Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 12 de 12
Filtrer
Plus de filtres










Base de données
Gamme d'année
2.
Microbiol Spectr ; 11(3): e0265222, 2023 06 15.
Article de Anglais | MEDLINE | ID: mdl-37074192

RÉSUMÉ

Cholera has been a human scourge since the early 1800s and remains a global public health challenge, caused by the toxigenic strains of the bacterium Vibrio cholerae. In its aquatic reservoirs, V. cholerae has been shown to live in association with various arthropod hosts, including the chironomids, a diverse insect family commonly found in wet and semiwet habitats. The association between V. cholerae and chironomids may shield the bacterium from environmental stressors and amplify its dissemination. However, the interaction dynamics between V. cholerae and chironomids remain largely unknown.  In this study, we developed freshwater microcosms with chironomid larvae to test the effects of cell density and strain on V. cholerae-chironomid interactions. Our results show that chironomid larvae can be exposed to V. cholerae up to a high inoculation dose (109 cells/mL) without observable detrimental effects. Meanwhile, interstrain variability in host invasion, including prevalence, bacterial load, and effects on host survival, was highly cell density-dependent. Microbiome analysis of the chironomid samples by 16S rRNA gene amplicon sequencing revealed a general effect of V. cholerae exposure on microbiome species evenness. Taken together, our results provide novel insights into V. cholerae invasion dynamics of the chironomid larvae with respect to various doses and strains. The findings suggest that aquatic cell density is a crucial driver of V. cholerae invasion success in chironomid larvae and pave the way for future work examining the effects of a broader dose range and environmental variables (e.g., temperature) on V. cholerae-chironomid interactions. IMPORTANCE Vibrio cholerae is the causative agent of cholera, a significant diarrheal disease affecting millions of people worldwide. Increasing evidence suggests that the environmental facets of the V. cholerae life cycle involve symbiotic associations with aquatic arthropods, which may facilitate its environmental persistence and dissemination. However, the dynamics of interactions between V. cholerae and aquatic arthropods remain unexplored. This study capitalized on using freshwater microcosms with chironomid larvae to investigate the effects of bacterial cell density and strain on V. cholerae-chironomid interactions. Our results suggest that aquatic cell density is the primary determinant of V. cholerae invasion success in chironomid larvae, while interstrain variability in invasion outcomes can be observed under specific cell density conditions. We also determined that V. cholerae exposure generally reduces species evenness of the chironomid-associated microbiome. Collectively, these findings provide novel insights into V. cholerae-arthropod interactions using a newly developed experimental host system.


Sujet(s)
Chironomidae , Choléra , Vibrio cholerae , Animaux , Humains , Vibrio cholerae/génétique , Choléra/microbiologie , Chironomidae/génétique , Chironomidae/microbiologie , ARN ribosomique 16S/génétique , Écosystème , Larve
3.
Microb Genom ; 8(12)2022 12.
Article de Anglais | MEDLINE | ID: mdl-36748509

RÉSUMÉ

Pantoea ananatis is a bacterium that is found in many agronomic crops and agricultural pests. Here, we isolated a P. ananatis strain (Lstr) from the rice planthopper Laodelphax striatellus, a notorious pest that feeds on rice plant sap and transmits rice viruses, in order to examine its genome and biology. P. ananatis Lstr is an insect symbiont that is pathogenic to the host insect and appears to mostly inhabit the gut. Its pathogenicity thus raises the possibility of using the Lstr strain as a biological agent. To this end, we analysed the genome of the Lstr strain and compared it with the genomes of other Pantoea species. Our analysis of these genomes shows that P. ananatis can be divided into two mono-phylogenetic clades (clades one and two). The Lstr strain belongs to clade two and is grouped with P. ananatis strains that were isolated from rice or rice-associated samples. A comparative genomic analysis shows that clade two differs from clade one in many genomic characteristics including genome structures, mobile elements, and categories of coding proteins. The genomes of clade two P. ananatis are significantly smaller, have much fewer coding sequences but more pseudogenes than those of clade one, suggesting that clade two species are at the early stage of genome reduction. On the other hand, P. ananatis has a type VI secretion system that is highly variable but cannot be separated by clades. These results clarify our understanding of P. ananatis' phylogenetic diversity and provide clues to the interactions between P. ananatis, host insect, and plant that may lead to advances in rice protection and pest control.


