Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 8 de 8
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
J Agric Food Chem ; 72(31): 17392-17404, 2024 Aug 07.
Article de Anglais | MEDLINE | ID: mdl-39056217

RÉSUMÉ

Ketosis in dairy cows is often accompanied by the dysregulation of lipid homeostasis in the liver. Acetyl-coenzyme A acetyltransferase 2 (ACAT2) is specifically expressed in the liver and is important for regulating lipid homeostasis in ketotic cows. Lentinan (LNT) has a wide range of pharmacological activities, and this study investigates the protective effects of LNT on ß-hydroxybutyrate (BHBA)-induced lipid metabolism disorder in bovine hepatocytes (BHECs) and elucidates the underlying mechanisms. BHECs were first pretreated with LNT to investigate the effect of LNT on BHBA-induced lipid metabolism disorder in BHECs. ACAT2 was then silenced or overexpressed to investigate whether this mediated the protective action of LNT against BHBA-induced lipid metabolism disorder in BHECs. Finally, BHECs were treated with LNT after silencing ACAT2 to investigate the interaction between LNT and ACAT2. LNT pretreatment effectively enhanced the synthesis and absorption of cholesterol, inhibited the synthesis of triglycerides, increased the expression of ACAT2, and elevated the contents of very low-density lipoprotein and low-density lipoprotein cholesterol, thereby ameliorating BHBA-induced lipid metabolism disorder in BHECs. The overexpression of ACAT2 achieved a comparable effect to LNT pretreatment, whereas the silencing of ACAT2 aggravated the effect of BHBA on inducing disorder in lipid metabolism in BHECs. Moreover, the protective effect of LNT against lipid metabolism disorder in BHBA-induced BHECs was abrogated upon silencing of ACAT2. Thus, LNT, as a natural protective agent, can enhance the regulatory capacity of BHECs in maintaining lipid homeostasis by upregulating ACAT2 expression, thereby ameliorating the BHBA-induced lipid metabolism disorder.


Sujet(s)
Acide 3-hydroxy-butyrique , Acetyl-coA C-acetyltransferase , Hépatocytes , Métabolisme lipidique , Régulation positive , Animaux , Bovins , Hépatocytes/métabolisme , Hépatocytes/effets des médicaments et des substances chimiques , Acide 3-hydroxy-butyrique/métabolisme , Acide 3-hydroxy-butyrique/pharmacologie , Métabolisme lipidique/effets des médicaments et des substances chimiques , Acetyl-coA C-acetyltransferase/génétique , Acetyl-coA C-acetyltransferase/métabolisme , Régulation positive/effets des médicaments et des substances chimiques , Troubles du métabolisme lipidique/métabolisme , Troubles du métabolisme lipidique/génétique , Troubles du métabolisme lipidique/traitement médicamenteux , Troubles du métabolisme lipidique/induit chimiquement , Triglycéride/métabolisme , Maladies des bovins/métabolisme , Maladies des bovins/génétique , Maladies des bovins/traitement médicamenteux , Cétose/métabolisme , Cétose/génétique , Cétose/induit chimiquement
2.
J Agric Food Chem ; 72(4): 2120-2134, 2024 Jan 31.
Article de Anglais | MEDLINE | ID: mdl-38235560

RÉSUMÉ

Oxidative stress is tightly associated with liver dysfunction and injury in dairy cows. Previous studies have shown that cis-9, trans-11 conjugated linoleic acid (CLA) possesses anti-inflammatory and antioxidative abilities. In this study, the bovine hepatocytes were pretreated with CLA for 6 h, followed by treatment with hydrogen peroxide (H2O2) for another 6 h to investigate the antioxidative effect of CLA and uncover the underlying mechanisms. The results demonstrated that H2O2 treatment elevated the level of mitophagy, promoted mitochondrial DNA (mtDNA) leakage into the cytosol, and activated the stimulator of interferon genes (STING)/nuclear factor kappa B (NF-κB) signaling pathway to trigger an inflammatory response in bovine hepatocytes. In addition, the dynamin-related protein 1(DRP1)-mtDNA-STING-NF-κB axis contributed to the H2O2-induced oxidative injury of bovine hepatocytes. CLA could reduce mitophagy and the inflammatory response to attenuate oxidative damage via the DRP1/mtDNA/STING pathway in bovine hepatocytes. These findings offer a theoretical foundation for the hepatoprotective effect of CLA against oxidative injury in dairy cows.


