Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 11 de 11
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Nano Lett ; 24(25): 7672-7680, 2024 Jun 26.
Article de Anglais | MEDLINE | ID: mdl-38869481

RÉSUMÉ

Kagome materials have recently garnered substantial attention due to the intrinsic flat band feature and the stimulated magnetic and spin-related many-body physics. In contrast to their bulk counterparts, two-dimensional (2D) kagome materials feature more distinct kagome bands, beneficial for exploring novel quantum phenomena. Herein, we report the direct synthesis of an ultrathin kagome-structured Co-telluride (Co9Te16) via a molecular beam epitaxy (MBE) route and clarify its formation mechanism from the Co-intercalation in the 1T-CoTe2 layers. More significantly, we unveil the flat band states in the ultrathin Co9Te16 and identify the real-space localization of the flat band states by in situ scanning tunneling microscopy/spectroscopy (STM/STS) combined with first-principles calculations. A ferrimagnetic order is also predicted in kagome-Co9Te16. This work should provide a novel route for the direct synthesis of ultrathin kagome materials via a metal self-intercalation route, which should shed light on the exploration of the intriguing flat band physics in the related systems.

2.
ACS Appl Mater Interfaces ; 15(12): 16144-16152, 2023 Mar 29.
Article de Anglais | MEDLINE | ID: mdl-36929818

RÉSUMÉ

As an emerging member of monoelemental two-dimensional (2D) materials, 2D tellurium (tellurene) has recently attracted intensive attention due to its polymorphism arising from the multivalent nature and fascinating properties such as wide-range band gaps, high carrier mobilities, etc. Herein, we predict the formation of a rectangular-phase tellurene on Ni(111) by first-principles density functional theory (DFT) calculations and realize its direct syntheses and characterizations by molecular beam epitaxy (MBE) and scanning tunneling microscopy (STM). We reveal that the monolayer rectangular tellurene and underlying Ni(111) substrate are strongly coupled, along with good lattice registry along two mutually perpendicular directions, which serves as the key driving force for the tellurene formation. We also uncover the unique morphological transitions of Te/Ni(111) from rectangular tellurene monolayer, to uniform periodic striped patterns at the second layer, and then to thick striped patterns. This work should offer valuable insights for the substrate-mediated syntheses of monoelemental 2D materials, thus propelling their phase engineering and intriguing property explorations.

3.
Adv Mater ; 35(1): e2207276, 2023 Jan.
Article de Anglais | MEDLINE | ID: mdl-36263871

RÉSUMÉ

Exploring new-type 2D magnetic materials with high magnetic transition temperature and robust air stability has attracted wide attention for developing innovative spintronic devices. Recently, intercalation of native metal atoms into the van der Waals gaps of 2D layered transition metal dichalcogenides (TMDs) has been developed to form 2D non-layered magnetic TMDs, while only succeeded in limited systems (e.g., Cr2 S3 , Cr5 Te8 ). Herein, composition-controllable syntheses of 2D non-layered iron selenide nanosheets (25% Fe-intercalated triclinic Fe5 Se8 and 50% Fe-intercalated monoclinic Fe3 Se4 ) are firstly reported, via a robust chemical vapor deposition strategy. Specifically, the 2D Fe5 Se8 exhibits intrinsic room-temperature ferromagnetic property, which is explained by the change of electron spin states from layered 1T'-FeSe2 to non-layered Fe-intercalated Fe5 Se8 based on density functional theory calculations. In contrast, the ultrathin Fe3 Se4 presents novel metallic features comparable with that of metallic TMDs. This work hereby sheds light on the composition-controllable synthesis and fundamental property exploration of 2D self-intercalation induced novel TMDs compounds, by propelling their application explorations in nanoelectronics and spintronics-related fields.

4.
ACS Nano ; 16(7): 11444-11454, 2022 Jul 26.
Article de Anglais | MEDLINE | ID: mdl-35786839

RÉSUMÉ

Self-intercalation of native metal atoms in two-dimensional (2D) transition metal dichalcogenides has received rapidly increasing interest, due to the generation of intriguing structures and exotic physical properties, however, only reported in limited materials systems. An emerging type-II Dirac semimetal, NiTe2, has inspired great attention at the 2D thickness region, but has been rarely achieved so far. Herein, we report the direct synthesis of mono- to few-layer Ni-tellurides including 1T-NiTe2 and Ni-rich stoichiometric phases on graphene/SiC(0001) substrates under ultra-high-vacuum conditions. Differing from previous chemical vapor deposition growth accompanied with transmission electron microscopy imaging, this work combines precisely tailored synthesis with on-site atomic-scale scanning tunneling microscopy observations, offering us visual information about the phase modulations of Ni-tellurides from 1T-phase NiTe2 to self-intercalated Ni3Te4 and Ni5Te6. The synthesis of Ni self-intercalated NixTey compounds is explained to be mediated by the high metal chemical potential under Ni-rich conditions, according to density functional theory calculations. More intriguingly, the emergence of superconductivity in bilayer NiTe2 intercalated with 50% Ni is also predicted, arising from the enhanced electron-phonon coupling strength after the self-intercalation. This work provides insight into the direct synthesis and stoichiometric phase modulation of 2D layered materials, enriching the family of self-intercalated materials and propelling their property explorations.

5.
ACS Appl Mater Interfaces ; 14(1): 2202-2210, 2022 Jan 12.
Article de Anglais | MEDLINE | ID: mdl-34978403

RÉSUMÉ

Collecting water from fog flow is emerging as a promising solution to the water shortage problem. This work demonstrated a novel environmentally responsive water collector made from a self-prepared Janus polyvinyl alcohol sponge in combination with a two-way shape memory alloy spring, which transforms the traditional manner of static water collection into a dynamic one. The unidirectional water transport of the Janus structure together with the dynamic collection approach correspond to a 30.8% increase in the water-collection rate (WCR). The resultant WCR is up to 5.1 g/h, which ranks relatively high compared to similar studies. The light- and thermal-response capability, easy fabrication, and good cycling performance indicate that our devices could be utilized in a variety of applications. In this work, an efficient, intelligent adaptive, simple-preparation, precision-guided, and economical fog-collecting devices are recommended. Our work provides new insights on the design of high-efficient water collectors with practicability.

6.
RSC Adv ; 11(24): 14769-14776, 2021 Apr 15.
Article de Anglais | MEDLINE | ID: mdl-35424002

RÉSUMÉ

Collecting water from fog flow has emerged as a promising strategy for the relief of water shortage problems. Herein, using a UV-induced (ultraviolet light induced) controllable diffusion method combined with technology of three-dimensional (3D) printing, we fabricate biomimetic materials incorporating beetle-like hydrophobic-hydrophilic character and cactus-like cone arrays with various structure parameters, and then systematically study their fog-harvesting performance. The UV-induced controllable diffusion method can break away from the photomask to regulate the hybrid wettability. Moreover, employing 3D printing technology can flexibly control the structure parameters to improve the water collection efficiency. It is found that the water collection rate (WCR) can be optimized by controlling the hybrid wettability of the sample surface and cone distance and using substrates with printed holes, which lead to a 109% increase of WCR.

7.
ChemSusChem ; 13(9): 2239-2244, 2020 May 08.
Article de Anglais | MEDLINE | ID: mdl-32022410

RÉSUMÉ

In contrast to traditional rechargeable rock-chair metal-ion batteries, dual-ion batteries (DIBs) involve redox reactions with anions rather than cations in p-type cathodes. In principle, regulating the electrochemical performance of the DIB by different anion species is highly feasible. Herein, the anion effect on the electrochemical performance of a DIB, the aqueous Zn- organic radical battery (Zn-ORB), consisting of a poly(2,2,6,6tetramethylpiperidinyloxy-4-yl vinyl ether) cathode and a Zn anode, was investigated by DFT calculations. SO4 2- , CF3 SO3 - , and ClO4 - with different molecular electrostatic potential values were selected as anion models. DFT calculations revealed that a stronger electrostatic interaction of the anion with the organic radical resulted in a higher operating voltage of the Zn-ORB, which was consistent with experimental results. These results bring new insight into the redox chemistry of p-type organic radicals with anions and will promote the development of high-power aqueous Zn-ORBs as well as inspire more investigations into the anion effect towards novel battery designs.

8.
Nat Commun ; 11(1): 98, 2020 Jan 07.
Article de Anglais | MEDLINE | ID: mdl-31911603

RÉSUMÉ

Charge density waves (CDWs) in the cuprate high-temperature superconductors have evoked much interest, yet their typical short-range nature has raised questions regarding the role of disorder. Here we report a resonant X-ray diffraction study of ZrTe[Formula: see text], a model CDW system, with focus on the influence of disorder. Near the CDW transition temperature, we observe two independent signals that arise concomitantly, only to become clearly separated in momentum while developing very different correlation lengths in the well-ordered state that is reached at a distinctly lower temperature. Anomalously slow dynamics of mesoscopic charge domains are further found near the transition temperature, in spite of the expected strong thermal fluctuations. Our observations signify the presence of distinct experimental fingerprints of pristine and disorder-perturbed CDWs. We discuss the latter also in the context of Friedel oscillations, which we argue might promote CDW formation via a self-amplifying process.

9.
Nano Lett ; 17(11): 6802-6807, 2017 11 08.
Article de Anglais | MEDLINE | ID: mdl-28967758

RÉSUMÉ

Two-dimensional (2D) transition metal dichalcogenides (TMDs) have a range of unique physics properties and could be used in the development of electronics, photonics, spintronics, and quantum computing devices. The mechanical exfoliation technique of microsize TMD flakes has attracted particular interest due to its simplicity and cost effectiveness. However, for most applications, large-area and high-quality films are preferred. Furthermore, when the thickness of crystalline films is down to the 2D limit (monolayer), exotic properties can be expected due to the quantum confinement and symmetry breaking. In this paper, we have successfully prepared macro-size atomically flat monolayer NbSe2 films on bilayer graphene terminated surface of 6H-SiC(0001) substrates by a molecular beam epitaxy (MBE) method. The films exhibit an onset superconducting critical transition temperature (Tconset) above 6 K and the zero resistance superconducting critical transition temperature (Tczero) up to 2.40 K. Simultaneously, the transport measurements at high magnetic fields and low temperatures reveal that the parallel characteristic field Bc//(T = 0) is above 5 times of the paramagnetic limiting field, consistent with Zeeman-protected Ising superconductivity mechanism. Besides, by ultralow temperature electrical transport measurements, the monolayer NbSe2 film shows the signature of quantum Griffiths singularity (QGS) when approaching the zero-temperature quantum critical point.

10.
Adv Mater ; 28(24): 4845-51, 2016 Jun.
Article de Anglais | MEDLINE | ID: mdl-27115098

RÉSUMÉ

Positive quantum spin Hall gap in mono-layer 1T'-WTe2 is consistently supported by density-functional theory calculations, ultrafast pump-probe, and electrical transport measurements. It is argued that monolayer 1T'-WTe2 , which was predicted to be a semimetallic quantum spin Hall material, is likely a truly 2D quantum spin Hall insulator with a positive quantum spin Hall gap.

11.
Nanoscale ; 4(8): 2760-5, 2012 Apr 21.
Article de Anglais | MEDLINE | ID: mdl-22422051

RÉSUMÉ

Electrodes with three-dimensional (3D) nanostructure are expected to improve the energy and power densities per footprint area of lithium ion microbatteries. Herein, we report a large-scale synthesis of a SnO(2)/α-Fe(2)O(3) composite nanotube array on a stainless steel substrate via a ZnO nanowire array as an in situ sacrificial template without using any strong acid or alkali. Importantly, both SnO(2) and α-Fe(2)O(3) contribute to the lithium storage, and the hybridization of SnO(2) and α-Fe(2)O(3) into an integrated nanotube structure provides them with an elegant synergistic effect when participating in electrochemical reactions. Large areal capacities and good rate capability are demonstrated for such a composite nanotube array. Particularly noteworthy is that the areal capacities (e.g. 1.289 mAh cm(-2) at a current rate of 0.1 mA cm(-2)) are much larger than those of many previous thin-film/3D microbattery electrodes. Our work suggests the possibility of further improving the areal capacity/energy density of 3D microelectrodes by designing ordered hybrid nanostructure arrays.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...