Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 265
Filtrer
1.
J Foot Ankle Surg ; 2024 Jul 05.
Article de Anglais | MEDLINE | ID: mdl-38972566

RÉSUMÉ

It has been demonstrated in a number of studies that high levels of uric acid can cause crystal deposition in the tendons of the lower extremities, which in turn can impair the Achilles tendon. This study aimed to interpret whether hyperuricemia is relevant with Achilles tendon rupture. Patients diagnosed with Achilles tendon rupture at the same institution between 2013 and 2022 were included in the case group. Healthy subjects who had physical examinations during the same period were included in the control group. Propensity score matching was used to match in a 1:1 ratio. Demographic and clinical characteristics of patients in both groups were compared. Five hundred and fourteen patients were included in the study (ATR=257; Control group=257). The proportion of individuals with hyperuricemia varied significantly between the two groups (Achilles tendon rupture group=43.6%; control group=27.6%; p<0.001). The Achilles tendon rupture and hyperuricemia were linked by conditional logistic regression (p<0.001; OR=2.036; 95CI%=1.400-2.961). Compared with healthy subjects, patients with hyperuricemia have a higher risk of Achilles tendon rupture. Further studies are required to verify the effects of hyperuricemia and monosodium urate crystals on Achilles tendon structure.

2.
J Zhejiang Univ Sci B ; 25(6): 499-512, 2024 Jun 01.
Article de Anglais, Chinois | MEDLINE | ID: mdl-38910495

RÉSUMÉ

Artificial vascular graft (AVG) fistula is widely used for hemodialysis treatment in patients with renal failure. However, it has poor elasticity and compliance, leading to stenosis and thrombosis. The ideal artificial blood vessel for dialysis should replicate the structure and components of a real artery, which is primarily maintained by collagen in the extracellular matrix (ECM) of arterial cells. Studies have revealed that in hepatitis B virus (HBV)-induced liver fibrosis, hepatic stellate cells (HSCs) become hyperactive and produce excessive ECM fibers. Furthermore, mechanical stimulation can encourage ECM secretion and remodeling of a fiber structure. Based on the above factors, we transfected HSCs with the hepatitis B viral X (HBX) gene for simulating the process of HBV infection. Subsequently, these HBX-HSCs were implanted into a polycaprolactone-polyurethane (PCL-PU) bilayer scaffold in which the inner layer is dense and the outer layer consists of pores, which was mechanically stimulated to promote the secretion of collagen nanofiber from the HBX-HSCs and to facilitate crosslinking with the scaffold. We obtained an ECM-PCL-PU composite bionic blood vessel that could act as access for dialysis after decellularization. Then, the vessel scaffold was implanted into a rabbit's neck arteriovenous fistula model. It exhibited strong tensile strength and smooth blood flow and formed autologous blood vessels in the rabbit's body. Our study demonstrates the use of human cells to create biomimetic dialysis blood vessels, providing a novel approach for creating clinical vascular access for dialysis.


Sujet(s)
Cellules étoilées du foie , Polyesters , Dialyse rénale , Lapins , Animaux , Polyesters/composition chimique , Protéines virales régulatrices ou accessoires , Structures d'échafaudage tissulaires , Transfection , Bionique , Polyuréthanes , Prothèse vasculaire , Matrice extracellulaire/métabolisme , Humains , Virus de l'hépatite B/génétique , Collagène , Ingénierie tissulaire/méthodes , Transactivateurs
3.
Biochem Pharmacol ; : 116372, 2024 Jun 15.
Article de Anglais | MEDLINE | ID: mdl-38885773

RÉSUMÉ

MicroRNA and mitofusin-2 (Mfn2) play an important role in the myocardial apoptosis induced by acute myocardial infarction (AMI). However, the target relationship and underlying mechanism associated with interorganelle interaction between endoplasmic reticulum (ER) and mitochondria under ischemic condition is not completely clear. MI-induced injury, Mfn2 expression, Mfn2-mediated mitochondrial function and ER stress, and target regulation by miRNA-15b (miR-15b) were evaluated by animal MI and cellular hypoxic models with advanced molecular techniques. The results confirmed that Mfn2 was down-regulated and miR-15b was up-regulated upon the target binding profile under ischemic/hypoxic condition. Our data showed that miR-15b caused cardiac apoptotic injury that was reversed by rAAV9-anti-miR-15b or AMO-15b. The damage effect of miR-15b on Mfn2 expression and mitochondrial function was observed and rescued by rAAV9-anti-miR-15b or AMO-15b. The targeted regulation of miR-15b on Mfn2 was verified by luciferase reporter and microRNA-masking. Importantly, miR-15b-mediated Mfn2 suppression activated PERK/CHOP pathway, by which leads to ER stress and mitochondrial dysfunction, and cardiac apoptosis eventually. In conclusion, our research, for the first time, revealed the missing molecular link in Mfn2 and apoptosis and elucidated that pro-apoptotic miR-15b plays crucial roles during the pathogenesis of AMI through down-regulation of Mfn2 and activation of PERK-mediated ER stress. These findings may provide an opportunity to develop new therapies for prophylaxis and treatment of ischemic heart disease.

4.
Nucleic Acids Res ; 2024 Jun 22.
Article de Anglais | MEDLINE | ID: mdl-38908027

RÉSUMÉ

The tripartite ParABS system mediates chromosome segregation in the majority of bacterial species. Typically, DNA-bound ParB proteins around the parS sites condense the chromosomal DNA into a higher-order multimeric nucleoprotein complex for the ParA-driven partition. Despite extensive studies, the molecular mechanism underlying the dynamic assembly of the partition complex remains unclear. Herein, we demonstrate that Bacillus subtilis ParB (Spo0J), through the multimerization of its N-terminal domain, forms phase-separated condensates along a single DNA molecule, leading to the concurrent organization of DNA into a compact structure. Specifically, in addition to the co-condensation of ParB dimers with DNA, the engagement of well-established ParB condensates with DNA allows for the compression of adjacent DNA and the looping of distant DNA. Notably, the presence of CTP promotes the formation of condensates by a low amount of ParB at parS sites, triggering two-step DNA condensation. Remarkably, parS-centered ParB-DNA co-condensate constitutes a robust nucleoprotein architecture capable of withstanding disruptive forces of tens of piconewton. Overall, our findings unveil diverse modes of DNA compaction enabled by phase-separated ParB and offer new insights into the dynamic assembly and maintenance of the bacterial partition complex.

5.
ACS Sens ; 2024 Jun 27.
Article de Anglais | MEDLINE | ID: mdl-38937945

RÉSUMÉ

Flexible sensors have developed rapidly due to their great application potential in the intelligent era. However, the frequent bending work requirements pose a serious challenge to the mechanical reliability of flexible sensors. Herein, a strategy of using a new multielectrode layout to achieve multiple sensing signals based on one external signal is proposed for the first time to improve the reliability of flexible piezoresistive sensors. The multielectrode layout consists of a pair of interdigital electrodes and a bottom electrode. The interdigitated electrodes are used to sense the change in the surface resistance of the sensor, and the interdigital electrodes and the bottom electrode are used to sense the change in the bulk resistance of the sensor. As a result, without increasing the sensing unit area, the electrode layout allows the sensor to generate three response electrical signals when sensing an external pressure, thus improving the reliability of the sensor. Based on the electrode layout, a highly reliable flexible piezoresistive sensor with a multilevel porous structure is obtained by a microwave foaming method with a template. In the working state of sensing surface resistance, the sensor has a 22.12 kPa-1 sensitivity. Meanwhile, in the working state of sensing bulk resistance, the sensor shows a 55.17 kPa-1 sensitivity. Furthermore, the sensor is applied to monitor human pulse and speech signals, demonstrating its multisignal output characteristics and potential applications in flexible electronics. In conclusion, the new strategy of using the proposed electrode layout to improve the reliability of flexible sensors is expected to greatly promote the practical application of flexible electronics.

