Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 6 de 6
Filtrer
1.
Protein & Cell ; (12): 17-27, 2023.
Article de Anglais | WPRIM (Pacifique Occidental) | ID: wpr-971604

RÉSUMÉ

The global COVID-19 coronavirus pandemic has infected over 109 million people, leading to over 2 million deaths up to date and still lacking of effective drugs for patient treatment. Here, we screened about 1.8 million small molecules against the main protease (Mpro) and papain like protease (PLpro), two major proteases in severe acute respiratory syndrome-coronavirus 2 genome, and identified 1851Mpro inhibitors and 205 PLpro inhibitors with low nmol/l activity of the best hits. Among these inhibitors, eight small molecules showed dual inhibition effects on both Mpro and PLpro, exhibiting potential as better candidates for COVID-19 treatment. The best inhibitors of each protease were tested in antiviral assay, with over 40% of Mpro inhibitors and over 20% of PLpro inhibitors showing high potency in viral inhibition with low cytotoxicity. The X-ray crystal structure of SARS-CoV-2 Mpro in complex with its potent inhibitor 4a was determined at 1.8 Å resolution. Together with docking assays, our results provide a comprehensive resource for future research on anti-SARS-CoV-2 drug development.


Sujet(s)
Humains , Antiviraux/composition chimique , COVID-19 , Traitements médicamenteux de la COVID-19 , Tests de criblage à haut débit , Simulation de docking moléculaire , Inhibiteurs de protéases/composition chimique , SARS-CoV-2/enzymologie , Protéines virales non structurales
2.
Preprint de Anglais | bioRxiv | ID: ppbiorxiv-434764

RÉSUMÉ

The global emergence of SARS-CoV-2 has triggered numerous efforts to develop therapeutic options for COVID-19 pandemic. The main protease of SARS-CoV-2 (Mpro), which is a critical enzyme for transcription and replication of SARS-CoV-2, is a key target for therapeutic development against COVID-19. An organoselenium drug called ebselen has recently been demonstrated to have strong inhibition against Mpro and antiviral activity but its molecular mode of action is unknown preventing further development. We have examined the binding modes of ebselen and its derivative in Mpro via high resolution co-crystallography and investigated their chemical reactivity via mass spectrometry. Stronger Mpro inhibition than ebselen and potent ability to rescue infected cells were observed for a number of ebselen derivatives. A free selenium atom bound with cysteine 145 of Mpro catalytic dyad has been revealed by crystallographic studies of Mpro with ebselen and MR6-31-2 suggesting hydrolysis of the enzyme bound organoselenium covalent adduct, formation of a phenolic by-product is confirmed by mass spectrometry. The target engagement of these compounds with an unprecedented mechanism of SARS-CoV-2 Mpro inhibition suggests wider therapeutic applications of organo-selenium compounds in SARS-CoV-2 and other zoonotic beta-corona viruses.

3.
Protein & Cell ; (12): 877-888, 2021.
Article de Anglais | WPRIM (Pacifique Occidental) | ID: wpr-922482

RÉSUMÉ

A new coronavirus (SARS-CoV-2) has been identified as the etiologic agent for the COVID-19 outbreak. Currently, effective treatment options remain very limited for this disease; therefore, there is an urgent need to identify new anti-COVID-19 agents. In this study, we screened over 6,000 compounds that included approved drugs, drug candidates in clinical trials, and pharmacologically active compounds to identify leads that target the SARS-CoV-2 papain-like protease (PLpro). Together with main protease (M


Sujet(s)
Humains , Antiviraux/usage thérapeutique , Sites de fixation , COVID-19/virologie , Protéases de type papaïne des coronavirus/métabolisme , Cristallographie aux rayons X , Évaluation préclinique de médicament , Repositionnement des médicaments , Tests de criblage à haut débit/méthodes , Imidazoles/usage thérapeutique , Concentration inhibitrice 50 , Simulation de dynamique moléculaire , Mutagenèse dirigée , Naphtoquinones/usage thérapeutique , Inhibiteurs de protéases/usage thérapeutique , Structure tertiaire des protéines , Protéines recombinantes/isolement et purification , SARS-CoV-2/isolement et purification
4.
Preprint de Anglais | bioRxiv | ID: ppbiorxiv-033233

RÉSUMÉ

The antineoplastic drug Carmofur was shown to inhibit SARS-CoV-2 main protease (Mpro). Here the X-ray crystal structure of Mpro in complex with Carmofur reveals that the carbonyl reactive group of Carmofur is covalently bound to catalytic Cys145, whereas its fatty acid tail occupies the hydrophobic S2 subsite. Carmofur inhibits viral replication in cells (EC50 = 24.30 M) and it is a promising lead compound to develop new antiviral treatment for COVID-19.

5.
Preprint de Anglais | bioRxiv | ID: ppbiorxiv-996348

RÉSUMÉ

SARS-CoV-2 is the etiological agent responsible for the COVID-19 outbreak in Wuhan. Specific antiviral drug are urgently needed to treat COVID-19 infections. The main protease (Mpro) of SARS-CoV-2 is a key CoV enzyme that plays a pivotal role in mediating viral replication and transcription, which makes it an attractive drug target. In an effort to rapidly discover lead compounds targeting Mpro, two compounds (11a and 11b) were designed and synthesized, both of which exhibited excellent inhibitory activity with an IC50 value of 0.05 M and 0.04 M respectively. Significantly, both compounds exhibited potent anti-SARS-CoV-2 infection activity in a cell-based assay with an EC50 value of 0.42 M and 0.33 M, respectively. The X-ray crystal structures of SARS-CoV-2 Mpro in complex with 11a and 11b were determined at 1.5 [A] resolution, respectively. The crystal structures showed that 11a and 11b are covalent inhibitors, the aldehyde groups of which are bound covalently to Cys145 of Mpro. Both compounds showed good PK properties in vivo, and 11a also exhibited low toxicity which is promising drug leads with clinical potential that merits further studies.

6.
Preprint de Anglais | bioRxiv | ID: ppbiorxiv-964882

RÉSUMÉ

A new coronavirus (CoV) identified as COVID-19 virus is the etiological agent responsible for the 2019-2020 viral pneumonia outbreak that commenced in Wuhan1-4. Currently there is no targeted therapeutics and effective treatment options remain very limited. In order to rapidly discover lead compounds for clinical use, we initiated a program of combined structure-assisted drug design, virtual drug screening and high-throughput screening to identify new drug leads that target the COVID-19 virus main protease (Mpro). Mpro is a key CoV enzyme, which plays a pivotal role in mediating viral replication and transcription, making it an attractive drug target for this virus5,6. Here, we identified a mechanism-based inhibitor, N3, by computer-aided drug design and subsequently determined the crystal structure of COVID-19 virus Mpro in complex with this compound. Next, through a combination of structure-based virtual and high-throughput screening, we assayed over 10,000 compounds including approved drugs, drug candidates in clinical trials, and other pharmacologically active compounds as inhibitors of Mpro. Six of these inhibit Mpro with IC50 values ranging from 0.67 to 21.4 M. Ebselen also exhibited promising antiviral activity in cell-based assays. Our results demonstrate the efficacy of this screening strategy, which can lead to the rapid discovery of drug leads with clinical potential in response to new infectious diseases where no specific drugs or vaccines are available.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE