Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 2.702
Filtrer
1.
Adv Mater ; : e2402484, 2024 Sep 01.
Article de Anglais | MEDLINE | ID: mdl-39219216

RÉSUMÉ

Topotactic reduction is critical to a wealth of phase transitions of current interest, including synthesis of the superconducting nickelate Nd0.8Sr0.2NiO2, reduced from the initial Nd0.8Sr0.2NiO3/SrTiO3 heterostructure. Due to the highly sensitive and often damaging nature of the topotactic reduction, however, only a handful of research groups have been able to reproduce the superconductivity results. A series of in situ synchrotron-based investigations reveal that this is due to the necessary formation of an initial, ultrathin layer at the Nd0.8Sr0.2NiO3 surface that helps to mediate the introduction of hydrogen into the film such that apical oxygens are first removed from the Nd0.8Sr0.2NiO3 / SrTiO3 (001) interface and delivered into the reducing environment. This allows the square-planar / perovskite interface to stabilize and propagate from the bottom to the top of the film without the formation of interphase defects. Importantly, neither geometric rotations in the square planar structure nor significant incorporation of hydrogen within the films is detected, obviating its need for superconductivity. These findings unveil the structural basis underlying the transformation pathway and provide important guidance on achieving the superconducting phase in reduced nickelate systems.

2.
Front Immunol ; 15: 1448558, 2024.
Article de Anglais | MEDLINE | ID: mdl-39206185

RÉSUMÉ

Objective: The level of mitochondrial DNA copy number (mtDNA-CN) in peripheral blood cells had been identified to be involved in several immune and cardiovascular diseases. Thus, the aim of this study is to evaluate the levels of mtDNA-CN in Kawasaki disease (KD) and to construct a nomogram prediction for coronary artery lesions in children with KD. Methods: One hundred and forty-four children with KD diagnosed from March 2020 to March 2022 were involved in the study. The clinical features and laboratory test parameters of these children were assessed between the KD and normal groups. Univariable and multivariable analyses were performed sequentially to identify the essential risk factors. Subsequently, a nomogram prediction was constructed. Results: A total of 274 children were included in the analysis. Of these, 144 (52.6%) represented the KD group. Peripheral blood DNA mtDNA qPCR showed that the -log value of mtDNA-CN in the KD group (6.67 ± 0.34) was significantly higher than that in the healthy group (6.40 ± 0.18) (P<0.001). The area under the ROC curve for mtDNA-CN in distinguishing KD was 0.757. MtDNA-CN (OR = 13.203, P = 0.009, 95% CI 1.888-92.305), RBC (OR = 5.135, P = 0.014, 95% CI 1.394-18.919), and PA (OR = 0.959, P = 0.014, 95% CI 0.927-0.991) were identified as independent risk factors for coronary artery dilation in children with KD. Finally, the nomogram predictive was established based on the results of multivariable analysis, demonstrating the satisfied prediction and calibration values. Conclusion: The results of this study revealed that mtDNA-CN could be used as a biomarker in predicting the development of KD. Furthermore, the higher the mtDNA-CN was significantly associated with coronary artery dilation in KD.


Sujet(s)
Variations de nombre de copies de segment d'ADN , ADN mitochondrial , Maladie de Kawasaki , Nomogrammes , Humains , Maladie de Kawasaki/génétique , Maladie de Kawasaki/diagnostic , Mâle , ADN mitochondrial/génétique , Femelle , Enfant d'âge préscolaire , Nourrisson , Vaisseaux coronaires/anatomopathologie , Enfant , Facteurs de risque , Maladie des artères coronaires/génétique , Maladie des artères coronaires/diagnostic , Maladie des artères coronaires/sang , Courbe ROC , Marqueurs biologiques/sang
3.
JAMA Netw Open ; 7(8): e2427258, 2024 Aug 01.
Article de Anglais | MEDLINE | ID: mdl-39133485

RÉSUMÉ

Importance: Despite its demonstrated benefits in improving cardiovascular risk profiles, the association of tirzepatide with mortality and cardiovascular and kidney outcomes compared with glucagon-like peptide 1 receptor agonists (GLP-1 RAs) remains unknown. Objective: To investigate the association of tirzepatide with mortality and adverse cardiovascular and kidney outcomes compared with GLP-1 RAs in patients with type 2 diabetes. Design, Setting, and Participants: This retrospective cohort study used US Collaborative Network of TriNetX data collected on individuals with type 2 diabetes aged 18 years or older initiating tirzepatide or GLP-1 RA between June 1, 2022, and June 30, 2023; without stage 5 chronic kidney disease or kidney failure at baseline; and without myocardial infarction or ischemic or hemorrhagic stroke within 60 days of drug initiation. Exposures: Treatment with tirzepatide compared with GLP-1 RA. Main Outcomes and Measures: The primary outcome was all-cause mortality, and secondary outcomes included major adverse cardiovascular events (MACEs), the composite of MACEs and all-cause mortality, kidney events, acute kidney injury, and major adverse kidney events. All outcomes were analyzed using Cox proportional hazards regression models. Results: There were 14 834 patients treated with tirzepatide (mean [SD] age, 55.4 [11.8] years; 8444 [56.9%] female) and 125 474 treated with GLP-1 RA (mean [SD] age, 58.1 [13.3] years; 67 474 [53.8%] female). After a median (IQR) follow-up of 10.5 (5.2-15.7) months, 95 patients (0.6%) in the tirzepatide group and 166 (1.1%) in the GLP-1 RA group died. Tirzepatide treatment was associated with lower hazards of all-cause mortality (adjusted hazard ratio [AHR], 0.58; 95% CI, 0.45-0.75), MACEs (AHR, 0.80; 95% CI, 0.71-0.91), the composite of MACEs and all-cause mortality (AHR, 0.76; 95% CI, 0.68-0.84), kidney events (AHR, 0.52; 95% CI, 0.37-0.73), acute kidney injury (AHR, 0.78; 95% CI, 0.70-0.88), and major adverse kidney events (AHR, 0.54; 95% CI, 0.44-0.67). Treatment with tirzepatide was associated with greater decreases in glycated hemoglobin (treatment difference, -0.34 percentage points; 95% CI, -0.44 to -0.24 percentage points) and body weight (treatment difference, -2.9 kg, 95% CI, -4.8 to -1.1 kg) compared with GLP-1 RA. An interaction test for subgroup analysis revealed consistent results stratified by estimated glomerular filtration rate, glycated hemoglobin level, body mass index, comedications, and comorbidities. Conclusions and Relevance: In this study, treatment with tirzepatide was associated with lower hazards of all-cause mortality, adverse cardiovascular events, acute kidney injury, and adverse kidney events compared with GLP-1 RA in patients with type 2 diabetes. These findings support the integration of tirzepatide into therapeutic strategies for this population.


Sujet(s)
Maladies cardiovasculaires , Diabète de type 2 , Récepteur du peptide-1 similaire au glucagon , Hypoglycémiants , Humains , Diabète de type 2/traitement médicamenteux , Diabète de type 2/mortalité , Diabète de type 2/complications , Mâle , Femelle , Adulte d'âge moyen , Récepteur du peptide-1 similaire au glucagon/agonistes , Études rétrospectives , Sujet âgé , Maladies cardiovasculaires/mortalité , Maladies cardiovasculaires/traitement médicamenteux , Maladies cardiovasculaires/épidémiologie , Hypoglycémiants/usage thérapeutique , Résultat thérapeutique , , Récepteur du peptide-2 similaire au glucagon , Peptide gastrointestinal
4.
Biochem Biophys Res Commun ; 737: 150500, 2024 Aug 06.
Article de Anglais | MEDLINE | ID: mdl-39142135

RÉSUMÉ

Nicotinamide Adenine Dinucleotide Phosphate (NADPH) plays a vital role in regulating redox homeostasis and reductive biosynthesis. However, if exogenous NADPH can be transported across the plasma membrane has remained elusive. In this study, we present evidence supporting that NADPH can traverse the plasma membranes of cells through a mechanism mediated by the P2X7 receptor (P2X7R). Notably, we observed an augmentation of intracellular NADPH levels in cultured microglia upon exogenous NADPH supplementation in the presence of ATP. The P2X7R-mediated transmembrane transportation of NADPH was validated with P2X7R antagonists, including OX-ATP, BBG, and A-438079, or through P2X7 knockdown, which impeded NADPH transportation into cells. Conversely, overexpression of P2X7 resulted in an enhanced capacity for NADPH transport. Furthermore, transfection of hP2X7 demonstrated the ability to complement NADPH uptake in native HEK293 cells. Our findings provide evidence for the first time that NADPH is transported across the plasma membrane via a P2X7R-mediated pathway. Additionally, we propose an innovative avenue for modulating intracellular NADPH levels. This discovery holds promise for advancing our understanding of the role of NADPH in redox homeostasis and neuroinflammation.

5.
Cell Death Dis ; 15(8): 591, 2024 Aug 15.
Article de Anglais | MEDLINE | ID: mdl-39143050

RÉSUMÉ

Neurons rely heavily on high mitochondrial metabolism to provide sufficient energy for proper development. However, it remains unclear how neurons maintain high oxidative phosphorylation (OXPHOS) during development. Mitophagy plays a pivotal role in maintaining mitochondrial quality and quantity. We herein describe that G protein-coupled receptor 50 (GPR50) is a novel mitophagy receptor, which harbors the LC3-interacting region (LIR) and is required in mitophagy under stress conditions. Although it does not localize in mitochondria under normal culturing conditions, GPR50 is recruited to the depolarized mitochondrial membrane upon mitophagy stress, which marks the mitochondrial portion and recruits the assembling autophagosomes, eventually facilitating the mitochondrial fragments to be engulfed by the autophagosomes. Mutations Δ502-505 and T532A attenuate GPR50-mediated mitophagy by disrupting the binding of GPR50 to LC3 and the mitochondrial recruitment of GPR50. Deficiency of GPR50 causes the accumulation of damaged mitochondria and disrupts OXPHOS, resulting in insufficient ATP production and excessive ROS generation, eventually impairing neuronal development. GPR50-deficient mice exhibit impaired social recognition, which is rescued by prenatal treatment with mitoQ, a mitochondrially antioxidant. The present study identifies GPR50 as a novel mitophagy receptor that is required to maintain mitochondrial OXPHOS in developing neurons.


Sujet(s)
Mitochondries , Mitophagie , Neurones , Récepteurs couplés aux protéines G , Animaux , Récepteurs couplés aux protéines G/métabolisme , Récepteurs couplés aux protéines G/génétique , Neurones/métabolisme , Mitochondries/métabolisme , Souris , Humains , Phosphorylation oxydative , Protéines associées aux microtubules/métabolisme , Protéines associées aux microtubules/génétique , Espèces réactives de l'oxygène/métabolisme , Souris knockout , Neurogenèse
6.
Int J Sex Health ; 36(3): 257-272, 2024.
Article de Anglais | MEDLINE | ID: mdl-39148926

RÉSUMÉ

In the current era of exploring changing sexual behavior, promoting and supporting the diversity of pleasure, the sexual health and rights of sexual minorities are getting more public attention, among which the "Fourth Love" emerges as a distinctive group within the framework of Chinese culture. Fourth Love refers to a loving relationship between couples of the opposite sex where the woman assumes the traditional male gender role and the man assumes the traditional female gender role, and always accompanied by a special pattern of sexual behavior that women penetrate the men's anus using their fingers or a device. This theoretical article begins by introducing and discussing the historical background, core concept "Fourth Love" and its related categories. Subsequently, we start from Judith Butler's gender performativity theory and interpret the Fourth Love from the perspective of "de-naturalization" and argue that the gender performativity theory provides a reasonable explanation for the gender characteristics (female top and male bottom) of the Fourth Love. Finally, we posit a discussion and outlook on the survival and development of the Fourth Love in the fields of sexual health, sexual pleasure, sexual right, and family and marriage, and calls for more understanding and psychological support from the society for them.

7.
Int Immunopharmacol ; 141: 112955, 2024 Aug 19.
Article de Anglais | MEDLINE | ID: mdl-39163685

RÉSUMÉ

OBJECTIVES: Previous studies elucidated that capecitabine (CAP) works as an anti-tumor agent with putative immunosuppressive effects. However, the intricate mechanisms underpinning these effects remain to be elucidated. In this study, we aimed to unravel the molecular pathways by which CAP exerts its immunosuppressive effects to reduce allograft rejection. METHODS: Hearts were transplanted from male BALB/c donors to male C57BL/6 recipients and treated with CAP for seven days. The rejection of these heart transplants was assessed using a range of techniques, including H&E staining, immunohistochemistry, RNA sequencing, LS-MS/MS, and flow cytometry. In vitro, naïve CD4+ T cells were isolated and cultured under Th1 condition medium with varying treatments, flow cytometry, LS-MS/MS were employed to delineate the role of thymidine synthase (TYMS) during Th1 differentiation. RESULTS: CAP treatment significantly mitigated acute allograft rejection and enhanced graft survival by reducing graft damage, T cell infiltration, and levels of circulating pro-inflammatory cytokines. Additionally, it curtailed CD4+ T cell proliferation and the presence of Th1 cells in the spleen. RNA-seq showed that TYMS, the target of CAP, was robustly increased post-transplantation in splenocytes. In vitro, TYMS and its metabolic product dTMP were differentially expressed in Th0 and Th1, and were required after activation of CD4+ T cell and Th1 differentiation. TYMS-specific inhibitor, raltitrexed, and the metabolite of capecitabine, 5-fluorouracil, could inhibit the proliferation and differentiation of Th1. Finally, the combined use of CAP and the commonly used immunosuppressant rapamycin can induce long-term survival of allograft. CONCLUSION: CAP undergoes metabolism conversion to interfere pyrimidine metabolism, which targets TYMS-mediated differentiation of Th1, thereby playing a significant role in mitigating acute cardiac allograft rejection in murine models.

8.
Cell Death Differ ; 2024 Aug 20.
Article de Anglais | MEDLINE | ID: mdl-39164456

RÉSUMÉ

The existence of heterogeneity has plunged cancer treatment into a challenging dilemma. We profiled malignant epithelial cells from 5 gastric adenocarcinoma patients through single-cell sequencing (scRNA-seq) analysis, demonstrating the heterogeneity of gastric adenocarcinoma (GA), and identified the CCKBR+ stem cell-like cancer cells associated poorly differentiated and worse prognosis. We further conducted targeted analysis using single-cell transcriptome libraries, including 40 samples, to confirm these screening results. In addition, we revealed that FOXOs are involved in the progression and development of CCKBR+ gastric adenocarcinoma. Inhibited the expression of FOXOs and disrupting cancer cell stemness reduce the CCKBR+ GA organoid formation and impede tumor progression. Mechanically, CUT&Tag sequencing and Lectin pulldown revealed that FOXOs can activate ST3GAL3/4/5 as well as ST6GALNAC6, promoting elevated sialyation levels in CCKBR+ tumor cells. This FOXO-sialyltransferase axis contributes to the maintenance of homeostasis and the growth of CCKBR+ tumor cells. This insight provides novel perspectives for developing targeted therapeutic strategies aimed at the treating CCKBR associated gastric cancer.

9.
Mol Biol Evol ; 2024 Aug 20.
Article de Anglais | MEDLINE | ID: mdl-39162340

RÉSUMÉ

Modern humans have experienced explosive population growth in the past thousand years. We hypothesized that recent human populations have inhabited environments with relaxation of selective constraints, possibly due to the more abundant food supply after the Last Glacial Maximum. The ratio of nonsynonymous to synonymous mutations (N/S ratio) is a useful and common statistic for measuring selective constraints. In this study, we reconstructed a high-resolution phylogenetic tree using a total of 26,419 East Eurasian mtDNA genomes, which were further classified into expansion and non-expansion groups on the basis of the frequencies of their founder lineages. We observed a much higher N/S ratio in the expansion group, especially for nonsynonymous mutations with moderately deleterious effects, indicating a weaker effect of purifying selection in the expanded clades. However, this observation on N/S ratio was unlikely in computer simulations where all individuals were under the same selective constraints. Thus, we argue that the expanded populations were subjected to weaker selective constraints than the non-expanded populations were. The mildly deleterious mutations were retained during population expansion, which could have a profound impact on present-day disease patterns.

10.
Chem Commun (Camb) ; 60(68): 9074-9077, 2024 Aug 20.
Article de Anglais | MEDLINE | ID: mdl-39104310

RÉSUMÉ

This study presents a self-bonding conductive electrode triggered by water-induced structure reconfiguration. Water wetting causes the swelling and mobility of cotton-derived cellulose nanofibers in the conductive electrode, and the formation of hydrogen bonds, which enables the conductive electrode to heal damage, bond separated pieces, and directly bond on diverse substrates.

11.
Heliyon ; 10(15): e35571, 2024 Aug 15.
Article de Anglais | MEDLINE | ID: mdl-39170375

RÉSUMÉ

Background: The significant rebound of influenza A (H1N1) virus activity, particularly among children, with rapidly growing number of hospitalized cases is of major concern in the post-COVID-19 era. The present study was performed to establish a prediction model of severe case in pediatric patients hospitalized with H1N1 infection during the post-COVID-19 era. Methods: This is a multicenter retrospective study across nine public tertiary hospitals in Yunnan, China, recruiting pediatric H1N1 inpatients hospitalized at five of these centers between February 1 and July 1, 2023, into the development dataset. Screening of 40 variables including demographic information, clinical features, and laboratory parameters were performed utilizing Least Absolute Shrinkage and Selection Operator (LASSO) regression and logistic regression to determine independent risk factors of severe H1N1 infection, thus constructing a prediction nomogram. Receiver operating characteristic (ROC) curve, calibration curve, as well as decision curve analysis (DCA) were employed to evaluate the model's performance. Data from four independent cohorts comprised of pediatric H1N1 inpatients from another four hospitals between July 25 and October 31, 2023, were utilized to externally validate this nomogram. Results: The development dataset included 527 subjects, 122 (23.1 %) of whom developed severe H1N1 infection. The external validation dataset included 352 subjects, 72 (20.5 %) of whom were eventually confirmed as severe H1N1 infection. The LASSO regression identified 19 candidate predictors, with logistic regression further narrowing down to 11 independent risk factors, including underlying conditions, prematurity, fever duration, wheezing, poor appetite, leukocyte count, neutrophil-lymphocyte ratio (NLR), erythrocyte sedimentation rate (ESR), lactate dehydrogenase (LDH), interleukin-10 (IL-10), and tumor necrosis factor-α (TNF-α). By integrating these 11 factors, a predictive nomogram was established. In terms of prediction of severe H1N1 infection, excellent discriminative capacity, favorable accuracy, and satisfactory clinical usefulness of this model were internally and externally validated via ROC curve, calibration curve, and DCA, respectively. Conclusion: Our study successfully established and validated a novel nomogram model integrating underlying conditions, prematurity, fever duration, wheezing, poor appetite, leukocyte count, NLR, ESR, LDH, IL-10, and TNF-α. This nomogram can effectively predict the occurrence of serious case in pediatric H1N1 inpatients during the post-COVID-19 era, facilitating the early recognition and more efficient clinical management of such patients.

12.
Talanta ; 280: 126727, 2024 Aug 22.
Article de Anglais | MEDLINE | ID: mdl-39178511

RÉSUMÉ

In this study, Cu doped carbon dots (Cu-CDs) of uniform particle size and good water solubility was synthesized using Angelica Sinensis Radix as precursor materials through a one-step hydrothermal. The Lucigenin-(Cu-CDs) chemiluminescence sensor allows the simultaneous determination of o-toluenesulfonamide (TFA) and sulfamethoxazole (STZ) concentrations. Under optimal conditions, the sensor demonstrates the capability to detect TFA and STZ within the ranges of 50 µM-800 µM and 15 µM-120 µM, respectively. The limits of detection (LOD) for TFA and STZ are determined as 0.09 µM and 0.05 µM, respectively. While the limits of quantification (LOQ) are established at 0.3 µM and 0.17 µM, respectively. The feasibility of the method for determining TFA and STZ content in chicken samples was substantiated, demonstrating spiked recovery rates ranging from 97.5% to 102.3 % and 97.5%-99.8 %, respectively. The possible reaction mechanism was clarified based on chemiluminescence, UV-vis measurement and free radical analysis results. The newly established system is characterized by stability, convenience, and robust anti-interference capabilities, thus expanding the application of carbon dots and offering a promising strategy for the detection of TFA and STZ.

14.
Acta Pharmacol Sin ; 2024 Aug 23.
Article de Anglais | MEDLINE | ID: mdl-39179868

RÉSUMÉ

As a major contributor to neonatal death and neurological sequelae, hypoxic-ischemic encephalopathy (HIE) lacks a viable medication for treatment. Oxidative stress induced by hypoxic-ischemic brain damage (HIBD) predisposes neurons to ferroptosis due to the fact that neonates accumulate high levels of polyunsaturated fatty acids for their brain developmental needs but their antioxidant capacity is immature. Ferroptosis is a form of cell death caused by excessive accumulation of iron-dependent lipid peroxidation and is closely associated with mitochondria. Mitophagy is a type of mitochondrial quality control mechanism that degrades damaged mitochondria and maintains cellular homeostasis. In this study we employed mitophagy agonists and inhibitors to explore the mechanisms by which mitophagy exerted ferroptosis resistance in a neonatal rat HIE model. Seven-days-old neonatal rats were subjected to ligation of the right common carotid artery, followed by exposure to hypoxia for 2 h. The neonatal rats were treated with a mitophagy activator Tat-SPK2 peptide (0.5, 1 mg/kg, i.p.) 1 h before hypoxia, or in combination with mitochondrial division inhibitor-1 (Mdivi-1, 20 mg/kg, i.p.), and ferroptosis inhibitor Ferrostatin-1 (Fer-1) (2 mg/kg, i.p.) at the end of the hypoxia period. The regulation of ferroptosis by mitophagy was also investigated in primary cortical neurons or PC12 cells in vitro subjected to 4 or 6 h of OGD followed by 24 h of reperfusion. We showed that HIBD induced mitochondrial damage, ROS overproduction, intracellular iron accumulation, lipid peroxidation and ferroptosis, which were significantly reduced by the pretreatment with Tat-SPK2 peptide, and aggravated by the treatment with Mdivi-1 or BNIP3 knockdown. Ferroptosis inhibitors Fer-1 and deferoxamine B (DFO) reversed the accumulation of iron and lipid peroxides caused by Mdivi-1, hence reducing ferroptosis triggered by HI. We demonstrated that Tat-SPK2 peptide-activated BNIP3-mediated mitophagy did not alleviate neuronal ferroptosis through the GPX4-GSH pathway. BNIP3-mediated mitophagy drove the P62-KEAP1-NRF2 pathway, which conferred ferroptosis resistance by maintaining iron and redox homeostasis via the regulation of FTH1, HO-1, and DHODH/FSP1-CoQ10-NADH. This study may provide a new perspective and a therapeutic drug for the treatment of neonatal HIE.

15.
Microbiome ; 12(1): 157, 2024 Aug 24.
Article de Anglais | MEDLINE | ID: mdl-39182099

RÉSUMÉ

BACKGROUND: Diabetic cardiomyopathy (DCM) is one of leading causes of diabetes-associated mortality. The gut microbiota-derived branched-chain amino acids (BCAA) have been reported to play a central role in the onset and progression of DCM, but the potential mechanisms remain elusive. RESULTS: We found the type 1 diabetes (T1D) mice had higher circulating BCAA levels due to a reduced BCAA degradation ability of the gut microbiota. Excess BCAA decreased hepatic FGF21 production by inhibiting PPARα signaling pathway and thereby resulted in a higher expression level of cardiac LAT1 via transcription factor Zbtb7c. High cardiac LAT1 increased the levels of BCAA in the heart and then caused mitochondrial damage and myocardial apoptosis through mTOR signaling pathway, leading to cardiac fibrosis and dysfunction in T1D mice. Additionally, transplant of faecal microbiota from healthy mice alleviated cardiac dysfunction in T1D mice, but this effect was abolished by FGF21 knockdown. CONCLUSIONS: Our study sheds light on BCAA-mediated crosstalk among the gut microbiota, liver and heart to promote DCM and FGF21 serves as a key mediator. Video Abstract.


Sujet(s)
Acides aminés à chaine ramifiée , Cardiomyopathies diabétiques , Facteurs de croissance fibroblastique , Microbiome gastro-intestinal , Foie , Animaux , Facteurs de croissance fibroblastique/métabolisme , Souris , Cardiomyopathies diabétiques/métabolisme , Cardiomyopathies diabétiques/microbiologie , Foie/métabolisme , Acides aminés à chaine ramifiée/métabolisme , Transduction du signal , Diabète de type 1/microbiologie , Diabète de type 1/métabolisme , Mâle , Myocarde/métabolisme , Myocarde/anatomopathologie , Récepteur PPAR alpha/métabolisme , Souris de lignée C57BL , Diabète expérimental/métabolisme , Diabète expérimental/microbiologie
16.
Lung Cancer ; 195: 107933, 2024 Aug 22.
Article de Anglais | MEDLINE | ID: mdl-39191079

RÉSUMÉ

OBJECTIVES: Non-small cell lung cancer (NSCLC) patients with exon 20 insertion mutations (ex20ins) of the epidermal growth factor receptor (EGFR) were resistant to monotherapy of immune checkpoint inhibitor (ICI). However, recent reports have shown that the combination of ICI and chemotherapy (ICI-combined regimen) exhibited certain efficacy for NSCLC with EGFR ex20ins. The mechanisms behind this phenomenon have not been thoroughly clarified. Hence, we conducted this study tofind correlations between the tumor immune microenvironment of EGFR ex20ins and the efficacy of ICI-combined regimen. METHODS: We performed single-cell transcriptome sequencing and multiplex immunofluorescence staining (mIF) to investigate the immune microenvironment of NSCLC patients with EGFR ex20ins, L858R, and EGFR wild-type. We analyzed 15 treatment-naïve NSCLC samples utilizing single-cell RNA sequencing (scRNA-seq). Another 30 cases of EGFR L858R and 4 cases of wild-type were recruited to compare the immune microenvironment with that of EGFR ex20ins (28 cases) by mIF. RESULTS: We observed that cell components, function and interactions varied between EGFR ex20ins, L858R, and wild-type NSCLC.We discovered similar T cell and CD8+ T cell distributions among groups but found noninferior or even better T cell activation in ex20ins patients. Infiltrating CD8+ FOXP3- T cells were significantly lower in the tumor region of EGFR ex20ins compared to wild-type. T cells from the ex20ins group had a greater tendency to promote cancer cell inflammation and epithelial-mesenchymal transition (EMT) compared to wild-type group. For macrophages, there were more M2-like macrophages in ex20ins patients. M1-like macrophages in ex20ins group produced fewer antitumor cytokines than in other groups. CONCLUSIONS: The immune microenvironment of EGFR ex20ins is more suppressive than that of L858R and wild-type, suggesting that ICI monotherapy may not be sufficient for these patients. ICI-combined regimen might be a treatment option for EGFR ex20ins due to tumor-promoting inflammation and noninferior T cell functions in the immune microenvironment.

17.
Res Sq ; 2024 Aug 02.
Article de Anglais | MEDLINE | ID: mdl-39149498

RÉSUMÉ

Juvenile myelomonocytic leukemia (JMML), a clonal hematologic malignancy, originates from mutated hematopoietic stem cells (HSCs). The mechanism sustaining the persistence of mutant stem cells, leading to leukemia development, remains elusive. In this study, we conducted comprehensive examination of gene expression profiles, transcriptional factor regulons, and cell compositions/interactions throughout various stages of tumor cell development in Ptpn11 mutation-associated JMML. Our analyses revealed that leukemia-initiating Ptpn11 E76K/+ mutant stem cells exhibited de novo activation of the myeloid transcriptional program and aberrant developmental trajectories. These mutant stem cells displayed significantly elevated expression of innate immunity-associated anti-microbial peptides and pro-inflammatory proteins, particularly S100a9 and S100a8. Biological experiments confirmed that S100a9/S100a8 conferred a selective advantage to the leukemia-initiating cells through autocrine effects and facilitated immune evasion by recruiting and promoting immune suppressive myeloid-derived suppressor cells (MDSCs) in the microenvironment. Importantly, pharmacological inhibition of S100a9/S100a8 signaling effectively impeded leukemia development from Ptpn11 E76K/+ mutant stem cells. These findings collectively suggest that JMML tumor-initiating cells exploit evolutionarily conserved innate immune and inflammatory mechanisms to establish clonal dominance.

18.
World J Gastroenterol ; 30(27): 3326-3335, 2024 Jul 21.
Article de Anglais | MEDLINE | ID: mdl-39086750

RÉSUMÉ

BACKGROUND: Endoscopic rubber band ligation (ERBL) is a nonsurgical technique for the treatment of symptomatic internal hemorrhoids but is limited by recurrence and post-procedural pain. AIM: To evaluate satisfaction, long-term recurrence, and post-procedural pain in managing internal hemorrhoids using a combination of polidocanol foam sclerotherapy and ERBL. METHODS: This was a prospective, multicenter, randomized study. A total of 195 consecutive patients diagnosed with grade II-III internal hemorrhoids were enrolled from four tertiary hospitals and randomly divided into a cap-assisted endoscopic polidocanol foam sclerobanding (EFSB) or an ERBL group. All patients were followed-up for 12 months. Symptom-based severity and post-procedural pain were assessed using a hemorrhoid severity score (HSS) and a visual analog scale (VAS). Continuous variables were reported as medians and interquartile range. RESULTS: One hundred and ninety-five patients were enrolled, with 98 in the EFSB group. HSS was lower in the EFSB group than in the ERBL group at 8 weeks [4.0 (3.0-5.0) vs 5.0 (4.0-6.0), P = 0.003] and 12-month [2.0 (1.0-3.0) vs 3.0 (2.0-3.0), P < 0.001] of follow-up. The prolapse recurrence rate was lower in the EFSB group at 12 months (11.2% vs 21.6%, P = 0.038). Multiple linear regression analysis demonstrated that EFSB treatment [B = -0.915, 95% confidence interval (CI): -1.301 to -0.530, P = 0.001] and rubber band number (B = 0.843, 95%CI: 0.595-1.092, P < 0.001) were negatively and independently associated with the VAS score 24 hours post-procedure. The median VAS was lower in the EFSB group than in the ERBL [2.0 (1.0-3.0) vs 3.0 (2.0-4.0), P < 0.001]. CONCLUSION: Cap-assisted EFSB provided long-term satisfaction and effective relief from the recurrence of prolapse and pain 24 hours post-procedure.


Sujet(s)
Hémorroïdes , Polidocanol , Récidive , Solutions sclérosantes , Sclérothérapie , Humains , Polidocanol/administration et posologie , Polidocanol/usage thérapeutique , Hémorroïdes/thérapie , Hémorroïdes/diagnostic , Hémorroïdes/chirurgie , Adulte d'âge moyen , Femelle , Mâle , Études prospectives , Sclérothérapie/méthodes , Résultat thérapeutique , Ligature/méthodes , Solutions sclérosantes/administration et posologie , Adulte , Sujet âgé , Indice de gravité de la maladie , Douleur postopératoire/étiologie , Douleur postopératoire/diagnostic , Satisfaction des patients , Mesure de la douleur , Polyéthylène glycols/administration et posologie , Polyéthylène glycols/usage thérapeutique
19.
Mol Cancer ; 23(1): 162, 2024 Aug 09.
Article de Anglais | MEDLINE | ID: mdl-39123210

RÉSUMÉ

BACKGROUND: Platinum-resistant or refractory ovarian cancer is a highly lethal gynecologic disease with limited treatment options. Chiauranib is a novel small-molecule selective inhibitor, which could effectively target multiple pathways including Aurora B and CSF-1R to inhibit cell cycle process and improve anti-tumor immune function, as long as VEGF pathway for tumor extinction. METHODS: A phase II study was sequentially conducted after a phase Ib monotherapy study to evaluate the efficacy of chiauranib combined with chemotherapy. Chinese patients with recurrent ovarian cancer were enrolled. Eligible patients received chiauranib combined with a maximum of six cycles of chemotherapy: etoposide (CE group) or weekly-paclitaxel (CP group). Patients, who exhibited a complete or partial response, or stable disease following combo treatment, progressed to maintenance phase to receive chiauranib monotherapy. Primary endpoint was progression-free survival (PFS) according to RECIST v1.1. RESULTS: From November 2017 to March 2019, 25 patients were enrolled in a phase 1b study and a median PFS of 3.7 months (95% CI 1.8-NE) was achieved by chiauranib monotherapy. From July 2019 to December 2020, a total of 47 patients were enrolled in the phase II study. One CP patient did not receive the study drugs, and three patients withdrew before the first tumor assessment. Thus, 43 patients (CE group: 22 patients; CP group: 21 patients) were included in the evaluation. The median PFS was 5·4 months (95% CI 2·8-5·6) and 5·6 months (95% CI 3·4-7·0), respectively. CONCLUSIONS: This was the first study to evaluate chiauranib, a novel multi-targeted kinase inhibitor in patients with ovarian cancer. The administration of chiauranib along with etoposide or weekly-paclitaxel significantly enhanced the efficacy with manageable adverse events. This warrants further clinical studies on this novel treatment. A phase III study is promising and ongoing. TRIAL REGISTRATION: ClinicaTrials.gov identifier: NCT03901118 (phase II) and NCT03166891 (phase Ib).


Sujet(s)
Protocoles de polychimiothérapie antinéoplasique , Résistance aux médicaments antinéoplasiques , Tumeurs de l'ovaire , Humains , Femelle , Adulte d'âge moyen , Tumeurs de l'ovaire/traitement médicamenteux , Tumeurs de l'ovaire/anatomopathologie , Protocoles de polychimiothérapie antinéoplasique/usage thérapeutique , Protocoles de polychimiothérapie antinéoplasique/effets indésirables , Résistance aux médicaments antinéoplasiques/effets des médicaments et des substances chimiques , Sujet âgé , Adulte , Résultat thérapeutique , Paclitaxel/usage thérapeutique , Paclitaxel/administration et posologie , Paclitaxel/effets indésirables
20.
3 Biotech ; 14(9): 202, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39157422

RÉSUMÉ

Synthetic dyes pose a significant environmental threat due to their complex structures and resistance to microbial degradation. S. commune 15R-5-F01 exhibited over 96% degradation efficiency of Methyl Red in a medium with 100 mg L-1 Methyl Red within 3 h. The fungus demonstrated adaptability to various environmental conditions, including different pH levels, temperatures, oxygen concentrations, salinity, and heavy metals. S. commune 15R-5-F01 is capable of achieving repeated cycles of Methyl Red reduction with sustained degradation duration minimum of 6 cycles. It showed a maximum Methyl Red biodegradation capacity of at least 558 mg g-1 dry mycelia and a bioadsorption capacity of 57 mg g-1. Gas chromatography-mass spectrometry analysis confirmed the azo reduction of Methyl Red into N,N-dimethyl-p-phenylenediamine and 2-aminobenzoic acid. Enzymatic activity assays indicated the involvement of lignin peroxidases, laccases, and manganese peroxidase in the biodegradation process. Phytotoxicity tests on Triticum eastivum, Oryza sativa, and Vigna umbellata seeds revealed reduced toxicity of the degradation products compared to Methyl Red. This study identifies S. commune 15R-5-F01 as a viable candidate for the sustainable degradation of synthetic dyes in industrial wastewater.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE