UV/H2O2 degraded Moringa oleifera Lam. leaves polysaccharides in 3 h called DMOLP-3) were investigated. In addition, in vitro simulated digestion experiments showed that DMOLP-3 was only partially degraded during gastrointestinal digestion, indicating that DMOLP-3 can be utilised by gut microorganisms. Furthermore, the prebiotic properties of MOLP and DMOLP-3 was studied using an in vitro faecal fermentation model. The results indicated that compared with MOLP, DMOLP-3 led to a decrease in both the colour and MW of the polysaccharides. In addition, this model exhibited enhanced solubility and antioxidant capabilities while also influencing the surface morphology. Moreover, DMOLP-3 can facilitate the proliferation of advantageous microorganisms and enhance the synthesis of short-chain fatty acids (SCFAs). These results provide valuable insights into the utilization of bioactive components in Moringa oleifera Lam. leaves for the intestinal health.

2.
Molecules ; 29(5)2024 Feb 29.
Article de Anglais | MEDLINE | ID: mdl-38474610

RÉSUMÉ

Milk fat is a premium nutritional health product, yet there is a lack of high-fat dairy products for daily consumption in the current market. This study investigated the influence of different milk fat contents on the physicochemical and textural properties of fermented milk. The research revealed that an increase in milkfat content significantly improved the water-holding capacity, syneresis, color, hardness, springiness, gumminess, and chewiness of fermented milk, while showing minimal changes in pH and total titratable acidity. Response surface analysis indicated that fermented milk with 25% milk fat, 2.5% inoculum, a fermentation time of 16 h, and a fermentation temperature of 30 °C exhibited the highest overall acceptability. Using GC-IMS technology, 36 volatile compounds were identified, with an increase in milk fat content leading to elevated levels of ketone compounds, and 14 compounds were defined as key aroma compounds (ROAV > 1). Electronic nose distinguished samples with different milk fat contents. The results demonstrate that an increase in milk fat content enhances the physicochemical and flavor attributes of fermented milk. This work provides theoretical references for the production and development of high-fat fermented milk.


Sujet(s)
Spectrométrie de mobilité ionique , Lait , Animaux , Lait/composition chimique , Chromatographie gazeuse-spectrométrie de masse , Analyse multifactorielle , Cétones/analyse
3.
Front Nutr ; 11: 1354486, 2024.
Article de Anglais | MEDLINE | ID: mdl-38524850

RÉSUMÉ

Introduction: With the increasing demand for protein utilization, exploring new protein resources has become a research hotspot. Sacha Inchi Protein (SIP) is a high-quality plant protein extracted from Sacha Inchi meal. This study aimed to investigate the impact of SIP on mouse metabolomics and gut microbiota diversity and explore the underlying pathways responsible for its health benefits. Methods: In this study, the structural composition of SIP was investigated, and the effects of SIP on fecal metabolomics and intestinal microorganisms in mice were explored by LC-MS metabolomics technology analysis and 16S rRNA gene sequencing. Results: The results showed that SIP was rich in amino acids, with the highest Manuscript Click here to view linked References content of arginine, which accounted for 22.98% of the total amino acid content; the potential fecal metabolites of mice in the SIP group involved lipid metabolism, sphingolipid metabolism, arginine biosynthesis, and amino acid metabolism; SIP altered the microbial composition of the cecum in mice, decreased the Firmicutes/Bacteroidetes value, and It decreased the abundance of the harmful intestinal bacteria Actinobacteriota and Desulfobacterota, and increased the abundance of the beneficial intestinal bacteria Faecalibaculum, Dubosiella. Discussion: In conclusion, SIP is a high-quality plant protein with great potential for development in lipid-lowering, intestinal health, and mental illness, providing valuable clues for further research on its health-promoting mechanisms.

4.
Foods ; 13(3)2024 Jan 26.
Article de Anglais | MEDLINE | ID: mdl-38338535

RÉSUMÉ

In recent years, green and healthy foods have attracted much attention. Plant-based foods have become an alternative to animal-derived foods. In this study, we used walnut and purple rice as the primary raw materials to produce a fermented plant drink. The process included boiling, mixing, grinding, inoculation, fermentation, and sterilization. We then analyzed the similarities and differences between the resulting walnut and purple rice fermented plant drink and an unfermented walnut and purple rice plant drink, as well as dairy-based yoghurt, in terms of physical chemistry, flavor, and sensory characteristics. We also examined the similarities and differences between the walnut and purple rice fermented plant drink and room-temperature yoghurt. The study results revealed that the walnut and purple rice fermented plant drink exhibited greater viscosity than the walnut and purple rice unfermented plant drink and room-temperature yoghurt. Additionally, the former displayed enhanced stability and recovery ability. Notably, distinguishable differences were observed between the three samples in terms of the presence of unknown volatiles and the umami signal, as indicated by electronic nose/tongue and GC-IMS analyses. The umami flavor of the walnut and purple rice fermented plant drink surpasses that of room-temperature yoghurt, while its taste is less salty than that of the walnut and purple rice plant drink. Despite possessing a weaker aroma than dairy-based yogurt, it is more potent than the walnut and purple rice plant drink. Additionally, its relative abundance of olefins, ketones, and alcohols enhances its unique flavor profile, surpassing both other options. Based on sensory analysis, it can be deduced that walnut and purple rice fermented plant drink has the highest overall acceptance rate.

5.
Food Chem X ; 20: 100938, 2023 Dec 30.
Article de Anglais | MEDLINE | ID: mdl-38144857

RÉSUMÉ

Moringa oleifera addition to animal diets can improve the growth performance, intestinal health, and immunity of animals, without adverse effects. We investigated the effects of Moringa oleifera on the growth performance, meat quality, and intestinal health of broilers. Moringa oleifera and fermented Moringa oleifera could improve the flesh color and breast muscle tenderness of broilers (p < 0.05). The contents of essential amino acids, unsaturated fatty acids, ΣMUFA, P/S and n-3 ratio in breast muscle of broilers were dose-increased, and the effect of fermented Moringa oleifera was better. Moringa oleifera and fermented Moringa oleifera regulated chicken flavor metabolism by increasing the relative abundance and Short-chain fatty acid (SCFA) contents of Bacteroides, Spirillum, and lactic acid bacteria. Overall, supplementation with 1 % fermented Moringa oleifera can significantly increase essential amino acid and unsaturated fatty acid contents in broilers and participate in the synthesis and transformation of amino acids and fatty acids regulated by beneficial bacteria.

6.
Foods ; 12(15)2023 Jul 25.
Article de Anglais | MEDLINE | ID: mdl-37569090

RÉSUMÉ

Aroma is one of the most fascinating and least-known mysteries of Baijiu research. The volatile compounds (VOCs) of potato wine were evaluated by sensory omics techniques in order to comprehend their overall flavor characteristics and investigate the effects of ultrasonic treatment and gamma irradiation therapy on the aroma of the wine. The findings revealed that a total of 14 flavor compounds were identified by GC-MS. Isoamyl alcohol, ethyl octanoate, and 1,1-diethoxyethane were the key aroma components, according to GC-O analysis. A total of 50 volatile substances were identified by GC-IMS. After being subjected to irradiation and ultrasonic treatment, the alcohol level of the potato wine reduced while the esters content increased. By calculating the relative odor activity value, a total of 29 aroma components were classified as key aroma compounds (ROAV > 1). According to the results of the sensory evaluation-fruity, Fen-flavor, and sweet-and the acceptability of the irradiated and ultrasonicated potato wine were improved. Therefore, the use of ultrasonic and irradiation therapy in potato wine, as well as the overall aroma building of potato wine, can be supported theoretically by this study.

7.
Molecules ; 28(10)2023 May 15.
Article de Anglais | MEDLINE | ID: mdl-37241845

RÉSUMÉ

Exposure to ultraviolet light can cause oxidative damage and accelerate skin aging and is one of the main causes of skin aging. Peach gum polysaccharide (PG) is a natural edible plant component that has many biological activities, such as regulating blood glucose and blood lipids and improving colitis, as well as antioxidant and anticancer properties. However, there are few reports on the antiphotoaging effect of peach gum polysaccharide. Therefore, in this paper, we study the basic composition of the raw material peach gum polysaccharide and its ability to improve UVB-induced skin photoaging damage in vivo and in vitro. The results show that peach gum polysaccharide is mainly composed of mannose, glucuronic acid, galactose, xylose, and arabinose, and its molecular weight (Mw) is 4.10 × 106 g/mol. The results of the in vitro cell experiments show that PG could significantly alleviate UVB-induced apoptosis of human skin keratinocytes, promote cell growth repair, reduce the expression of intracellular oxidative factors and matrix metal collagenase, and improve the extent of oxidative stress repair. Moreover, the results from the in vivo animal experiments showed that PG could not only effectively improve the phenotype of UVB-induced photoaged skin in model mice but also significantly improve their oxidative stress status, regulate the contents of ROS and the levels of SOD and CAT, and repair the oxidative skin damage induced by UVB in vivo. In addition, PG improved UVB-induced photoaging-mediated collagen degradation in mice by inhibiting the secretion of matrix metalloproteinases. The above results indicate that peach gum polysaccharide has the ability to repair UVB-induced photoaging and may be used as a potential drug and antioxidant functional food to resist photoaging in the future.


Sujet(s)
Prunus persica , Vieillissement de la peau , Souris , Humains , Animaux , Antioxydants/pharmacologie , Antioxydants/métabolisme , Prunus persica/métabolisme , Peau/métabolisme , Stress oxydatif , Polyosides/pharmacologie , Polyosides/métabolisme , Rayons ultraviolets/effets indésirables , Fibroblastes
8.
Food Chem X ; 14: 100322, 2022 Jun 30.
Article de Anglais | MEDLINE | ID: mdl-35571331

RÉSUMÉ

Moringa oleifera Lam. (M. oleifera Lam) is a perennial tropical deciduous tree that belongs to the Moringaceae family. Polysaccharides are one of the major bioactive compounds in M. oleifera Lam and show immunomodulatory, anticancer, antioxidant, intestinal health protection and antidiabetic activities. At present, the structure and functional activities of M. oleifera Lam polysaccharides (MOPs) have been widespread, but the research data are relatively scattered. Moreover, the relationship between the structure and biological activities of MOPs has not been summarized. In this review, the current research on the extraction, purification, structural characteristics and biological activities of polysaccharides from different sources of M. oleifera Lam were summarized, and the structural characteristics of purified polysaccharides were focused on this review. Meanwhile, the biological activities of MOPs were introduced, and some molecular mechanisms were listed. In addition, the relationship between the structure and biological activities of MOPs was discussed. Furthermore, new perspectives and some future research of M. oleifera Lam polysaccharides were proposed in this review.

9.
Front Nutr ; 9: 824525, 2022.
Article de Anglais | MEDLINE | ID: mdl-35273989

RÉSUMÉ

Fatigue is a common physiological phenomenon caused by many complicated factors. Excessive fatigue will lead to a series of uncomfortable reactions and damage body health. Panax notoginseng leaves (PNL) is a new resource food that good for soothing nerves, nourishing the heart, and strengthening the spleen. Microbial fermentation could increase the content of bio-ingredients and produce new active ingredients. However, the effect of fermented P. notoginseng leaves (FPNL) on antifatigue and the molecular mechanisms remain to be elucidated. Thus, in this study, we evaluated the antifatigue effect of co-fermented P. notoginseng leaves by Saccharomyces cerevisiae and Bacillus subtilis in-vitro and in-vivo, and its mechanism was further elucidated. The results showed that FPNL exhibited higher saponins, organic phenolic acids content, and antioxidant activity than PNL. FPNL improved ISO-induced H9c2 myocardial cell damage by alleviating apoptosis (modulating Bax and Bcl-2 protein expression) and reducing antioxidant activity in-vitro. Moreover, in-vivo experiment showed that FPNL significantly prolonged the weight-loading swimming time of mice. After gavaged FPNL, the levels of liver glycogen (LG) and serum lactate dehydrogenase (LDH) activity were increased in mice. In contrast, the levels of blood urea nitrogen (BUN), lactate acid, and malondialdehyde (MDA) were decreased. In summary, our results indicated that FPNL showed a good antifatigue effect in-vivo and in-vitro.

10.
Front Pharmacol ; 12: 639256, 2021.
Article de Anglais | MEDLINE | ID: mdl-33953676

RÉSUMÉ

Astragalin is a flavonoid found in a variety of natural plants. It has anti-inflammatory, anti-oxidant effects and has inhibited effects against several malignant tumor cell types. However, its effects on colon cancer and the molecular mechanisms have remained to be elucidated. In this study, we evaluated the inhibitory effect of astragalin on proliferation and migration of human colon cancer HCT116 cells in vitro and in vivo. Furthermore, we elucidated the mechanism of these effects. The results showed that astragalin significantly inhibited the proliferation and diffusion of HCT116 cells by induced apoptosis (by modulation of Bax, Bcl-2, P53, caspase-3, caspase 6, caspase 7, caspase 8, caspase 9 protein express) and cell cycle arrest (by modulation of Cyclin D1, Cyclin E, P21, P27, CDK2, CDK4 protein express). Moreover, astragalin suppressed HCT116 cell migration by inhibiting the expression of matrix metalloproteinases (MMP-2, MMP-9). In addition, astragalin significantly downregulated the expression of key proteins in the NF-κB signaling pathway and inhibited the transcriptional activity of NF-κB P65 stimulated with inflammatory cytokines TNF-α, thereby inhibiting the growth of colon cancer cells in vitro. Our further investigations unveiled astragalin gavage significantly reduced the proliferation of colon cancer xenograft in nude mice, in vivo experiments showed that tumor growth was related to decreased expression of apoptotic proteins in tumor tissues and decreased activity of the NF-κB signaling pathway. In summary, our results indicated that astragalin inhibits the proliferation and growth of colon cancer cells in vivo and in vitro via the NF-κB pathway. Therefore, astragalin maybe become a potential plant-derived antitumor drug for colon cancer.

11.
Food Res Int ; 144: 110340, 2021 06.
Article de Anglais | MEDLINE | ID: mdl-34053536

RÉSUMÉ

Dregea sinensis (D. sinensis) stems have traditionally been used as milk coagulant in Dali of Yunnan Province, China. In this study, proteomics was used to investigate the bio-functions of D. sinensis stem proteins, leading to the purification and identification of the milk-clotting enzyme. A total of 205 proteins mainly involved in the catalytic and metabolic processes were identified, of which 28 proteins exhibited hydrolase activity. Among the 28 proteins, we focused on two enzymes (M9QMC9 and B7VF65). Based on proteomics, a cysteine protease (M9QMC9) with a molecular weight of 25.8 kDa and milk-clotting activity was purified from D. sinensis stems using double ammonium sulfate precipitation and was confirmed using liquid chromatography-mass spectrometry (LC-MS/MS). The milk-clotting temperature using the purified enzyme was around 80 °C (specific activity at 314.38 U/mg), and it was found to be stable in the pH range of 6-9 in NaCl concentration of <0.8 mol/L. These findings indicated that the enzyme isolated from D. sinensis stems has potential in the dairy and food sectors, especially in the cheese-making industry.


Sujet(s)
Apocynaceae/enzymologie , Extraits de plantes/composition chimique , Animaux , Chine , Chromatographie en phase liquide , Concentration en ions d'hydrogène , Lait , Protéomique , Spectrométrie de masse en tandem
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE