Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 5 de 5
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
ACS Nano ; 16(10): 16784-16795, 2022 10 25.
Article de Anglais | MEDLINE | ID: mdl-36166598

RÉSUMÉ

In the long pursuit of smart robotics, it has been envisioned to empower robots with human-like senses, especially vision and touch. While tremendous progress has been made in image sensors and computer vision over the past decades, tactile sense abilities are lagging behind due to the lack of large-scale flexible tactile sensor array with high sensitivity, high spatial resolution, and fast response. In this work, we have demonstrated a 64 × 64 flexible tactile sensor array with a record-high spatial resolution of 0.9 mm (equivalently 28.2 pixels per inch) by integrating a high-performance piezoresistive film (PRF) with a large-area active matrix of carbon nanotube thin-film transistors. PRF with self-formed microstructures exhibited high pressure-sensitivity of ∼385 kPa-1 for multi-walled carbon nanotubes concentration of 6%, while the 14% one exhibited fast response time of ∼3 ms, good linearity, broad detection range beyond 1400 kPa, and excellent cyclability over 3000 cycles. Using this fully integrated tactile sensor array, the footprint maps of an artificial honeybee were clearly identified. Furthermore, we hardware-implemented a smart tactile system by integrating the PRF-based sensor array with a memristor-based computing-in-memory chip to record and recognize handwritten digits and Chinese calligraphy, achieving high classification accuracies of 98.8% and 97.3% in hardware, respectively. The integration of sensor networks with deep learning hardware may enable edge or near-sensor computing with significantly reduced power consumption and latency. Our work could empower the building of large-scale intelligent sensor networks for next-generation smart robotics.


Sujet(s)
Nanotubes de carbone , Robotique , Humains , Animaux , Toucher , Nanotubes de carbone/composition chimique
2.
Inorg Chem ; 52(15): 8665-76, 2013 Aug 05.
Article de Anglais | MEDLINE | ID: mdl-23848582

RÉSUMÉ

Uniform hollow spherical rhombohedral LaMO3 and solid spherical cubic MOx (M = Mn and Co) NPs were fabricated using the PMMA-templating strategy. Hollow spherical LaMO3 and solid spherical MOx NPs possessed surface areas of 21-33 and 21-24 m(2)/g, respectively. There were larger amounts of surface-adsorbed oxygen species and better low-temperature reducibility on/of the hollow spherical LaMO3 samples than on/of the solid spherical MOx samples. Hollow spherical LaMO3 and solid spherical MOx samples outperformed their nanosized counterparts for oxidation of CO and toluene, with the best catalytic activity being achieved over the solid spherical Co3O4 sample for CO oxidation (T50% = 81 °C and T90% = 109 °C) at space velocity = 10,000 mL/(g h) and the hollow spherical LaCoO3 sample for toluene oxidation (T50% = 220 °C and T90% = 237 °C) at space velocity = 20,000 mL/(g h). It is concluded that the higher surface areas and oxygen adspecies concentrations and better low-temperature reducibility are responsible for the excellent catalytic performance of the hollow spherical LaCoO3 and solid spherical Co3O4 NPs. We believe that the PMMA-templating strategy provides an effective route to prepare uniform perovskite-type oxide and transition-metal oxide NPs.


Sujet(s)
Monoxyde de carbone/composition chimique , Métaux/composition chimique , Nanoparticules/composition chimique , Toluène/composition chimique , Catalyse , Cobalt/composition chimique , Cristallographie aux rayons X , Lanthane/composition chimique , Manganèse/composition chimique , Oxydoréduction , Oxygène/composition chimique , Polyéthylène glycols/composition chimique , Poly(méthacrylate de méthyle)/composition chimique , Propriétés de surface , Tensioactifs/composition chimique
3.
J Environ Sci (China) ; 25(10): 2138-49, 2013 Oct 01.
Article de Anglais | MEDLINE | ID: mdl-24494502

RÉSUMÉ

Porous S-doped bismuth vanadate with an olive-like morphology and its supported iron oxide (y wt.% FeOx/BiVO4-deltaS0.08, y = 0.06, 0.76, and 1.40) photocatalysts were fabricated using the dodecylamine-assisted alcohol-hydrothermal and incipient wetness impregnation methods, respectively. It is shown that the y wt.% FeOx/BiVO4-deltaS0.08 photocatalysts contained a monoclinic scheetlite BiVO4 phase with a porous olive-like morphology, a surface area of 8.8-9.2 m2/g, and a bandgap energy of 2.38-2.42 eV. There was co-presence of surface Bi5+, Bi3+, V5+, V3+, Fe3+, and Fe2+ species in y wt.% FeOx/BiVO4-deltaS0.08. The 1.40 wt.% FeOx/BiVO4-deltaS0.08 sample performed the best for Methylene Blue degradation under visible-light illumination. The photocatalytic mechanism was also discussed. We believe that the sulfur and FeOx co-doping, higher oxygen adspecies concentration, and lower bandgap energy were responsible for the excellent visible-light-driven catalytic activity of 1.40 wt.% FeOx/BiVO4-deltaS0.08.


Sujet(s)
Bismuth/composition chimique , Composés du fer III/composition chimique , Lumière , Bleu de méthylène/composition chimique , Processus photochimiques , Vanadates/composition chimique , Polluants chimiques de l'eau/composition chimique , Catalyse , Microscopie électronique à balayage
4.
J Hazard Mater ; 217-218: 92-9, 2012 May 30.
Article de Anglais | MEDLINE | ID: mdl-22464587

RÉSUMÉ

Monoclinic BiVO(4) single-crystallites with a polyhedral, spherical or porous octapod-like morphology were selectively prepared using the triblock copolymer P123 (HO(CH(2)CH(2)O)(20)(CH(2)CH(CH(3))O)(70)(CH(2)CH(2)O)(20)H)-assisted hydrothermal method with bismuth nitrate and ammonium metavanadate as metal source and various bases as pH adjustor. The BiVO(4) materials were well characterized and their photocatalytic activities were evaluated for the removal of methylene blue (MB) and phenol in the presence of a small amount of H(2)O(2) under visible-light illumination. It is shown that the pH value of the precursor solution, surfactant, and hydrothermal temperature had an important impact on particle architecture of the BiVO(4) product. The introduction of P123 favored the generation of BiVO(4) with porous structures. The BiVO(4) derived hydrothermally with P123 at pH 3 or 6 possessed good optical absorption performance both in UV- and visible-light regions and hence showed excellent photocatalytic activities for the degradation of MB and phenol. It is concluded that the high visible-light-driven catalytic performance of the porous octapod-like BiVO(4) single-crystallites is associated with the higher surface area, porous structure, lower band gap energy, and unique particle morphology. Such porous BiVO(4) materials are useful in the solar-light-driven photocatalytic treatment of organic-containing wastewater.


Sujet(s)
Bismuth/composition chimique , Lumière , Bleu de méthylène/isolement et purification , Phénols/isolement et purification , Vanadates/composition chimique , Catalyse , Microscopie électronique à balayage , Processus photochimiques , Diffraction des rayons X
5.
Inorg Chem ; 50(6): 2534-44, 2011 Mar 21.
Article de Anglais | MEDLINE | ID: mdl-21323353

RÉSUMÉ

Three-dimensionally (3D) ordered macroporous (3DOM) iron oxides with nanovoids in the rhombohedrally crystallized macroporous walls were fabricated by adopting the dual-templating [Pluronic P123 and poly(methyl methacrylate) (PMMA) colloidal microspheres] strategy with ferric nitrate as the metal precursor in an ethanol or ethylene glycol and methanol mixed solution and after calcination at 550 °C. The possible formation mechanisms of such architectured materials were discussed. The physicochemical properties of the materials were characterized by means of techniques such as XRD, TGA/DSC, FT-IR, BET, HRSEM, HRTEM/SAED, UV-vis, XPS, and H(2)-TPR. The catalytic properties of the materials were also examined using toluene oxidation as a probe reaction. It is shown that 3DOM-structured α-Fe(2)O(3) without nanovoids in the macroporous walls was formed in the absence of P123 during the fabrication process, whereas the dual-templating strategy gave rise to α-Fe(2)O(3) materials that possessed high-quality 3DOM structures with the presence of nanovoids in the polycrystalline macropore walls and higher surface areas (32-46 m(2)/g). The surfactant P123 played a key role in the generation of nanovoids within the walls of the 3DOM-architectured iron oxides. There was the presence of multivalent iron ions and adsorbed oxygen species on the surface of each sample, with the trivalent iron ion and oxygen adspecies concentrations being different from sample to sample. The dual-templating fabricated iron oxide samples exhibited much better low-temperature reducibility than the bulk counterpart. The copresence of a 3DOM-structured skeleton and nanovoids in the macropore walls gave rise to a drop in the band-gap energy of iron oxide. The higher oxygen adspecies amounts, larger surface areas, better low-temperature reducibility, and unique nanovoid-containing 3DOM structures of the iron oxide materials accounted for their excellent catalytic performance in the oxidation of toluene.


Sujet(s)
Composés du fer III/composition chimique , Nanostructures/composition chimique , Poloxalène/composition chimique , Poly(méthacrylate de méthyle)/composition chimique , Chimie physique , Taille de particule , Porosité , Propriétés de surface
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...