Sujet(s)
Peroxyde d'hydrogène , Acides linoléiques conjugués , Femelle , Bovins , Animaux , Acides linoléiques conjugués/pharmacologie , Acides linoléiques conjugués/métabolisme , ADN mitochondrial , Facteur de transcription NF-kappa B/génétique , Facteur de transcription NF-kappa B/métabolisme , Mitophagie , Antioxydants/métabolisme , Hépatocytes/métabolisme , Inflammation/traitement médicamenteux , Inflammation/génétique
3.
J Dairy Sci ; 106(12): 9892-9909, 2023 Dec.
Article de Anglais | MEDLINE | ID: mdl-37690731

RÉSUMÉ

Ketosis is a metabolic disease that often occurs in dairy cows postpartum and is a result of disordered lipid metabolism. Acetyl-coenzyme A (CoA) acetyltransferase 2 (ACAT2) is important for balancing cholesterol and triglyceride (TG) metabolism; however, its role in subclinical ketotic dairy cows is unclear. This study aimed to explore the potential correlation between ACAT2 and lipid metabolism disorders in subclinical ketotic cows through in vitro and in vivo experiments. In the in vivo experiment, liver tissue and blood samples were collected from healthy cows (CON, n = 6, ß-hydroxybutyric acid [BHBA] concentration <1.0 mM) and subclinical ketotic cows (subclinical ketosis [SCK], n = 6, BHBA concentration = 1.2-3.0 mM) to explore the effect of ACAT2 on lipid metabolism disorders in SCK cows. For the in vitro experiment, bovine hepatocytes (BHEC) were used as the model. The effects of BHBA on ACAT2 and lipid metabolism were investigated via BHBA concentration gradient experiments. Subsequently, the relation between ACAT2 and lipid metabolism disorder was explored by transfection with siRNA of ACAT2. Transcriptomics showed an upregulation of differentially expression genes during lipid metabolism and significantly lower ACAT2 mRNA levels in the SCK group. Compared with the CON group in vivo, the SCK group showed significantly higher expression levels of peroxisome proliferator-activated receptor γ (PPARγ) and sterol regulator element binding protein 1c (SREBP1c) and significantly lower expression levels of peroxisome proliferator-activated receptor α (PPARα), carnitine palmitoyl-transferase 1A (CPT1A), sterol regulatory element binding transcription factor 2 (SREBP2), and 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR). Moreover, the SCK group had a significantly higher liver TG content and significantly lower plasma total cholesterol (TC) and free cholesterol content. These results were indicative of TG and cholesterol metabolism disorders in the liver of dairy cows with SCK. Additionally, the SCK group showed an increased expression of perilipin-2 (PLIN2), decreased expression of apolipoprotein B, and decreased plasma concentration of very low-density lipoproteins (VLDL) and low-density lipoproteins cholesterol (LDL-C) by downregulating ACAT2, which indicated an accumulation of TG in liver. In vitro experiments showed that BHBA induced an increase in the TG content of BHEC, decreased content TC, increased expression of PPARγ and SREBP1c, and decreased expression of PPARα, CPT1A, SREBP2, and HMGCR. Additionally, BHBA increased the expression of PLIN2 in BHEC, decreased the expression and fluorescence intensity of ACAT2, and decreased the VLDL and LDL-C contents. Furthermore, silencing ACAT2 expression increased the TG content; decreased the TC, VLDL, and LDL-C contents; decreased the expression of HMGCR and SREBP2; and increased the expression of SREBP1c; but had no effect on the expression of PLIN2. These results suggest that ACAT2 downregulation in BHEC promotes TG accumulation and inhibits cholesterol synthesis, leading to TG and cholesterol metabolic disorders. In conclusion, ACAT2 downregulation in the SCK group inhibited cholesterol synthesis, increased TG synthesis, and reduced the contents of VLDL and LDL-C, eventually leading to disordered TG and cholesterol metabolism.


Sujet(s)
Maladies des bovins , Cétose , Troubles du métabolisme lipidique , Femelle , Bovins , Animaux , Métabolisme lipidique/physiologie , Cholestérol LDL , Récepteur PPAR alpha/génétique , Récepteur PPAR gamma/métabolisme , Maladies des bovins/métabolisme , Troubles du métabolisme lipidique/médecine vétérinaire , Protéines de transport/métabolisme , Lipoprotéines VLDL/métabolisme , Cétose/médecine vétérinaire , Coenzyme A/métabolisme , Acide 3-hydroxy-butyrique
4.
J Dairy Sci ; 106(12): 9644-9662, 2023 Dec.
Article de Anglais | MEDLINE | ID: mdl-37641289

RÉSUMÉ

Long-term feeding of a high-concentrate diet can induce subacute ruminal acidosis (SARA) in ruminants, which further leads to systemic inflammatory response. However, few studies have examined the effects of feeding a high-concentrate diet on the hindgut of ruminants. The purpose of this study was to investigate the effects of a high-concentrate diet on the composition of gut microbiota in colonic contents, inflammatory response, and barrier damage in the colon tissue of ruminants. A total of 12 healthy multiparous lactating Hu sheep were randomly allotted into the following 2 groups: a high-concentrate (HC) group (concentrate:forage = 7:3) and a low-concentrate (LC) group (concentrate:forage = 3:7). All sheep were fitted with ruminal fistulas. The formal feeding experiment lasted for 8 wk. After the feeding experiment, rumen fluid, portal vein blood, hepatic vein blood, colonic contents, and colon tissue samples were collected. The results showed that feeding the HC diet induced SARA in Hu sheep and significantly reduced pH in the colonic contents. The abundances of Firmicutes, Verrucomicrobiota, and Actinobacteriota decreased significantly, whereas those of Bacteroidota, Spirochaetota, and Fibrobacterota significantly increased in colonic contents. At the genus level, the relative abundances of 29 genera were significantly altered depending on the different type of diets. Analysis of the 10 bacterial genera with high relative abundance revealed that feeding the HC diet significantly reduced the abundance of UCG-005, Christensenellaceae R-7 group, UCG-010-norank, Monoglobus, [Eubacterium] coprostanoligenes group_norank, and Alistipes, whereas the abundances of Rikenellaceae RC9 gut group, Treponema, Bacteroides, and Prevotella increased. Compared with the LC group, feeding the HC diet significantly increased the concentration of LPS in rumen fluid, portal vein blood, hepatic vein blood, and colonic contents, and significantly upregulated the mRNA expression levels of proinflammatory cytokines in colon tissue, including TNF-α, IL-1ß, IL-6, and IL-8, indicating the occurrence of inflammatory response in the colon tissue. In addition, the structure of colonic epithelial cells was loose, the intercellular space became larger, epithelial cells were exfoliated, and the mRNA and protein abundances of ZO-1, occludin, claudin-1, claudin-3, and claudin-4 were significantly decreased in the HC group, which was consistent with the results of immunohistochemistry. Furthermore, feeding the HC diet increased the ratios of DNA methylation and chromatin compaction in the promoter regions of occludin and claudin-1, which in turn inhibited their transcriptional expression. Therefore, the present study demonstrated that feeding an HC diet induced SARA in Hu sheep, altered the composition and structure of the microbial community in the colonic contents, induced an inflammatory response, and disrupted the intestinal mucosal barrier in the colonic tissue.


Sujet(s)
Régulation de l'expression des gènes , Maladies des ovins , Femelle , Animaux , Ovis , Lactation , Claudine-1/métabolisme , Occludine/analyse , Occludine/métabolisme , Rumen/métabolisme , Inflammation/médecine vétérinaire , Inflammation/métabolisme , Régime alimentaire/médecine vétérinaire , Côlon/métabolisme , Ruminants/métabolisme , ARN messager/métabolisme , Concentration en ions d'hydrogène , Aliment pour animaux/analyse
5.
Exp Eye Res ; 234: 109607, 2023 09.
Article de Anglais | MEDLINE | ID: mdl-37517541

RÉSUMÉ

Pseudomonas aeruginosa is a common pathogenic bacteria in canine ophthalmology. Lipopolysaccharide (LPS), a component in the cell wall of gram-negative bacteria, is released following bacterial lysis and causes pathology and inflammation of the cornea. Antibiotics are used to treat bacterial keratitis, and the reuse of antibiotics can easily cause bacterial resistance. Research has shown that glutamine (GLN) has anti-inflammatory and antioxidant biological functions. Herein, we explored the effects and underlying mechanisms of GLN and established an LPS-induced cornea inflammation model. Treatment groups comprised: control check (CK), LPS, LPS + GLN, and Sham groups. Topical GLN treatment alleviated corneal opacity, reduced corneal injury, and accelerated corneal wound healing. Furthermore, GLN treatment altered the uniform distribution of corneal epithelial cells and transformed the healing approach of these cells in the corneal wound from crawling to filling. The expression of Toll-like receptor 4 (TLR4), IL-6, TNF-α, and p-p65 and the activity of myeloperoxidase and superoxide dismutase decreased while the content of malondialdehyde increased in the LPS + GLN group compared with those in the LPS group. Thus, our study suggests that LPS-induced inflammation and oxidative stress may be suppressed via the TLR4/NF-κB signaling pathway by GLN and that GLN could be used as an adjunct therapy to reduce antibiotic use.


Sujet(s)
Kératite , Lipopolysaccharides , Chiens , Animaux , Lipopolysaccharides/toxicité , Récepteur de type Toll-4/métabolisme , Glutamine/pharmacologie , Glutamine/métabolisme , Kératite/traitement médicamenteux , Kératite/prévention et contrôle , Facteur de transcription NF-kappa B/métabolisme , Inflammation/anatomopathologie , Stress oxydatif
6.
Front Immunol ; 14: 1197133, 2023.
Article de Anglais | MEDLINE | ID: mdl-37275885

RÉSUMÉ

Liver damage is common in ruminants with subacute ruminal acidosis (SARA). Disodium fumarate (DF) could regulate rumen microbial community and neutralize ruminal organic acids. This study aimed to evaluate the effect of dietary DF supplementation on SARA-induced liver damage and investigate the underlying mechanism. The results showed that feeding a high-concentrate diet induced decreased rumen fluid pH and increased ruminal LPS. The rumen fluid pH in the HC group was less than 5.6 at 4 time points, indicating that SARA was successfully induced. The histopathological analysis showed that in the HC group, hemorrhage and inflammatory cell infiltration were observed in liver tissue. Using ELISA kits and biochemical analyzer, we identified that the contents of interleukin 1beta (IL-1ß), interleukin 18 (IL-18), caspase-1, and the activity of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in hepatic vein were elevated in the HC group. However, DF supplementation increased rumen fluid pH value, decreased ruminal LPS, attenuated hemorrhage and inflammatory cell infiltration in the liver tissue, and decreased contents of IL-1ß, IL-18, caspase-1, AST, and ALT in the hepatic vein. Real-time PCR and western blot analysis displayed that SARA-induced increased expression of pyroptosis-related proteins (GSDMD-NT) was attenuated in the HCDF group. Meanwhile, SARA induced increased expression of mitophagy and inflammasome-related proteins (MAP1LC3-II, PINK1, Parkin, cleaved-caspase-11, cleaved-caspase-1, NLRP3, and ASC) and elevated expression of inflammasome-related genes (NLRP3, CASP1, and ASC), which was reversed by DF supplementation. Moreover, SARA activated toll-like receptor 4 (TLR4)-nuclear factor kappa B (NF-κB) signaling pathway and inhibited the entry of forkhead box A2 (FOXA2) into the nucleus, which was reversed by DF supplementation. Collectively, our data suggest that dietary DF supplementation inhibited hepatocyte pyroptosis by regulating the mitophagy-NLRP3 inflammasome pathway and the NF-κB signaling pathway, thus alleviating SARA-induced liver damage in Hu sheep.


Sujet(s)
Acidose , Protéine-3 de la famille des NLR contenant un domaine pyrine , Animaux , Femelle , Acidose/métabolisme , Caspases , Compléments alimentaires , Inflammasomes , Interleukine-18 , Lactation , Lipopolysaccharides , Foie/anatomopathologie , Mitophagie , Facteur de transcription NF-kappa B/métabolisme , Pyroptose , Ovis
7.
J Dairy Sci ; 106(7): 5146-5164, 2023 Jul.
Article de Anglais | MEDLINE | ID: mdl-37225589

RÉSUMÉ

Mitochondrial homeostasis is closely associated with cellular homeostasis process, whereas mitochondrial dysfunction contributes to apoptosis and mitophagy. Hence, analyzing the mechanism of lipopolysaccharide (LPS)-caused mitochondrial damage is necessary to understand how cellular homeostasis is maintained in bovine hepatocytes. Mitochondria-associated membranes (MAM), a connection between endoplasmic reticulum (ER) and mitochondria, is important to control mitochondrial function. To investigate the underlying mechanisms of the LPS-caused mitochondrial dysfunction, hepatocytes isolated from dairy cows at ∼160 d in milk (DIM) were pretreated with the specific inhibitors of adenosine 5'-monophosphate-activated protein kinase (AMPK), ER stress, RNA-activated protein kinase-like ER kinase (PERK), inositol-requiring enzyme 1α (IRE1α), c-Jun N-terminal kinase, and autophagy followed by a 12 I1/4g/mL LPS treatment. The results showed that inhibiting ER stress with 4-phenylbutyric acid decreased the levels of autophagy and mitochondrial damage with AMPK inactivation in LPS-treated hepatocytes. The AMPK inhibitor compound C pretreatment alleviated LPS-induced ER stress, autophagy and mitochondrial dysfunction by regulating the expression of MAM-related genes, such as mitofusin 2 (MFN2), PERK, and IRE1α. Moreover, inhibiting PERK and IRE1α mitigated autophagy and mitochondrial dynamic disruption by regulating the MAM function. Additionally, blocking c-Jun N-terminal kinase, the downstream sensor of IRE1α, could reduce the levels of autophagy and apoptosis and restore the balance of mitochondrial fusion and fission by modulating the B cell leukemia 2 (BCL-2)/BCL-2 interacting protein 1 (BECLIN1) complex in the LPS-treated bovine hepatocytes. Furthermore, autophagy blockage with chloroquine could intervene in LPS-caused apoptosis to restore mitochondrial function. Collectively, these findings suggest that the AMPK-ER stress axis is involved in the LPS-caused mitochondrial dysfunction by mediating the MAM activity in bovine hepatocytes.


Sujet(s)
AMP-Activated Protein Kinases , Lipopolysaccharides , Femelle , Bovins , Animaux , Lipopolysaccharides/pharmacologie , Lipopolysaccharides/métabolisme , AMP-Activated Protein Kinases/métabolisme , Endoribonucleases/métabolisme , Protein-Serine-Threonine Kinases/métabolisme , Hépatocytes/métabolisme , Stress du réticulum endoplasmique , Apoptose , Mitochondries/métabolisme , Protéines proto-oncogènes c-bcl-2/métabolisme , JNK Mitogen-Activated Protein Kinases/métabolisme
8.
Genes (Basel) ; 13(5)2022 05 13.
Article de Anglais | MEDLINE | ID: mdl-35627260

RÉSUMÉ

(1) Background: The basic mechanism of store-operated Ca2+ entry (SOCE) in bovine hepatocytes (BHEC) is related to the activation of STIM1 and Orai1. The effect of STIM1- and Orai1-dependent calcium ion signaling on the NF-κB signaling pathway is unclear. (2) Methods: In this study, the expression of STIM1 and Orai1 in BHEC was regulated. RT-qPCR, Western blotting, and an immunofluorescence antibody (IFA) assay were performed to elucidate the effect of inflammation and endoplasmic reticulum stress (ERS) in BHEC. (3) Results: First of all, in this study, RT-PCR and Western blotting were used to detect the levels of IκB, NF-κB, and inflammatory factors (IL-6, IL-8, and TNF-α) and the expression of genes and proteins related to ERS (PERK, IRE1, ATF6, GRP78, and CHOP), which reached peak levels simultaneously when BHEC were treated with 16 µg/mL LPS for 1 h. For STIM1, we overexpressed STIM1 in BHEC by using plasmid transfection technology. The results showed that after overexpression of STIM1, the gene and protein expression of STIM1 levels were significantly upregulated, and the expression of Orai1 on the cell membrane was also upregulated, which directly activated the SOCE channel and induced inflammation and ERS in BHEC. The overexpression group was then treated with LPS, and it was found that the overexpression of STIM1 could enhance LPS-induced BHEC inflammation and ERS in BHEC. For Orai1, BHEC were pretreated with 8 µg/mL of the specific inhibitor BTP2 for 6 h. It was found that BTP2 could inhibit the expression of mRNA in Orai1, significantly reduce the gene expression of STIM1, inhibit the activation of the NF-κB signaling pathway, and alleviate inflammation and ERS in BHEC under LPS stimulation. (4) Conclusions: In conclusion, STIM1/Orai1 can intervene and exacerbate LPS-induced inflammation and ERS in bovine hepatocytes through SOCE.


Sujet(s)
Calcium , Lipopolysaccharides , Animaux , Calcium/métabolisme , Canaux calciques/génétique , Canaux calciques/métabolisme , Signalisation calcique/physiologie , Bovins , Stress du réticulum endoplasmique , Hépatocytes/métabolisme , Inflammation/induit chimiquement , Inflammation/génétique , Lipopolysaccharides/toxicité , Facteur de transcription NF-kappa B/génétique , Facteur de transcription NF-kappa B/métabolisme , Protéine ORAI1/génétique , Protéine ORAI1/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE