Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 2.474
Filtrer
1.
World J Clin Cases ; 12(19): 3866-3872, 2024 Jul 06.
Article de Anglais | MEDLINE | ID: mdl-38994274

RÉSUMÉ

BACKGROUND: The incidence of Barrett's esophagus (BE) in China is lower compared to the Western populations. Hence, studies conducted in the Chinese population has been limited. The current treatment options available for BE treatment includes argon plasma coagulation (APC), radiofrequency ablation and cryoablation, all with varying degrees of success. AIM: To determine the efficacy and safety of HybridAPC in the treatment of BE. METHODS: The study cohort consisted of patients with BE who underwent HybridAPC ablation treatment. These procedures were performed by seven endoscopists from different tertiary hospitals. The duration of the procedure, curative rate, complications and recurrent rate by 1-year follow-up were recorded. RESULTS: Eighty individuals were enrolled for treatment from July 2017 to June 2020, comprising of 39 males and 41 females with a median age of 54 years (range, 30 to 83 years). The technical success rate of HybridAPC was 100% and the overall curative rate was 98.15%. No severe complications occurred during the operation. BE cases were classified as short-segment BE and long-segment BE. Patients with short-segment BE were all considered cured without complications. Thirty-six patients completed the one-year follow-up without recurrence. Twenty-four percent had mild dysplasia which were all resolved with one post-procedural treatment. The mean duration of the procedure was 10.94 ± 6.52 min. CONCLUSION: Treatment of BE with HybridAPC was found to be a simple and quick procedure that is safe and effective during the short-term follow-up, especially in cases of short-segment BE. This technique could be considered as a feasible alternative ablation therapy for BE.

2.
Nutr J ; 23(1): 75, 2024 Jul 15.
Article de Anglais | MEDLINE | ID: mdl-39004744

RÉSUMÉ

OBJECTIVE: An increasing number of studies shown that inadequate energy intake causes an increase in adverse incidents in chronic kidney disease (CKD) patients on low-protein diets (LPD). The study aimed to investigate the relationship between energy intake and cardiovascular mortality in CKD patients on a LPD. METHODS: This was a cross-sectional study, a total of 4264 CKD patients were enrolled from the NHANES database between 2009 and 2018. Restricted cubic spline plots and Cox regression analysis were used to analyze the association between energy intake and cardiovascular mortality in CKD patients on a LPD. Additionally, a nomogram was constructed to estimate cardiovascular survival in CKD patients on a LPD. RESULTS: Among CKD patients on a LPD in the United States, 90.05% had an energy intake of less than 25 kcal/kg/day, compared to 36.94% in CKD patients on a non-LPD. Energy intake and cardiovascular mortality showed a linear relationship in CKD patients on a LPD, while a 'U-shaped' relationship was observed in CKD patients on a non-LPD. Multifactorial Cox regression models revealed that for Per-standard deviation (Per-SD) decrement in energy intake, the risk of cardiovascular mortality increased by 41% (HR: 1.41, 95% CI: 1.12, 1.77; P = 0.004) in CKD patients on a LPD. The concordance index of the nomogram was 0.79 (95% CI, 0.75, 0.83). CONCLUSION: CKD patients, especially those on a LPD, have significantly inadequate energy intake. Lower energy intake is associated with higher cardiovascular mortality in CKD patients on a LPD.


Sujet(s)
Maladies cardiovasculaires , Régime pauvre en protéines , Ration calorique , Enquêtes nutritionnelles , Insuffisance rénale chronique , Humains , Mâle , Insuffisance rénale chronique/mortalité , Insuffisance rénale chronique/complications , Femelle , Maladies cardiovasculaires/mortalité , Adulte d'âge moyen , Études transversales , Enquêtes nutritionnelles/méthodes , Enquêtes nutritionnelles/statistiques et données numériques , Régime pauvre en protéines/méthodes , Sujet âgé , États-Unis/épidémiologie , Adulte , Facteurs de risque , Modèles des risques proportionnels
3.
bioRxiv ; 2024 Jul 02.
Article de Anglais | MEDLINE | ID: mdl-39005268

RÉSUMÉ

Pancreatic ductal adenocarcinoma-(PDAC) needs innovative approaches due to its 12% 5-year survival despite current therapies. We show marked sensitivity of pancreatic cancer cells to the combination of a novel eIF4A inhibitor, des-methyl pateamine A (DMPatA), and a histone deacetylase inhibitor, romidepsin, inducing epigenetic reprogramming as an innovative therapeutic strategy. Exploring the mechanistic activity of this combination showed that with a short duration of romidepsin at low doses, robust acetylation persisted up to 48h with the combination, while histone acetylation rapidly faded with monotherapy. This represents an unexpected mechanism of action against PDAC cells that triggers transcriptional overload, metabolic stress, and augmented DNA damage. Structurally different class I HDAC inhibitors exhibit the same hyperacetylation patterns when co-administered with DMPatA, suggesting a class effect. We show efficacy of this combination regimen against tumor growth in a MIA PaCa-2 xenograft model of PDAC with persistent hyperacetylation confirmed in tumor samples. STATEMENT OF SIGNIFICANCE: Pancreatic ductal adenocarcinoma, a significant clinical challenge, could benefit from the latent potential of epigenetic therapies like HDAC inhibitors-(HDIs), typically limited to hematological malignancies. Our study shows that a synergistic low dose combination of HDIs with an eIF4A-inhibitor in pancreatic cancer models results in marked pre-clinical efficacy, offering a promising new treatment strategy.

5.
Front Oncol ; 14: 1384931, 2024.
Article de Anglais | MEDLINE | ID: mdl-38947887

RÉSUMÉ

Objective: This study aims to construct a predictive model based on machine learning algorithms to assess the risk of prolonged hospital stays post-surgery for colorectal cancer patients and to analyze preoperative and postoperative factors associated with extended hospitalization. Methods: We prospectively collected clinical data from 83 colorectal cancer patients. The study included 40 variables (comprising 39 predictor variables and 1 target variable). Important variables were identified through variable selection via the Lasso regression algorithm, and predictive models were constructed using ten machine learning models, including Logistic Regression, Decision Tree, Random Forest, Support Vector Machine, Light Gradient Boosting Machine, KNN, and Extreme Gradient Boosting, Categorical Boosting, Artificial Neural Network and Deep Forest. The model performance was evaluated using Bootstrap ROC curves and calibration curves, with the optimal model selected and further interpreted using the SHAP explainability algorithm. Results: Ten significantly correlated important variables were identified through Lasso regression, validated by 1000 Bootstrap resamplings, and represented through Bootstrap ROC curves. The Logistic Regression model achieved the highest AUC (AUC=0.99, 95% CI=0.97-0.99). The explainable machine learning algorithm revealed that the distance walked on the third day post-surgery was the most important variable for the LR model. Conclusion: This study successfully constructed a model predicting postoperative hospital stay duration using patients' clinical data. This model promises to provide healthcare professionals with a more precise prediction tool in clinical practice, offering a basis for personalized nursing interventions, thereby improving patient prognosis and quality of life and enhancing the efficiency of medical resource utilization.

6.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(3): 552-558, 2024 May 20.
Article de Chinois | MEDLINE | ID: mdl-38948281