Sujet(s)
Hemiptera , Pantoea , Animaux , Pantoea/génétique , Génome bactérien , Hemiptera/génétique , Génomique
4.
Imeta ; 1(4): e57, 2022 Dec.
Article de Anglais | MEDLINE | ID: mdl-38867909

RÉSUMÉ

Clarifying the mechanisms underlying microbial community assembly from regional microbial pools is a central issue of microbial ecology, but remains largely unexplored. Here, we investigated the gut bacterial and fungal microbiome assembly processes and potential sources in Drosophila simulans and Dicranocephalus wallichii bowringi, two wild, sympatric insect species that share a common diet of waxberry. While some convergence was observed, the diversity, composition, and network structure of the gut microbiota significantly differed between these two host species. Null model analyses revealed that stochastic processes (e.g., drift, dispersal limitation) play a principal role in determining gut microbiota from both hosts. However, the strength of each ecological process varied with the host species. Furthermore, the source-tracking analysis showed that only a minority of gut microbiota within D. simulans and D. wallichii bowringi are drawn from a regional microbial pool from waxberries, leaves, or soil. Results from function prediction implied that host species-specific gut microbiota might arise partly through host functional requirement and specific selection across host-microbiota coevolution. In conclusion, our findings uncover the importance of community assembly processes over regional microbial pools in shaping sympatric insect gut microbiome structure and function.

5.
Evol Appl ; 13(10): 2821-2835, 2020 Dec.
Article de Anglais | MEDLINE | ID: mdl-33294025

RÉSUMÉ

Local adaptation is particularly likely in invertebrate pests that typically have short generation times and large population sizes, but there are few studies on pest species investigating local adaptation and separating this process from contemporaneous and historical gene flow. Here, we use a population genomic approach to investigate evolutionary processes in the two most dominant spider mites in China, Tetranychus truncatus Ehara and Tetranychus pueraricola Ehara et Gotoh, which have wide distributions, short generation times, and large population sizes. We generated genome resequencing of 246 spider mites mostly from China, as well as Japan and Canada at a combined total depth of 3,133×. Based on demographic reconstruction, we found that both mite species likely originated from refugia in southwestern China and then spread to other regions, with the dominant T. truncatus spreading ~3,000 years later than T. pueraricola. Estimated changes in population sizes of the pests matched known periods of glaciation and reinforce the recent expansion of the dominant spider mites. T. truncatus showed a greater extent of local adaptation with more genes (76 vs. 17) associated with precipitation, including candidates involved in regulation of homeostasis of water and ions, signal transduction, and motor skills. In both species, many genes (135 in T. truncatus and 95 in T. pueraricola) also showed signatures of selection related to elevation, including G-protein-coupled receptors, cytochrome P450s, and ABC-transporters. Our results point to historical expansion processes and climatic adaptation in these pests which could have contributed to their growing importance, particularly in the case of T. truncatus.

6.
Insect Sci ; 27(5): 947-963, 2020 Oct.
Article de Anglais | MEDLINE | ID: mdl-32198842

RÉSUMÉ

Rice planthoppers are notorious plant sap-feeding pests which cause serious damage. While several microbes in rice planthoppers have been broadly characterized, the abundance and diversity of bacteria and fungi in field planthoppers are largely unknown. This study investigated the bacterial and fungal community compositions of Chinese wild rice planthoppers Laodelphax striatellus and Sogatella furcifera using parallel 16S rRNA gene amplicon and internal transcribed space region sequencing. The bacteria varied significantly between the species and were partitioned significantly by sex, tissues and host environments in each species. The majority of bacteria were affiliated with the genera Wolbachia, Cardinium, Rickettsia and Pantoea. The abundance of Wolbachia was negatively correlated with that of Cardinium in both planthopper species. Compared with bacteria, the abundance and diversity of fungi did not differ between sexes but both were enriched in the gut. The bacterial community as a whole showed no significant correlation with the fungal community. The majority of fungi were related to Sarocladium, Alternaria, Malassezia, Aspergillus and Curvularia. A phylogenetic analysis revealed that these fungi were closely related to botanic symbionts or pathogens. Our results provide novel insights into the bacteria and fungi of rice planthoppers.


Sujet(s)
Bactéries/isolement et purification , Champignons/isolement et purification , Hemiptera/microbiologie , Microbiote , Animaux , Bactéries/classification , Chine , Environnement , Femelle , Champignons/classification , Mâle , Mycobiome , Phylogenèse , ARN bactérien/analyse , ARN fongique/analyse , ARN ribosomique 16S/analyse , Facteurs sexuels , Spécificité d'espèce , Distribution tissulaire
7.
Genome Biol Evol ; 12(2): 3818-3831, 2020 02 01.
Article de Anglais | MEDLINE | ID: mdl-31958110

RÉSUMÉ

Wolbachia is a widely distributed intracellular bacterial endosymbiont among invertebrates. The wStriCN, the Wolbachia strain that naturally infects an agricultural pest Laodelphax striatellus, has a "Jekyll and Hyde" mode of infection pattern with positive and negative effects: It not only kills many offspring by inducing cytoplasmic incompatibility (CI) but also significantly increases host fecundity. In this study, we assembled the draft genome of wStriCN and compared it with other Wolbachia genomes to look for clues to its Jekyll and Hyde characteristics. The assembled wStriCN draft genome is 1.79 Mb in size, which is the largest Wolbachia genome in supergroup B. Phylogenomic analysis showed that wStriCN is closest to Wolbachia from Asian citrus psyllid Diaphorina citri. These strains formed a monophylogentic clade within supergroup B. Compared with other Wolbachia genomes, wStriCN contains the most diverse insertion sequence families, the largest amount of prophage sequences, and the most ankyrin domain protein coding genes. The wStriCN genome encodes components of multiple secretion systems, including Types I, II, IV, VI, Sec, and Tac. We detected three pairs of homologs for CI factors CifA and CifB. These proteins harbor the catalytic domains responsible for CI phenotypes but are phylogenetically and structurally distinct from all known Cif proteins. The genome retains pathways for synthesizing biotin and riboflavin, which may explain the beneficial roles of wStriCN in its host planthoppers, which feed on nutrient-poor plant sap. Altogether, the genomic sequencing of wStriCN provides insight into understanding the phylogeny and biology of Wolbachia.


Sujet(s)
Hemiptera/microbiologie , Wolbachia/génétique , Animaux , Protéines bactériennes/génétique , Biotine/métabolisme , Génome bactérien/génétique , Génomique/méthodes , Phénotype , Phylogenèse , Riboflavine/métabolisme
8.
Insect Sci ; 27(5): 895-907, 2020 Oct.
Article de Anglais | MEDLINE | ID: mdl-30924288

RÉSUMÉ

Bacteria symbionts in herbivores play an important role in host biology and ecology, and are affected by environmental factors such as temperature, diet, habitat, antibiotics and so on. However, the effects of antibiotics on the microbiome of the small brown planthopper Laodelphax striatellus (SBPH) remain unclear. Here, we studied the effects of tetracycline on the diversity and composition of bacterial colonies in different tissues of SBPH using high throughput sequencing of 16S ribosomal RNA amplicons. Our results show that Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria were most abundant in SBPH, and the genera Asaia and Wolbachia were most abundant in all body parts of SBPH. Antibiotic treatment had persistent effects on the composition of the SBPH microbiome. Tetracycline depleted the population of Firmicutes, Bacteroidetes, Tenericutes and Fusobacteria, and nearly 100% eliminated Wolbachia, Bacteroides and Abiotrophia in SBPH. Together, these results suggest that antibiotic exposure affects the bacteria symbionts of different body parts in SBPH and will facilitate future studies of the bacterial symbionts of arthropod hosts.


Sujet(s)
Antibactériens/pharmacologie , Bactéries/effets des médicaments et des substances chimiques , Hemiptera/microbiologie , Microbiote/effets des médicaments et des substances chimiques , Tétracycline/pharmacologie , Animaux , Femelle , Séquençage nucléotidique à haut débit , ARN bactérien/analyse , ARN ribosomique 16S/analyse , Distribution tissulaire
9.
Insect Sci ; 27(5): 859-868, 2020 Oct.
Article de Anglais | MEDLINE | ID: mdl-31411007

RÉSUMÉ

Microorganisms provide many physiological functions to herbivorous hosts. Spider mites (genus Tetranychus) are important agricultural pests throughout the world; however, the composition of the spider mite microbial community, especially gut microbiome, remains unclear. Here, we investigated the bacterial community in five spider mite species and their associated feces by deep sequencing of the 16S rRNA gene. The composition of the bacterial community was significantly different among the five prevalent spider mite species, and some bacterial symbionts showed host-species specificity. Moreover, the abundance of the bacterial community in spider mite feces was significantly higher than that in the corresponding spider mite samples. However, Flavobacterium was detected in all samples, and represent a "core microbiome". Remarkably, the maternally inherited endosymbiont Wolbachia was detected in both spider mite and feces. Overall, these results offer insight into the complex community of symbionts in spider mites, and give a new direction for future studies.


Sujet(s)
Bactéries/isolement et purification , Interactions hôte-microbes , Microbiote/physiologie , Symbiose , Tetranychidae/microbiologie , Animaux , Fèces/microbiologie , Microbiome gastro-intestinal , ARN bactérien/analyse , ARN ribosomique 16S/analyse
10.
ISME J ; 14(3): 676-687, 2020 03.
Article de Anglais | MEDLINE | ID: mdl-31767943

RÉSUMÉ

Symbiont-mediated nutritional mutualisms can contribute to the host fitness of insects, especially for those that feed exclusively on nutritionally unbalanced diets. Here, we elucidate the importance of B group vitamins in the association of endosymbiotic bacteria Wolbachia with two plant-sap feeding insects, the small brown planthopper, Laodelphax striatellus (Fallén), and the brown planthopper, Nilaparvata lugens (Stål). Infected planthoppers of both species laid more eggs than uninfected planthoppers, while the experimental transfer of Wolbachia into uninfected lines of one planthopper species rescued this fecundity deficit. The genomic analysis showed that Wolbachia strains from the two planthopper species encoded complete biosynthesis operons for biotin and riboflavin, while a metabolic analysis revealed that Wolbachia-infected planthoppers of both species had higher titers of biotin and riboflavin. Furthermore, experimental supplementation of food with a mixture of biotin and riboflavin recovered the fecundity deficit of Wolbachia-uninfected planthoppers. In addition, comparative genomic analysis suggested that the riboflavin synthesis genes are conserved among Wolbachia supergroups. Biotin operons are rare in Wolbachia, and those described share a recent ancestor that may have been horizontally transferred from Cardinium bacteria. Our research demonstrates a type of mutualism that involves a facultative interaction between Wolbachia and plant-sap feeding insects involving vitamin Bs.


Sujet(s)
Biotine/métabolisme , Hemiptera/microbiologie , Hemiptera/physiologie , Riboflavine/métabolisme , Wolbachia/métabolisme , Animaux , Fécondité , Génomique , Reproduction , Symbiose , Complexe vitaminique B/métabolisme , Wolbachia/génétique
11.
J Econ Entomol ; 112(5): 2362-2368, 2019 09 23.
Article de Anglais | MEDLINE | ID: mdl-31145796

RÉSUMÉ

Deciphering genetic structure and inferring migration routes of insects with high migratory ability have been challenging, due to weak genetic differentiation and limited resolution offered by traditional genotyping methods. Here, we tested the ability of double digest restriction-site associated DNA sequencing (ddRADseq)-based single nucleotide polymorphisms (SNPs) in revealing the population structure relative to 13 microsatellite markers by using four small brown planthopper populations as subjects. Using ddRADseq, we identified 230,000 RAD loci and 5,535 SNP sites, which were present in at least 80% of individuals across the four populations with a minimum sequencing depth of 10. Our results show that this large SNP panel is more powerful than traditional microsatellite markers in revealing fine-scale population structure among the small brown planthopper populations. In contrast to the mixed population structure suggested by microsatellites, discriminant analysis of principal components (DAPC) of the SNP dataset clearly separated the individuals into four geographic populations. Our results also suggest the DAPC analysis is more powerful than the principal component analysis (PCA) in resolving population genetic structure of high migratory taxa, probably due to the advantages of DAPC in using more genetic variation and the discriminant analysis function. Together, these results point to ddRADseq being a promising approach for population genetic and migration studies of small brown planthopper.


Sujet(s)
Hemiptera , Animaux , Génétique des populations , Répétitions microsatellites , Polymorphisme de nucléotide simple , Analyse de séquence d'ADN
12.
Arch Insect Biochem Physiol ; 101(2): e21548, 2019 Jun.
Article de Anglais | MEDLINE | ID: mdl-30912174

RÉSUMÉ

Rice planthoppers (Hemiptera: Delphacidae) are notorious pests for rice (Oryza sativa) in Asia, posing a serious threat to rice production and grain security. Rice planthoppers harbor diverse bacterial symbionts, including Wolbachia, Cardinium, Spiroplasma, and Arsenophonus, which are known to manipulate reproduction in arthropod hosts. This microreview is to introduce current knowledge of bacterial reproductive manipulators in rice planthoppers, including their diversity, population dynamics, localization, transmission, and biological functions.


Sujet(s)
Phénomènes physiologiques bactériens , Hemiptera/microbiologie , Reproduction/physiologie , Animaux , Femelle , Hemiptera/physiologie , Mâle , Symbiose
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...