6.
Diabetes Care ; 47(7): 1140-1142, 2024 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-38691834

RÉSUMÉ

OBJECTIVE: Metformin, insulin, and insulin secretagogues do not alter HbA1c levels in glucokinase maturity-onset diabetes of the young (GCK-MODY). However, the efficacy of the new hypoglycemic drugs on GCK-MODY remains unclear. RESEARCH DESIGN AND METHODS: We describe a case of GCK-MODY with unchanged blood glucose under different therapies during an 8 years' follow-up. His HbA1c and biochemical indices under different hypoglycemic treatments were recorded. RESULTS: Oral glucose-lowering drugs, including thiazolidinediones, dipeptidyl peptidase 4 inhibitor, α-glucosidase inhibitor, and sodium-glucose cotransporter 2 inhibitor that had not been evaluated previously, did not improve the HbA1c level in this patient. However, the glucokinase activator dorzagliatin effectively and safely lowered his HbA1c level. CONCLUSIONS: Dorzagliatin was effective and safe in this patient with GCK-MODY, providing potential application prospects for precise treatment of GCK-MODY with dorzagliatin.


Sujet(s)
Diabète de type 2 , Hypoglycémiants , Humains , Mâle , Diabète de type 2/traitement médicamenteux , Hypoglycémiants/usage thérapeutique , Glycémie/effets des médicaments et des substances chimiques , Glycémie/métabolisme , Hémoglobine glyquée/métabolisme , Adulte , Glucokinase/métabolisme , Hétérosides
7.
J Neuroimmune Pharmacol ; 19(1): 17, 2024 May 08.
Article de Anglais | MEDLINE | ID: mdl-38717643

RÉSUMÉ

In our previous study, we concluded that sirtuin 5 (SIRT5) was highly expressed in microglia following ischaemic stroke, which induced excessive neuroinflammation and neuronal injury. Therefore, SIRT5-targeting interventions should reduce neuroinflammation and protect against ischaemic brain injury. Here, we showed that treatment with a specific SIRT5 inhibitor, MC3482, alleviated microglia-induced neuroinflammation and improved long-term neurological function in a mouse model of stroke. The mice were administrated with either vehicle or 2 mg/kg MC3482 daily for 7 days via lateral ventricular injection following the onset of middle cerebral artery occlusion. The outcome was assessed by a panel of tests, including a neurological outcome score, declarative memory, sensorimotor tests, anxiety-like behavior and a series of inflammatory factors. We observed a significant reduction of infarct size and inflammatory factors, and the improvement of long-term neurological function in the early stages during ischaemic stroke when the mice were treated with MC3482. Mechanistically, the administration of MC3482 suppressed the desuccinylation of annexin-A1, thereby promoting its membrane recruitment and extracellular secretion, which in turn alleviated neuroinflammation during ischaemic stroke. Based on our findings, MC3482 offers promise as an anti-ischaemic stroke treatment that targets directly the disease's underlying factors.


Sujet(s)
Annexine A1 , Accident vasculaire cérébral ischémique , Microglie , Maladies neuro-inflammatoires , Sirtuines , Animaux , Mâle , Souris , Annexine A1/effets des médicaments et des substances chimiques , Annexine A1/métabolisme , Infarctus du territoire de l'artère cérébrale moyenne/traitement médicamenteux , Infarctus du territoire de l'artère cérébrale moyenne/métabolisme , Accident vasculaire cérébral ischémique/traitement médicamenteux , Accident vasculaire cérébral ischémique/métabolisme , Accident vasculaire cérébral ischémique/anatomopathologie , Souris de lignée C57BL , Microglie/effets des médicaments et des substances chimiques , Microglie/métabolisme , Maladies neuro-inflammatoires/traitement médicamenteux , Maladies neuro-inflammatoires/métabolisme , Sirtuines/antagonistes et inhibiteurs , Sirtuines/métabolisme , Régulation positive/effets des médicaments et des substances chimiques
8.
Acta Pharmacol Sin ; 2024 May 17.
Article de Anglais | MEDLINE | ID: mdl-38760544

RÉSUMÉ

Cardiac fibrosis is a detrimental pathological process, which constitutes the key factor for adverse cardiac structural remodeling leading to heart failure and other critical conditions. Circular RNAs (circRNAs) have emerged as important regulators of various cardiovascular diseases. It is known that several circRNAs regulate gene expression and pathological processes by binding miRNAs. In this study we investigated whether a novel circRNA, named circNSD1, and miR-429-3p formed an axis that controls cardiac fibrosis. We established a mouse model of myocardial infarction (MI) for in vivo studies and a cellular model of cardiac fibrogenesis in primary cultured mouse cardiac fibroblasts treated with TGF-ß1. We showed that miR-429-3p was markedly downregulated in the cardiac fibrosis models. Through gain- and loss-of-function studies we confirmed miR-429-3p as a negative regulator of cardiac fibrosis. In searching for the upstream regulator of miR-429-3p, we identified circNSD1 that we subsequently demonstrated as an endogenous sponge of miR-429-3p. In MI mice, knockdown of circNSD1 alleviated cardiac fibrosis. Moreover, silence of human circNSD1 suppressed the proliferation and collagen production in human cardiac fibroblasts in vitro. We revealed that circNSD1 directly bound miR-429-3p, thereby upregulating SULF1 expression and activating the Wnt/ß-catenin pathway. Collectively, circNSD1 may be a novel target for the treatment of cardiac fibrosis and associated cardiac disease.

9.
World J Clin Cases ; 12(14): 2404-2411, 2024 May 16.
Article de Anglais | MEDLINE | ID: mdl-38765738

RÉSUMÉ

BACKGROUND: Human cystic echinococcosis (CE) is a life-threatening zoonosis caused by the Echinococcus granulosus (sensu lato). Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality in the world. The coexistence of CE and HCC is exceedingly rare, and only several well-documented cases have been reported. In addition to this coexistence, there is no report of the coexistence of CE, HCC, and liver abscess to date. Herein, we aimed to report a case of coexistence of liver abscess, hepatic CE, and HCC. CASE SUMMARY: A 65-year-old herdsman presented to the department of interventional therapy with jaundice, right upper abdominal distension and pain for 10 d. Laboratory test showed that he had positive results for HBsAg, HBeAb, HBcAb, and echinococcosis IgG antibody. The test also showed an increased level of alpha fetoprotein of 3400 ng/mL. An abdominal computed tomography (CT) scan revealed an uneven enhanced lesion of the liver at the arterial phase with enhancement and was located S4/8 segment of the liver. In addition, CT scan also revealed a mass in the S6 segment of the liver with a thick calcified wall and according to current guideline and medical images, the diagnoses of hepatic CE (CE4 subtype) and HCC were established. Initially, transarterial chemoembolization was performed for HCC. In the follow-up, liver abscess occurred in addition to CE and HCC; thus, percutaneous liver puncture drainage was performed. In the next follow-up, CE and HCC were stable. The liver abscess was completely resolved, and the patient was discharged with no evidence of recurrence. CONCLUSION: This is the first reported case on the coexistence of liver abscess, hepatic CE, and HCC. Individualized treatment and multidisciplinary discussions should be performed in this setting. Therefore, treatment and diagnosis should be based on the characteristics of liver abscess, hepatic CE, and HCC, and in future clinical work, it is necessary to be aware of the possibility of this complex composition of liver diseases.

10.
Gels ; 10(5)2024 Apr 28.
Article de Anglais | MEDLINE | ID: mdl-38786218

RÉSUMÉ

Plant proteins have the advantages of low cost and high yield, but they are still not comparable to animal proteins in processing due to factors such as gelation and solubility. How to enhance the processing performance of plant proteins by simple and green modification means has become a hot research topic nowadays. Based on the above problems, we studied the effect of gel induction on its properties. In this study, a pea protein-zein complex was prepared by the pH cycle method, and the effects of different induced gel methods on the gel properties of the complex protein were studied. The conclusions are as follows: All three gel induction methods can make the complex protein form a gel system, among which the gel strength of heat treatment and the TG enzyme-inducted group is the highest (372.84 g). Through the observation of the gel microstructure, the gel double network structure disappears and the structure becomes denser, which leads to a stronger water-binding state of the gel sample in the collaborative treatment group. In the simulated digestion experiment, heat treatment and enzyme-induced samples showed the best slow-release effect. This study provides a new method for the preparation of multi-vegetable protein gels and lays a theoretical foundation for their application in food processing.

11.
Materials (Basel) ; 17(10)2024 May 08.
Article de Anglais | MEDLINE | ID: mdl-38793271

RÉSUMÉ

Normally, the acidic impurities in hemihydrate phosphogypsum (HPG) must be neutralized when HPG is utilized, and a little amount of calcium hydroxide (CH) is the best choice. In this paper, the effects of excessive CH (5 wt.%, 10 wt.%, 15 wt.% and 20 wt.% of HPG) for carbonation curing on the performance of hardened HPG paste were studied. According to the results of macro tests and microanalyses of XRD, TG, SEM-EDS, MIP and N2 physisorption, it could be verified that CaF2, Ca3(PO4)2 and a large amount of nanoscale CaCO3 crystals were produced as a result of neutralization and carbonation, and the compressive strength and the water resistance of carbonated HPG + CH paste were significantly improved due to the effects of nanoscale CaCO3 crystals on pore refinement and the coverage on the surfaces of gypsum crystals of the hardened paste. Therefore, this study suggests a feasible and green method for recycling HPG/PG, with the collaborative effects of neutralization, performance enhancement and reductions in CO2 emissions.

12.
J Thorac Dis ; 16(3): 2032-2048, 2024 Mar 29.
Article de Anglais | MEDLINE | ID: mdl-38617757

RÉSUMÉ

Background: Esophageal fistula (EF) is a serious adverse event as a result of radiotherapy in patients with esophageal cancer (EC). We aimed to identify the predictive factors and establish a prediction model of EF in patients with esophageal squamous cell carcinoma (ESCC) who underwent intensity-modulated radiation therapy (IMRT) or volumetric-modulated arc therapy (VMAT). Methods: Patients with ESCC treated with IMRT or VMAT from January 2013 to December 2020 at Xijing Hospital were retrospectively analyzed. Ultimately, 43 patients with EF and 129 patients without EF were included in the analysis and propensity-score matched in a 1:3 ratio. The clinical characteristics and radiomics features were extracted. Univariate and multivariate stepwise logistic regression analyses were used to determine the risk factors associated with EF. Results: The median follow-up time was 24.0 months (range, 1.3-104.9 months), and the median overall survival (OS) was 13.1 months in patients with EF. A total of 1,158 radiomics features were extracted, and eight radiomics features were selected for inclusion into a model for predicting EF, with an area under the receiver operating characteristic curve (AUC) value of 0.794. Multivariate analysis showed that tumor length, tumor volume, T stage, lymphocyte rate (LR), and grade IV esophagus stenosis were related to EF, and the AUC value of clinical model for predicting EF was 0.849. The clinical-radiomics model had the best performance in predicting EF with an AUC value of 0.896. Conclusions: The clinical-radiomics nomogram can predict the risk of EF in ESCC patients and is helpful for the individualized treatment of EC.

13.
Article de Anglais | MEDLINE | ID: mdl-38624164

RÉSUMÉ

Combined mild-temperature photothermal/chemotherapy has emerged as a highly promising modality for tumor therapy. However, its therapeutic efficacy is drastically compromised by the heat-induced overexpression of heat shock proteins (HSPs) by the cells, which resist heat stress and apoptosis. The purpose of this study was to downregulate HSPs and enhance the mild-temperature photothermal/chemotherapy effect. In detail, the colon cancer cell membrane (CT26M)-camouflaged HSP90 inhibitor ganetespib and the chemotherapeutic agent doxorubicin (DOX)-coloaded hollow mesoporous Prussian blue (HMPB) nanoplatform (named PGDM) were designed for synergistic mild photothermal/chemotherapy via HSP inhibition. In addition to being a photothermal agent with a high efficiency of photothermal conversion (24.13%), HMPB offers a hollow hole that can be filled with drugs. Concurrently, the cancer cell membrane camouflaging enhances tumor accumulation through a homologous targeting mechanism and gives the nanoplatform the potential to evade the immune system. When exposed to NIR radiation, HMPB's photothermal action (44 °C) not only causes tumor cells to undergo apoptosis but also causes ganetespib to be released on demand. This inhibits the formation of HSP90, which enhances the mild photothermal/chemotherapy effect. The results confirmed that the combined treatment regimen of mild photothermal therapy (PTT) and chemotherapy showed a better therapeutic efficacy than the individual treatment methods. Therefore, this multimodal nanoparticle can advance the development of drugs for the treatment of malignancies, such as colon cancer, and has prospects for clinical application.

14.
Food Funct ; 15(9): 4682-4702, 2024 May 07.
Article de Anglais | MEDLINE | ID: mdl-38590246

RÉSUMÉ

Cereals are the main source of energy in the human diet. Compared to refined grains, whole grains retain more beneficial components, including dietary fiber, polyphenols, proteins, vitamins, and minerals. Dietary fiber and bound polyphenols (biounavailable) in cereals are important active substances that can be metabolized by the gut microorganisms and affect the intestinal environment. There is a close relationship between the gut microbiota structures and various disease phenotypes, although the consistency of this link is affected by many factors, and the specific mechanisms are still unclear. Remodeling unfavorable microbiota is widely recognized as an important way to target the gut and improve diseases. This paper mainly reviews the interaction between the gut microbiota and cereal-derived dietary fiber and polyphenols, and also summarizes the changes to the gut microbiota and possible molecular mechanisms of related glycolipid metabolism. The exploration of single active ingredients in cereals and their synergistic health mechanisms will contribute to a better understanding of the health benefits of whole grains. It will further help promote healthier whole grain foods by cultivating new varieties with more potential and optimizing processing methods.


Sujet(s)
Fibre alimentaire , Microbiome gastro-intestinal , Polyphénols , Grains complets , Polyphénols/métabolisme , Fibre alimentaire/métabolisme , Fibre alimentaire/analyse , Humains , Grains complets/composition chimique , Grains complets/métabolisme , Animaux , Grains comestibles/composition chimique
15.
Environ Sci Ecotechnol ; 20: 100412, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38560759

RÉSUMÉ

Effective management of large basins necessitates pinpointing the spatial and temporal drivers of primary index exceedances and urban risk factors, offering crucial insights for basin administrators. Yet, comprehensive examinations of multiple pollutants within the Yangtze River Basin remain scarce. Here we introduce a pollution inventory for urban clusters surrounding the Yangtze River Basin, analyzing water quality data from 102 cities during 2018-2019. We assessed the exceedance rates for six pivotal indicators: dissolved oxygen (DO), ammonia nitrogen (NH3-N), chemical oxygen demand (COD), biochemical oxygen demand (BOD), total phosphorus (TP), and the permanganate index (CODMn) for each city. Employing random forest regression and SHapley Additive exPlanations (SHAP) analyses, we identified the spatiotemporal factors influencing these key indicators. Our results highlight agricultural activities as the primary contributors to the exceedance of all six indicators, thus pinpointing them as the leading pollution source in the basin. Additionally, forest coverage, livestock farming, chemical and pharmaceutical sectors, along with meteorological elements like precipitation and temperature, significantly impacted various indicators' exceedances. Furthermore, we delineate five core urban risk components through principal component analysis, which are (1) anthropogenic and industrial activities, (2) agricultural practices and forest extent, (3) climatic variables, (4) livestock rearing, and (5) principal polluting sectors. The cities were subsequently evaluated and categorized based on these risk components, incorporating policy interventions and administrative performance within each region. The comprehensive analysis advocates for a customized strategy in addressing the discerned risk factors, especially for cities presenting elevated risk levels.

16.
Molecules ; 29(7)2024 Apr 04.
Article de Anglais | MEDLINE | ID: mdl-38611903

RÉSUMÉ

In this work, we have observed that some chiral boron clusters (B16-, B20-, B24-, and B28-) can simultaneously have helical molecular orbitals and helical spin densities; these seem to be the first compounds discovered to have this intriguing property. We show that chiral Jahn-Teller distortion of quasi-planar boron clusters drives the formation of the helical molecular spin densities in these clusters and show that elongation/enhancement in helical molecular orbitals can be achieved by simply adding more building blocks via a linker. Aromaticity of these boron clusters is discussed. Chiral boron clusters may find potential applications in spintronics, such as molecular magnets.

17.
Bioresour Technol ; 399: 130643, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38552855

RÉSUMÉ

This study proposed an efficient framework for optimizing the design and operation of combined systems of wastewater treatment plants (WWTP) and constructed wetlands (CW). The framework coupled a WWTP model with a CW model and used a multi-objective evolutionary algorithm to identify trade-offs between energy consumption, effluent quality, and construction cost. Compared to traditional design and management approaches, the framework achieved a 27 % reduction in WWTP energy consumption or a 44 % reduction in CW cost while meeting strict effluent discharge limits for Chinese WWTP. The framework also identified feasible decision variable ranges and demonstrated the impact of different optimization strategies on system performance. Furthermore, the contributions of WWTP and CW in pollutant degradation were analyzed. Overall, the proposed framework offers a highly efficient and cost-effective solution for optimizing the design and operation of a combined WWTP and CW system.


Sujet(s)
Élimination des déchets liquides , Purification de l'eau , Zones humides , Eaux usées , Apprentissage machine
18.
Cytokine Growth Factor Rev ; 77: 67-75, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38548489

RÉSUMÉ

Macrophage migration inhibitory factor (MIF) is a cytokine in the immune system, participated in both innate and adaptive immune responses. Except from immune cells, MIF is also secreted by a variety of non-immune cells, including hematopoietic cells, endothelial cells (ECs), and neurons. MIF plays a crucial role in various diseases, such as sepsis, rheumatoid arthritis, acute kidney injury, and neurodegenerative diseases. The role of MIF in the neuropathogenesis of cognitive impairment disorders is emphasized, as it recruits multiple inflammatory mediators, leading to activating microglia or astrocyte-derived neuroinflammation. Furthermore, it contributes to the cell death of neurons and ECs with the binding of apoptosis-inducing factor (AIF) through parthanatos-associated apoptosis-inducing factor nuclease (PAAN) / MIF pathway. This review comprehensively delves into the relationship between MIF and the neuropathogenesis of cognitive impairment disorders, providing a series of emerging MIF-targeted pharmaceuticals as potential treatments for cognitive impairment disorders.


Sujet(s)
Dysfonctionnement cognitif , Facteurs inhibiteurs de la migration des macrophages , Facteurs inhibiteurs de la migration des macrophages/physiologie , Facteurs inhibiteurs de la migration des macrophages/métabolisme , Humains , Dysfonctionnement cognitif/métabolisme , Animaux , Intramolecular oxidoreductases/métabolisme , Intramolecular oxidoreductases/physiologie , Neurones/métabolisme , Cellules endothéliales/métabolisme , Transduction du signal , Microglie/métabolisme
19.
Nat Commun ; 15(1): 2062, 2024 Mar 07.
Article de Anglais | MEDLINE | ID: mdl-38453927

RÉSUMÉ

Metal-nitrogen-carbon catalysts with hierarchically dispersed porosity are deemed as efficient geometry for oxygen reduction reaction (ORR). However, catalytic performance determined by individual and interacting sites originating from structural heterogeneity is particularly elusive and yet remains to be understood. Here, an efficient hierarchically porous Fe single atom catalyst (Fe SAs-HP) is prepared with Fe atoms densely resided at micropores and mesopores. Fe SAs-HP exhibits robust ORR performance with half-wave potential of 0.94 V and turnover frequency of 5.99 e-1s-1site-1 at 0.80 V. Theoretical simulations unravel a structural heterogeneity induced optimization, where mesoporous Fe-N4 acts as real active centers as a result of long-range electron regulation by adjacent microporous sites, facilitating O2 activation and desorption of key intermediate *OH. Multilevel operando characterization results identify active Fe sites undergo a dynamic evolution from basic Fe-N4 to active Fe-N3 under working conditions. Our findings reveal the structural origin of enhanced intrinsic activity for hierarchically porous Fe-N4 sites.

20.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 36(2): 221-224, 2024 Feb.
Article de Chinois | MEDLINE | ID: mdl-38442943

RÉSUMÉ

Sepsis is a life-threatening organ dysfunction caused by a dysregulated host immune response to infection. The development of sepsis is accompanied by the secretion of exosomes by a variety of cells, including non-coding RNA, metabolic small molecules and proteins, which play an important role in immune inflammatory response, oxidative stress, and coagulation dysfunction. The rapid development of new detection technologies has promoted the application of exosomes in the early warning, severity stratification, treatment effect and prognosis evaluation of sepsis. This article reviews the new detection technology of exosomes, the involvement of exosomes in the pathological progress of sepsis, and the latest progress in the early diagnosis, disease assessment and treatment of sepsis, in order to provide new ideas for the diagnosis and treatment of sepsis.


Sujet(s)
Exosomes , Sepsie , Humains , Sepsie/diagnostic , Sepsie/thérapie , Coagulation sanguine , Stress oxydatif
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...