RÉSUMÉ

Objective: This study aims to systematically evaluate the protective role of quercetin (QCT), a naturally occurring flavonoid, against oxidative damage in human endometrial stromal cells (HESCs) induced by hydrogen peroxide (H2O2). Oxidative stress, such as that induced by H2O2, is known to contribute significantly to cellular damage and has been implicated in various reproductive health issues. The study is focused on investigating how QCT interacts with specific molecular pathways to mitigate this damage. Special attention was given to the p38 MAPK/NOX4 signaling pathway, which is crucial to the regulation of oxidative stress responses in cellular systems. By elucidating these mechanisms, the study seeks to confirm the potential of QCT not only as a protective agent against oxidative stress but also as a therapeutic agent that could be integrated in treatments of conditions characterized by heightened oxidative stress in endometrial cells. Methods: I n vitro cultures of HESCs were treated with QCT at different concentrations (0, 10, 20, and 40 µmol/L) for 24 h to verify the non-toxic effects of QCT on normal endometrial cells. Subsequently, 250 µmol/L H2O2 was used to incubate the cells for 12 h to establish an H2O2-induced HESCs injury model. HESCs were pretreated with QCT for 24 h, which was followed by stimulation with H2O2. Then, CCK-8 assay was performed to examine the cell viability and to screen for the effective intervention concentration. HESCs were divided into 3 groups, the control group, the H2O2 model group, and the H2O2+QCT group. Intracellular levels of reactive oxygen species (ROS) were precisely quantified using the DCFH-DA fluorescence assay, a method known for its accuracy in detecting and quantifying oxidative changes within the cell. The mitochondrial membrane potential was determined by JC-1 staining. Annexin Ⅴ/PI double staining and flow cytometry were performed to determine the effect of QCT on H2O2-induced apoptosis of HESCs. Furthermore, to delve deeper into the cellular mechanisms underlying the observed effects, Western blot analysis was conducted to measure the expression levels of the critical proteins involved in oxidative stress response, including NADPH oxidase 4 (NOX4), p38 mitogen-activated protein kinase (p38 MAPK), and phosphorylated p38 MAPK (p-p38 MAPK). This analysis helps increase understanding of the specific intracellular signaling pathways affected by QCT treatment, giving special attention to its potential for modulation of the p38 MAPK/NOX4 pathway, which plays a significant role in cellular defense mechanisms against oxidative stress. Results: In this study, we started off by assessing the toxicity of QCT on normal endometrial cells. Our findings revealed that QCT at various concentrations (0, 10, 20, and 40 µmol/L) did not exhibit any cytotoxic effects, which laid the foundation for further investigation into its protective roles. In the H2O2-induced HESCs injury model, a significant reduction in cell viability was observed, which was linked to the generation of ROS and the resultant oxidative damage. However, pretreatment with QCT (10 µmol/L and 20 µmol/L) significantly enhanced cell viability after 24 h (P<0.05), with the 20 µmol/L concentration showing the most substantial effect. This suggests that QCT can effectively reverse the cellular damage caused by H2O2. Furthermore, the apoptosis assays demonstrated a significant increase in the apoptosis rates in the H2O2 model group compared to those in the control group (P<0.01). However, co-treatment with QCT significantly reversed this trend (P<0.05), indicating QCT's potential protective role in mitigating cell apoptosis. ROS assays showed that, compared to that in the control group, the average fluorescence intensity of ROS in the H2O2 model group significantly increased (P<0.01). QCT treatment significantly reduced the ROS fluorescence intensity in the H2O2+QCT group compared to the that in the H2O2 model group, suggesting an effective alleviation of oxidative damage (P<0.05). JC-1 staining for mitochondrial membrane potential changes revealed that compared to that in the control, the proportion of cells with decreased mitochondrial membrane potential significantly increased in the H2O2 model group (P<0.01). However, this proportion was significantly reduced in the QCT-treated group compared to that of the H2O2 model group (P<0.05). Finally, Western blot analysis indicated that the expression levels of NOX4 and p-p38 MAPK proteins were elevated in the H2O2 model group compared to those of the control group (P<0.05). Following QCT treatment, these protein levels significantly decreased compared to those of the H2O2 model group (P<0.05). These results suggest that QCT may exert its protective effects against oxidative stress by modulating the p38 MAPK/NOX4 signaling pathway. Conclusion: QCT has demonstrated significant protective effects against H2O2-induced oxidative damage in HESCs. This protection is primarily achieved through the effective reduction of ROS accumulation and the inhibition of critical signaling pathways involved in the oxidative stress response, notably the p38 MAPK/NOX4 pathway. The results of this study reveal that QCT's ability to modulate these pathways plays a key role in alleviating cellular damage associated with oxidative stress conditions. This indicates not only its potential as a protective agent against cellular oxidative stress, but also highlights its potential for therapeutic applications in treating conditions characterized by increased oxidative stress in the endometrium, thereby offering the prospect of enhancing reproductive health. Future studies should explore the long-term effects of QCT and its clinical efficacy in vivo, thereby providing a clear path toward its integration into therapeutic protocols.


Sujet(s)
Endomètre , Peroxyde d'hydrogène , NADPH Oxidase 4 , Stress oxydatif , Quercétine , Transduction du signal , Cellules stromales , p38 Mitogen-Activated Protein Kinases , Humains , Peroxyde d'hydrogène/toxicité , Stress oxydatif/effets des médicaments et des substances chimiques , Femelle , NADPH Oxidase 4/métabolisme , Quercétine/pharmacologie , Endomètre/cytologie , Endomètre/effets des médicaments et des substances chimiques , Endomètre/métabolisme , p38 Mitogen-Activated Protein Kinases/métabolisme , Cellules stromales/effets des médicaments et des substances chimiques , Cellules stromales/métabolisme , Transduction du signal/effets des médicaments et des substances chimiques , Espèces réactives de l'oxygène/métabolisme , Apoptose/effets des médicaments et des substances chimiques , Cellules cultivées
7.
Chem Commun (Camb) ; 2024 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-38946429

RÉSUMÉ

By employing an aptamer as the bridge and combining catalytic hairpin assembly with the Au aggregation amplification effect, a lateral flow assay (LFA) is designed for simultaneous detection of liver cancer-associated miRNA and exosomes. The LFA can differentiate between liver cancer patients and healthy individuals with simple operation and high accuracy.

8.
Muscle Nerve ; 2024 Jul 04.
Article de Anglais | MEDLINE | ID: mdl-38963007

RÉSUMÉ

INTRODUCTION/AIMS: Conventional F wave analysis involves a relatively uniform physiological environment induced by supramaximal stimulations. The F wave characteristics in a dynamic physiological condition, however, are rarely investigated. This study aimed to improve understanding of F wave properties in the more dynamic process by introducing a novel method to analyze F waves based on the compound muscle action potential (CMAP) scan technique. METHODS: Twenty four healthy subjects participated in the study. The CMAP scan was applied to record muscle responses in the abductor pollicis brevis (APB) and abductor digiti minimi (ADM) muscles, respectively. F wave characteristics including mean F wave amplitude and latency (F-M latency), persistence and activating threshold were quantified. RESULTS: An average of 200 F waves per muscle were obtained from the CMAP scan recording. Weak to moderate correlations between F wave amplitude and stimulating intensity were observed in most of the APB (19 muscles; r = 0.33 ± 0.14, all p < .05) and ADM (23 muscles, r = 0.46 ± 0.16, all p < .05) muscles. Significantly longer mean F latency and lower activating F-threshold were found in the ADM muscles (F-M latency: APB: 25.43 ± 2.39 ms, ADM: 26.15 ± 2.32 ms, p < .05; F-threshold: APB: 7.68 ± 8.96% CMAP, ADM: 2.35 ± 2.42% CMAP, p < .05). DISCUSSION: This study introduces new features of F waves using the CMAP scan technique and identifies differences of F wave characteristics between the hand muscles. The CMAP scan based F waves analysis can be combined with the motor unit number estimation to assess functional alterations in motor neurons in neurological disorders.

9.
Sci Total Environ ; 946: 174246, 2024 Jun 30.
Article de Anglais | MEDLINE | ID: mdl-38955266

RÉSUMÉ

The ionizing radiation (IR) represents a formidable challenge as an environmental factor to mitochondria, leading to disrupt cellular energy metabolism and posing health risks. Although the deleterious impacts of IR on mitochondrial function are recognized, the specific molecular targets remain incompletely elucidated. In this study, HeLa cells subjected to γ-rays exhibited concomitant oxidative stress, mitochondrial structural alterations, and diminished ATP production capacity. The γ-rays induced a dose-dependent induction of mitochondrial fission, simultaneously manifested by an elevated S616/S637 phosphorylation ratio of the dynamin-related protein 1 (DRP1) and a reduction in the expression of the mitochondrial fusion protein mitofusin 2 (MFN2). Knockdown of DRP1 effectively mitigated γ-rays-induced mitochondrial network damage, implying that DRP1 phosphorylation may act as an effector of radiation-induced mitochondrial damage. The mitochondrial outer membrane protein voltage-dependent anion channel 1 (VDAC1) was identified as a crucial player in IR-induced mitochondrial damage. The VDAC1 inhibitor 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), counteracts the excessive mitochondrial fission induced by γ-rays, consequently rebalancing the glycolytic and oxidative phosphorylation equilibrium. This metabolic shift was uncovered to enhance glycolytic capacity, thus fortifying cellular resilience and elevating the radiosensitivity of cancer cells. These findings elucidate the intricate regulatory mechanisms governing mitochondrial morphology under radiation response. It is anticipated that the development of targeted drugs directed against VDAC1 may hold promise in augmenting the sensitivity of tumor cells to radiotherapy and chemotherapy.

10.
Plants (Basel) ; 13(13)2024 Jul 07.
Article de Anglais | MEDLINE | ID: mdl-38999718

RÉSUMÉ

Heat shock proteins (HSPs) are molecular chaperones that play essential roles in plant development and in response to various environmental stresses. Understanding R. delavayi HSP genes is of great importance since R. delavayi is severely affected by heat stress. In the present study, a total of 76 RdHSP genes were identified in the R. delavayi genome, which were divided into five subfamilies based on molecular weight and domain composition. Analyses of the chromosome distribution, gene structure, and conserved motif of the RdHSP family genes were conducted using bioinformatics analysis methods. Gene duplication analysis showed that 15 and 8 RdHSP genes were obtained and retained from the WGD/segmental duplication and tandem duplication, respectively. Cis-element analysis revealed the importance of RdHSP genes in plant adaptations to the environment. Moreover, the expression patterns of RdHSP family genes were investigated in R. delavayi treated with high temperature based on our RNA-seq data, which were further verified by qRT-PCR. Further analysis revealed that nine candidate genes, including six RdHSP20 subfamily genes (RdHSP20.4, RdHSP20.8, RdHSP20.6, RdHSP20.3, RdHSP20.10, and RdHSP20.15) and three RdHSP70 subfamily genes (RdHSP70.15, RdHSP70.21, and RdHSP70.16), might be involved in enhancing the heat stress tolerance. The subcellular localization of two candidate RdHSP genes (RdHSP20.8 and RdHSP20.6) showed that two candidate RdHSPs were expressed and function in the chloroplast and nucleus, respectively. These results provide a basis for the functional characterization of HSP genes and investigations on the molecular mechanisms of heat stress response in R. delavayi.

11.
Gene ; 927: 148758, 2024 Jul 06.
Article de Anglais | MEDLINE | ID: mdl-38977109

RÉSUMÉ

The gut microbiota is a treasure trove of carbohydrate-active enzymes (CAZymes). To explore novel and efficient CAZymes, we analyzed the 4,142 metagenome-assembled genomes (MAGs) of the horse gut microbiota and found the MAG117.bin13 genome (Bacteroides fragilis) contains the highest number of polysaccharide utilisation loci sites (PULs), indicating its high capability for carbohydrate degradation. Bioinformatics analysis indicate that the PULs region of the MAG117.bin13 genome encodes many hypothetical proteins, which are important sources for exploring novel CAZymes. Interestingly, we discovered a hypothetical protein (595 amino acids). This protein exhibits potential CAZymes activity and has a lower similarity to CAZymes, we named it BfLac2275. We purified the protein using prokaryotic expression technology and studied its enzymatic function. The hydrolysis experiment of the polysaccharide substrate showed that the BfLac2275 protein has the ability to degrade α-lactose (156.94 U/mg), maltose (92.59 U/mg), raffinose (86.81 U/mg), and hyaluronic acid (5.71 U/mg). The enzyme activity is optimal at pH 5.0 and 30 ℃, indicating that the hypothetical protein BfLac2275 is a novel and multifunctional CAZymes in the glycoside hydrolases (GHs). These properties indicate that BfLac2275 has broad application prospects in many fields such as plant polysaccharide decomposition, food industry, animal feed additives and enzyme preparations. This study not only serves as a reference for exploring novel CAZymes encoded by gut microbiota but also provides an example for further studying the functional annotation of hypothetical genes in metagenomic assembly genomes.

12.
Open Med (Wars) ; 19(1): 20240995, 2024.
Article de Anglais | MEDLINE | ID: mdl-38978960

RÉSUMÉ

Osteosarcoma is a highly aggressive bone tumor primarily affecting children and adolescents. Despite advancements in treatment modalities, the prognosis for osteosarcoma patients remains poor, emphasizing the need for a deeper understanding of its underlying mechanisms. In recent years, the concept of cancer stem cells (CSCs) has emerged as a crucial factor in tumor initiation, progression, and therapy resistance. These specialized subpopulations of cells possess self-renewal capacity, tumorigenic potential, and contribute to tumor heterogeneity. Sox9, a transcription factor known for its critical role in embryonic development and tissue homeostasis, has been implicated in various malignancies, including osteosarcoma. This review aims to summarize the current knowledge regarding the role of Sox9 in CSCs in osteosarcoma and its potential implications as a prognosis and therapeutic target.

14.
Plant Dis ; 2024 Jul 09.
Article de Anglais | MEDLINE | ID: mdl-38982671

RÉSUMÉ

Alternaria species are fungal pathogens that can infect maize, causing leaf blight disease and significant economic losses. This study aimed to determine the baseline sensitivity to prochloraz of A. alternata isolates obtained from diseased maize leaves collected from Heilongjiang province by assessing the half-maximal effective concentration (EC50) values. The EC50 values of prochloraz ranged from 0.0550 µg/mL to 2.3258 µg/mL, with an average of 0.9995 ± 0.5192 µg/mL. At EC50 (1.2495 µg/mL) and 2EC50 (2.4990 µg/mL), prochloraz increased the number of mycelial offshoots, disrupted the cell membrane integrity of conidia and mycelia, and resulted in a reduced ergosterol content in the mycelia. Prochloraz significantly affected the mycelial cell membrane permeability and increased the malondialdehyde (MDA) content and superoxide dismutase (SOD) activity. No cross-resistance was detected between prochloraz and other fungicides. These data demonstrate that prochloraz is a promising fungicide for managing maize leaf blight caused by A. alternata and provide novel insights into understanding the mechanism of prochloraz toxicity against A. alternata isolates.

15.
Transl Cancer Res ; 13(6): 3181, 2024 Jun 30.
Article de Anglais | MEDLINE | ID: mdl-38988933

RÉSUMÉ

[This retracts the article DOI: 10.21037/tcr-22-346.].

16.
Front Immunol ; 15: 1384111, 2024.
Article de Anglais | MEDLINE | ID: mdl-38947327

RÉSUMÉ

Epithelioid hemangioendothelioma is a rare vascular malignancy, and currently, there is no standard treatment regimen for this disease and existing treatment options have limited efficacy. In this case report, we present a patient with lung and lymph node metastases from prostate epithelioid hemangioendothelioma who achieved a significant partial response. This was accomplished through alternating nivolumab therapy with ipilimumab and liposomal doxorubicin, resulting in a progression-free-survival more than 6 months to date. The treatment was well-tolerated throughout. Our report suggests that dual immunotherapy alternating with anti-PD-1antibody plus doxorubicin may be a potential treatment modality for epithelioid hemangioendothelioma. However, larger sample studies are necessary to ascertain the effectiveness of this treatment strategy and it is essential to continue monitoring this patient to sustain progression-free survival and overall survival.


Sujet(s)
Protocoles de polychimiothérapie antinéoplasique , Doxorubicine , Hémangioendothéliome épithélioïde , Nivolumab , Récepteur-1 de mort cellulaire programmée , Tumeurs de la prostate , Humains , Mâle , Doxorubicine/administration et posologie , Doxorubicine/usage thérapeutique , Doxorubicine/analogues et dérivés , Hémangioendothéliome épithélioïde/traitement médicamenteux , Hémangioendothéliome épithélioïde/thérapie , Nivolumab/administration et posologie , Nivolumab/usage thérapeutique , Tumeurs de la prostate/traitement médicamenteux , Tumeurs de la prostate/thérapie , Tumeurs de la prostate/anatomopathologie , Récepteur-1 de mort cellulaire programmée/antagonistes et inhibiteurs , Protocoles de polychimiothérapie antinéoplasique/usage thérapeutique , Immunothérapie/méthodes , Inhibiteurs de points de contrôle immunitaires/usage thérapeutique , Inhibiteurs de points de contrôle immunitaires/administration et posologie , Ipilimumab/administration et posologie , Ipilimumab/usage thérapeutique , Résultat thérapeutique , Polyéthylène glycols/administration et posologie , Adulte d'âge moyen
17.
Heliyon ; 10(11): e32115, 2024 Jun 15.
Article de Anglais | MEDLINE | ID: mdl-38947468

RÉSUMÉ

Background and aims: Through a nested cohort study, we evaluated the diagnostic performance of breath-omics in differentiating between benign and malignant breast lesions, and assessed the diagnostic performance of a multi-omics approach that combines breath-omics, ultrasound radiomics, and clinic-omics in distinguishing between benign and malignant breast lesions. Materials and methods: We recruited 1,723 consecutive patients who underwent an automated breast volume scanner (ABVS) examination. Breath samples were collected and analyzed by high-pressure photon ionization time-of-flight mass spectrometry (HPPI-TOF-MS) to obtain breath-omics features. 238 of 1,723 enrolled participants have received pathological confirmation of breast nodules finally. The breast lesions of the 238 participants were contoured manually based on ABVS images for ultrasound radiomics feature calculation. Then, single- and multi-omics models were constructed and evaluated for breast nodules diagnosis via five-fold cross-validation. Results: The area under the curve (AUC) of the breath-omics model was 0.855. In comparison, the multi-omics model demonstrated superior diagnostic performance for breast cancer, with sensitivity, specificity, and AUC of 84.1 %, 89.9 %, and 0.946, respectively. The multi-omics performance was comparable to that of the Breast Imaging Reporting and Data System (BI-RADS) classification via senior ultrasound physician evaluation. Conclusion: The multi-omics approach combining metabolites in exhaled breath, ultrasound imaging, and basic clinical information exhibits superior diagnostic performance and promises to be a non-invasive and reliable tool for breast cancer diagnosis.

18.
MedComm (2020) ; 5(7): e613, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38898995

RÉSUMÉ

The DNA-dependent protein kinase (DNA-PK), catalytic subunit, also known as DNA-PKcs, is complexed with the heterodimer Ku70/Ku80 to form DNA-PK holoenzyme, which is well recognized as initiator in the nonhomologous end joining (NHEJ) repair after double strand break (DSB). During NHEJ, DNA-PKcs is essential for both DNA end processing and end joining. Besides its classical function in DSB repair, DNA-PKcs also shows multifaceted functions in various biological activities such as class switch recombination (CSR) and variable (V) diversity (D) joining (J) recombination in B/T lymphocytes development, innate immunity through cGAS-STING pathway, transcription, alternative splicing, and so on, which are dependent on its function in NHEJ or not. Moreover, DNA-PKcs deficiency has been proven to be related with human diseases such as neurological pathogenesis, cancer, immunological disorder, and so on through different mechanisms. Therefore, it is imperative to summarize the latest findings about DNA-PKcs and diseases for better targeting DNA-PKcs, which have shown efficacy in cancer treatment in preclinical models. Here, we discuss the multifaceted roles of DNA-PKcs in human diseases, meanwhile, we discuss the progresses of DNA-PKcs inhibitors and their potential in clinical trials. The most updated review about DNA-PKcs will hopefully provide insights and ideas to understand DNA-PKcs associated diseases.

19.
Reprod Sci ; 2024 Jun 21.
Article de Anglais | MEDLINE | ID: mdl-38907127

RÉSUMÉ

PURPOSE: To describe the clinical and imaging characteristics of Herlyn-Werner-Wunderlich syndrome (HWWS). METHODS: This study presented an observational case series involving consecutive patients diagnosed with HWWS, whose medical records were retrospectively reviewed. From June 2012 to December 2022, there were a total of 85 patients with HWWS enrolled in our study. We obtained the medical history, including demographic characteristics, clinical presentation, treatment, complications, and radiologic examinations performed. Patients > 18 years of age (n = 58) were recontacted. RESULT: In our analysis, 27 patients were categorised as having complete obstruction, and 58 were categorised as having incomplete obstruction. The mean age at the onset of symptoms and diagnosis of complete obstruction was significantly younger than incomplete obstruction (P < 0.05). For complete obstruction, the median time between menarche and the onset of symptoms was 2.1 years, while for incomplete obstruction, it was 5.3 years. There was a significantly lower incidence of intermittent mucopurulent discharge, irregular vaginal haemorrhage, and occasional examination findings of complete obstruction than incomplete obstruction (P < 0.05). Complete obstruction was significantly associated with dysmenorrhea and pelvic endometriosis compared with incomplete obstruction (P < 0.05). CONCLUSIONS: There are distinct clinical differences between patients with complete obstruction of the hemivagina and those with incomplete obstruction. HWWS can manifest as various combinations of uterine anomalies, communications anomalies, and renal anomalies. Early recognition and treatment can avoid complications and preserve fertility. KEYSWORDS: Herlyn-Werner-Wunderlich syndrome (HWWS); complete obstruction; incomplete obstruction; obstructed hemivagina; congenital malformation.

20.
Chembiochem ; : e202400389, 2024 Jun 20.
Article de Anglais | MEDLINE | ID: mdl-38899794

RÉSUMÉ

Electrochemiluminescence (ECL) is one of the most powerful techniques that meet the needs of analysis and detection in a variety of scenarios, because of its highly analytical sensitivity and excellent spatiotemporal controllability. ECL combined with microscopy (ECLM) offers a promising approach for quantifying and mapping a wide range of analytes. To date, ECLM has been widely used to image biological entities and processes, such as cells, subcellular structures, proteins and membrane transport properties. In this review, we first introduced the mechanisms of several classic ECL systems, then highlighted the progress of visual biosensing and bioimaging by ECLM in the last decade. Finally, the characteristics of ECLM were summarized, as well as some of the current challenges. The future research interests and potential directions for the application of ECLM were also outlooked.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...