Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 2.277
Filtrer
1.
EBioMedicine ; 106: 105257, 2024 Jul 25.
Article de Anglais | MEDLINE | ID: mdl-39059317

RÉSUMÉ

BACKGROUND: Sepsis is a leading cause of mortality in intensive care units and vasoactive drugs are widely used in septic patients. The cardiovascular response of septic shock patients during resuscitation therapies and the relationship of the cardiovascular response and clinical outcome has not been clearly described. METHODS: We included adult patients admitted to the ICU with sepsis from Peking Union Medical College Hospital (internal), Medical Information Mart for Intensive Care IV (MIMIC-IV) and eICU Collaborative Research Database (eICU-CRD). The Blood Pressure Response Index (BPRI) was defined as the ratio between the mean arterial pressure and the vasoactive-inotropic score. BRRI was compared with existing risk scores on predicting in-hospital death. The relationship between BPRI and in-hospital mortality was calculated. A XGBoost's machine learning model identified the features that influence short-term changes in BPRI. FINDINGS: There were 2139, 9455, and 4202 patients in the internal, MIMIC-IV and eICU-CRD cohorts, respectively. BPRI had a better AUROC for predicting in-hospital mortality than SOFA (0.78 vs. 0.73, p = 0.01) and APS (0.78 vs. 0.74, p = 0.03) in the internal cohort. The estimated odds ratio for death per unit decrease in BPRI was 1.32 (95% CI 1.20-1.45) when BPRI was below 7.1 vs. 0.99 (95% CI 0.97-1.01) when BPRI was above 7.1 in the internal cohort; similar relationships were found in MIMIC-IV and eICU-CRD. Respiratory support and latest cumulative 12-h fluid balance were intervention-related features influencing BPRI. INTERPRETATION: BPRI is an easy, rapid, precise indicator of the response of patients with septic shock to vasoactive drugs. It is a comparable and even better predictor of prognosis than SOFA and APS in sepsis and it is simpler and more convenient in use. The application of BPRI could help clinicians identify potentially at-risk patients and provide clues for treatment. FUNDING: Fundings for the Beijing Municipal Natural Science Foundation; the National High Level Hospital Clinical Research Funding; the CAMS Innovation Fund for Medical Sciences (CIFMS) from Chinese Academy of Medical Sciences and the National Key R&D Program of China, Ministry of Science and Technology of the People's Republic of China.

3.
Front Immunol ; 15: 1416632, 2024.
Article de Anglais | MEDLINE | ID: mdl-39026674

RÉSUMÉ

Background: Elevated PPP4C expression has been associated with poor prognostic implications for patients suffering from lung adenocarcinoma (LUAD). The extent to which PPP4C affects immune cell infiltration in LUAD, as well as the importance of associated genes in clinical scenarios, still requires thorough investigation. Methods: In our investigation, we leveraged both single-cell and comprehensive RNA sequencing data, sourced from LUAD patients, in our analysis. This study also integrated datasets of immune-related genes from InnateDB into the framework. Our expansive evaluation employed various analytical techniques; these included pinpointing differentially expressed genes, constructing WGCNA, implementing Cox proportional hazards models. We utilized these methods to investigate the gene expression profiles of PPP4C within the context of LUAD and to clarify its potential prognostic value for patients. Subsequent steps involved validating the observed enhancement of PPP4C expression in LUAD samples through a series of experimental approaches. The array comprised immunohistochemistry staining, Western blotting, quantitative PCR, and a collection of cell-based assays aimed at evaluating the influence of PPP4C on the proliferative and migratory activities of LUAD cells. Results: In lung cancer, elevated expression levels of PPP4C were observed, correlating with poorer patient prognoses. Validation of increased PPP4C levels in LUAD specimens was achieved using immunohistochemical techniques. Experimental investigations have substantiated the role of PPP4C in facilitating cellular proliferation and migration in LUAD contexts. Furthermore, an association was identified between the expression of PPP4C and the infiltration of immune cells in these tumors. A prognostic framework, incorporating PPP4C and immune-related genes, was developed and recognized as an autonomous predictor of survival in individuals afflicted with LUAD. This prognostic tool has demonstrated considerable efficacy in forecasting patient survival and their response to immunotherapeutic interventions. Conclusion: The involvement of PPP4C in LUAD is deeply intertwined with the tumor's immune microenvironment. PPP4C's over-expression is associated with negative clinical outcomes, promoting both tumor proliferation and spread. A prognostic framework based on PPP4C levels may effectively predict patient prognoses in LUAD, as well as the efficacy of immunotherapy strategy. This research sheds light on the mechanisms of immune interaction in LUAD and proposes a new strategy for treatment.


Sujet(s)
Adénocarcinome pulmonaire , Immunothérapie , Tumeurs du poumon , Phosphoprotein Phosphatases , Microenvironnement tumoral , Femelle , Humains , Mâle , Adénocarcinome pulmonaire/immunologie , Adénocarcinome pulmonaire/thérapie , Marqueurs biologiques tumoraux/génétique , Lignée cellulaire tumorale , Analyse de profil d'expression de gènes , Régulation de l'expression des gènes tumoraux , Immunothérapie/méthodes , Tumeurs du poumon/immunologie , Tumeurs du poumon/thérapie , Multi-omique , Phosphoprotein Phosphatases/génétique , Pronostic , Analyse sur cellule unique/méthodes , Transcriptome , Microenvironnement tumoral/génétique , Microenvironnement tumoral/immunologie
4.
Nat Commun ; 15(1): 6120, 2024 Jul 20.
Article de Anglais | MEDLINE | ID: mdl-39033152

RÉSUMÉ

Extremely large magnetoresistance (XMR) is highly applicable in spintronic devices such as magnetic sensors, magnetic memory, and hard drives. Typically, XMR is found in Weyl semimetals characterized by perfect electron-hole symmetry or exceptionally high electric conductivity and mobility. Our study explores this phenomenon in a recently developed graphene moiré system, which demonstrates XMR owing to its topological structure and high-quality crystal formation. We investigate the electronic properties of three-dimensional intertwined twisted graphene spirals (TGS), manipulating the screw dislocation axis to achieve a rotation angle of 7.3°. Notably, at 14 T and 2 K, the magnetoresistance of these structures reaches 1.7 × 107%, accompanied by a metal-insulator transition as the temperature increases. This transition becomes noticeable when the magnetic field exceeds a minimal threshold of approximately 0.1 T. These observations suggest the possible existence of complex, correlated states within the partially filled three-dimensional Landau levels of the 3D TGS system. Our findings open up possibilities for achieving XMR by engineering the topological structure of 2D layered moiré systems.

5.
Eur J Neurosci ; 2024 Jul 25.
Article de Anglais | MEDLINE | ID: mdl-39054660

RÉSUMÉ

Accumulating evidence suggests that electroacupuncture (EA) has obvious therapeutic effects and unique advantages in alleviating myocardial ischemia-reperfusion injury (MIRI), while the underlying neuromolecular mechanisms of EA intervention for MIRI have not been fully elucidated. The aim of the study is to investigate the role of the neural pathway of hypothalamic paraventricular nucleus (PVN) neurons projecting to the rostral ventrolateral medulla (RVLM) in the alleviation of MIRI rats by EA preconditioning. MIRI models were established by ligating the left anterior descending coronary artery for 30 min followed by reperfusion for 2 h. Electrocardiogram recording, chemogenetics, enzyme-linked immunosorbent assay, multichannel physiology recording and haematoxylin-eosin and immunofluorescence staining methods were conducted to demonstrate that the firing frequencies of neurons in the PVN and the expression of c-Fos decreased by EA pretreatment. Meanwhile, EA preconditioning significantly reduced the levels of creatine kinase isoenzymes (CK-MB), cardiac troponin I (cTnI) and lactic dehydrogenase (LDH). Virus tracing showed a projection connection between PVN and RVLM. The inhibition of the PVN-RVLM neural pathway could replicate the protective effect of EA pretreatment on MIRI rats. However, the activation of the pathway weakened the effect of EA preconditioning. EA pretreatment alleviated MIRI by regulating PVN neurons projecting to RVLM. This work provides novel evidence of EA pretreatment for alleviating MIRI.

6.
Pathol Res Pract ; 260: 155449, 2024 Jul 02.
Article de Anglais | MEDLINE | ID: mdl-38981345

RÉSUMÉ

Parathyroid carcinoma(PC) is an extremely rare malignant tumor of the parathyroid glands. The lung is the most common target organ for PC distant metastases. In this study, twelve patients diagnosed with PC with lung metastases were enrolled in the study. Hematoxylin and Eosin(H&E) stained, immunohistochemical stained and next-generation sequencing (NGS) of a 425-gene panel were performed on tumor tissue samples. At the same time, we also evaluated its histopathologic characteristics. The results indicate that the microscopic examination of metastatic lesions reveals the same structure and characteristics as PC; the tumor was composed of relatively uniform cells organized in nests and separated by thin fibrous bands and abundant blood vessels. Immunohistochemical evaluation of Ki67, CyclinD1, PTH, SYN, CgA, and CD56 was useful in diagnosing PC with lung metastases. The most frequently genetic alterations were mutations of CDC73 and copy number variation (CNV) of MCL1, with a mutation rate of 25 %. In addition, the mutations of CDC73, ATM, TP53, ALK, ERBB2, MAP3K4, TSC1, CCND1 and CNV of CDK4, MCL1, SMARCB1 overlap between metastatic lesions and primary lesions. In conclusions, PC is a rare endocrine malignant tumor that is very difficult to diagnose preoperatively and prone to clinical recurrence or distant metastasis. Genetic mutations, presentation and histological characteristic were the basis for diagnosing PC with lung metastases.

7.
Hemasphere ; 8(7): e110, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38993727

RÉSUMÉ

Multiple myeloma (MM) is a genetically heterogeneous disease and the management of relapses is one of the biggest clinical challenges. TP53 alterations are established high-risk markers and are included in the current disease staging criteria. KRAS is the most frequently mutated gene affecting around 20% of MM patients. Applying Clonal Competition Assays (CCA) by co-culturing color-labeled genetically modified cell models, we recently showed that mono- and biallelic alterations in TP53 transmit a fitness advantage to the cells. Here, we report a similar dynamic for two mutations in KRAS (G12A and A146T), providing a biological rationale for the high frequency of KRAS and TP53 alterations at MM relapse. Resistance mutations, on the other hand, did not endow MM cells with a general fitness advantage but rather presented a disadvantage compared to the wild-type. CUL4B KO and IKZF1 A152T transmit resistance against immunomodulatory agents, PSMB5 A20T to proteasome inhibition. However, MM cells harboring such lesions only outcompete the culture in the presence of the respective drug. To better prevent the selection of clones with the potential of inducing relapse, these results argue in favor of treatment-free breaks or a switch of the drug class given as maintenance therapy. In summary, the fitness benefit of TP53 and KRAS mutations was not treatment-related, unlike patient-derived drug resistance alterations that may only induce an advantage under treatment. CCAs are suitable models for the study of clonal evolution and competitive (dis)advantages conveyed by a specific genetic lesion of interest, and their dependence on external factors such as the treatment.

8.
Materials (Basel) ; 17(13)2024 Jun 21.
Article de Anglais | MEDLINE | ID: mdl-38998129

RÉSUMÉ

Strengthening the interfacial contact between the reactive components effectively boosts the energy release of energetic materials. In this study, we aimed to create a close-knit interfacial contact condition between aluminum nanoparticles (Al NPs) and Polyvinylidene fluoride-hexafluoropropylene (P(VDF-HFP)) through hydrolytic adsorption and assembling 1H, 1H, 2H, 2H-Perfluorododecyltrichlorosilane (FTCS) on the surface of Al NPs. Leveraging hydrogen bonding between -CF and -CH and the interaction between C-F⋯F-C groups, the adsorbed FTCS directly leads to the growth of the P(VDF-HFP) coating layer around the treated Al NPs, yielding Al@FTCS/P(VDF-HFP) energetic composites. In comparison with the ultrasonically processed Al/P(VDF-HFP) mixture, thermal analysis reveals that Al@FTCS/P(VDF-HFP) exhibits a 57 °C lower reaction onset temperature and a 1646 J/g increase in heat release. Associated combustion tests demonstrate a 52% shorter ignition delay, 62% shorter combustion time, and a 288% faster pressurization rate. These improvements in energetic characteristics stem from the reactivity activation of FTCS towards Al NPs by the etching effect to the surface Al2O3. Moreover, enhanced interfacial contact facilitated by the FTCS-directed growth of P(VDF-HFP) around Al NPs further accelerates the whole reaction process.

9.
J Agric Food Chem ; 72(28): 15541-15551, 2024 Jul 17.
Article de Anglais | MEDLINE | ID: mdl-38959381

RÉSUMÉ

Benzimidazoles, the representative pharmacophore of fungicides, have excellent antifungal potency, but their simple structure and single site of action have hindered their wider application in agriculture. In order to extend the structural diversity of tubulin-targeted benzimidazoles, novel benzimidazole derivatives were prepared by introducing the attractive pyrimidine pharmacophore. 2-((6-(4-(trifluoromethyl)phenoxy)pyrimidin-4-yl)thio)-1H-benzo[d]imidazole (A25) exhibited optimal antifungal activity against Sclerotinia sclerotiorum (S. s.), affording an excellent half-maximal effective concentration (EC50) of 0.158 µg/mL, which was higher than that of the reference agent carbendazim (EC50 = 0.594 µg/mL). Pot experiments revealed that compound A25 (200 µg/mL) had acceptable protective activity (84.7%) and curative activity (78.1%), which were comparable with that of carbendazim (protective activity: 90.8%; curative activity: 69.9%). Molecular docking displayed that multiple hydrogen bonds and π-π interactions could be formed between A25 and ß-tubulin, resulting in a stronger bonding effect than carbendazim. Fluorescence imaging revealed that the structure of intracellular microtubules can be changed significantly after A25 treatment. Overall, these remarkable antifungal profiles of constructed novel benzimidazole derivatives could facilitate the application of novel microtubule-targeting agents.


Sujet(s)
Ascomycota , Benzimidazoles , Fongicides industriels , Simulation de docking moléculaire , Tubuline , Benzimidazoles/composition chimique , Benzimidazoles/pharmacologie , Tubuline/composition chimique , Tubuline/métabolisme , Fongicides industriels/pharmacologie , Fongicides industriels/composition chimique , Fongicides industriels/synthèse chimique , Relation structure-activité , Ascomycota/effets des médicaments et des substances chimiques , Ascomycota/croissance et développement , Ascomycota/composition chimique , Maladies des plantes/microbiologie , Structure moléculaire , Modulateurs de la polymérisation de la tubuline/composition chimique , Modulateurs de la polymérisation de la tubuline/pharmacologie , Protéines fongiques/composition chimique , Protéines fongiques/métabolisme
10.
Bioorg Chem ; 151: 107655, 2024 Jul 17.
Article de Anglais | MEDLINE | ID: mdl-39032407

RÉSUMÉ

Given the escalating incidence of bacterial diseases and the challenge posed by pathogenic bacterial resistance, it is imperative to identify appropriate methodologies for conducting proteomic investigations on bacteria, and thereby promoting the target-based drug/pesticide discovery. Interestingly, a novel technology termed "activity-based protein profiling" (ABPP) has been developed to identify the target proteins of active molecules. However, few studies have summarized advancements in ABPP for identifying the target proteins in antibacterial-active compounds. In order to accelerate the discovery and development of new drug/agrochemical discovery, we provide a concise overview of ABPP and its recent applications in antibacterial agent discovery. Diversiform cases were cited to demonstrate the potential of ABPP for target identification though highlighting the design strategies and summarizing the reported target protein of antibacterial compounds. Overall, this review is an excellent reference for probe design towards antibacterial compounds, and offers a new perspective of ABPP in bactericide development.

11.
Org Lett ; 26(28): 5934-5939, 2024 Jul 19.
Article de Anglais | MEDLINE | ID: mdl-38967969

RÉSUMÉ

A palladium-catalyzed asymmetric tandem Heck and carbonylation of bisallyl-phosphine oxides has been developed. This desymmetrization process provided an efficient route to the simultaneous synthesis of a chiral P-stereogenic center and a chiral quaternary carbon stereocenter in good yields with good diastereo- and enantioselectivities.

12.
J Pak Med Assoc ; 74(7): 1355-1357, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-39028070

RÉSUMÉ

Hepatic sinus obstruction syndrome (HSOS) is easy to be misdiagnosed or missed, and there is no unified and effective treatment for it. A patient was considered to have Budd-Chiari syndrome. He underwent a transjugular liver biopsy, and pathological examination revealed HSOS without liver cirrhosis. After the failure of anticoagulation therapy, he successfully received a transjugular intrahepatic portosystemic shunt (TIPS). After discharge, he was followed-up for four years with a good prognosis. G. segetum-induced HSOS can be easily overlooked, especially in patients with underlying liver diseases. When medical therapy fails, TIPS can control ascites and portal hypertension, and the long-term prognosis is optimistic.


Sujet(s)
Maladies alcooliques du foie , Anastomose portosystémique intrahépatique par voie transjugulaire , Humains , Mâle , Maladies alcooliques du foie/complications , Maladie veno-occlusive hépatique/diagnostic , Maladie veno-occlusive hépatique/complications , Syndrome de Budd-Chiari/complications , Syndrome de Budd-Chiari/diagnostic , Syndrome de Budd-Chiari/étiologie , Adulte d'âge moyen
13.
Anal Chem ; 96(28): 11455-11462, 2024 Jul 16.
Article de Anglais | MEDLINE | ID: mdl-38968402

RÉSUMÉ

Efficient, mild, and reversible adsorption of nucleic acids onto nanomaterials represents a promising analytical approach for medical diagnosis. However, there is a scarcity of efficient and reversible nucleic acid adsorption nanomaterials. Additionally, the lack of comprehension of the molecular mechanisms governing their interactions poses significant challenges. These issues hinder the rational design and analytical applications of the nanomaterials. Herein, we propose an ultra-efficient nucleic acid affinity nanomaterial based on programmable lanthanide metal-organic frameworks (Ln-MOFs). Through experiments and density functional theory calculations, a rational design guideline for nucleic acid affinity of Ln-MOF was proposed, and a modular and flexible preparation scheme was provided. Then, Er-TPA (terephthalic acid) MOF emerged as the optimal candidate due to its pore size-independent adsorption and desorption capabilities for nucleic acids, enabling ultra-efficient adsorption (about 150% mass ratio) within 1 min. Furthermore, we elucidate the molecular-level mechanisms underlying the Ln-MOF adsorption of single- and double-stranded DNA and G4 structures. The affinity nanomaterial based on Ln-MOF exhibits robust nucleic acid extraction capability (4-fold higher than commercial reagent kits) and enables mild and reversible CRISPR/Cas9 functional regulation. This method holds significant promise for broad application in DNA/RNA liquid biopsy and gene editing, facilitating breakthroughs in analytical chemistry, pharmacy, and medical research.


Sujet(s)
ADN , Lanthanides , Réseaux organométalliques , Réseaux organométalliques/composition chimique , Lanthanides/composition chimique , Adsorption , ADN/composition chimique , ADN/isolement et purification , Acides phtaliques/composition chimique , Nanostructures/composition chimique , Théorie de la fonctionnelle de la densité , Humains
14.
bioRxiv ; 2024 Jun 19.
Article de Anglais | MEDLINE | ID: mdl-38948792

RÉSUMÉ

The development of multicellular tissues requires both local and global coordination of cell polarization, however, the mechanisms underlying their interplay are poorly understood. In Arabidopsis, leaf epidermal pavement cells (PC) develop a puzzle-piece shape locally coordinated through apoplastic auxin signaling. Here we show auxin also globally coordinates interdigitation by activating the TIR1/AFB-dependent nuclear signaling pathway. This pathway promotes a transient maximum of auxin at the cotyledon tip, which then moves across the leaf activating local PC polarization, as demonstrated by locally uncaged auxin globally rescuing defects in tir1;afb1;afb2;afb4;afb5 mutant but not in tmk1;tmk2;tmk3;tmk4 mutants. Our findings show that hierarchically integrated global and local auxin signaling systems, which respectively depend on TIR1/AFB-dependent gene transcription in the nucleus and TMK-mediated rapid activation of ROP GTPases at the cell surface, control PC interdigitation patterns in Arabidopsis cotyledons, revealing a mechanism for coordinating a local cellular process with the development of whole tissues.

15.
J Exp Clin Cancer Res ; 43(1): 185, 2024 Jul 04.
Article de Anglais | MEDLINE | ID: mdl-38965575

RÉSUMÉ

BACKGROUND: Metastasis is the leading cause of mortality in patients with colorectal cancer (CRC) and angiogenesis is a crucial factor in tumor invasion and metastasis. Long noncoding RNAs (lncRNAs) play regulatory functions in various biological processes in tumor cells, however, the roles of lncRNAs in CRC-associated angiogenesis remain to be elucidated in CRC, as do the underlying mechanisms. METHODS: We used bioinformatics to screen differentially expressed lncRNAs from TCGA database. LOC101928222 expression was assessed by qRT-PCR. The impact of LOC101928222 in CRC tumor development was assessed both in vitro and in vivo. The regulatory mechanisms of LOC101928222 in CRC were investigated by cellular fractionation, RNA-sequencing, mass spectrometric, RNA pull-down, RNA immunoprecipitation, RNA stability, and gene-specific m6A assays. RESULTS: LOC101928222 expression was upregulated in CRC and was correlated with a worse outcome. Moreover, LOC101928222 was shown to promote migration, invasion, and angiogenesis in CRC. Mechanistically, LOC101928222 synergized with IGF2BP1 to stabilize HMGCS2 mRNA through an m6A-dependent pathway, leading to increased cholesterol synthesis and, ultimately, the promotion of CRC development. CONCLUSIONS: In summary, these findings demonstrate a novel, LOC101928222-based mechanism involved in the regulation of cholesterol synthesis and the metastatic potential of CRC. The LOC101928222-HMGCS2-cholesterol synthesis pathway may be an effective target for diagnosing and managing CRC metastasis.


Sujet(s)
Cholestérol , Tumeurs colorectales , Néovascularisation pathologique , ARN long non codant , ARN messager , Tumeurs colorectales/génétique , Tumeurs colorectales/anatomopathologie , Tumeurs colorectales/métabolisme , Humains , ARN long non codant/génétique , ARN long non codant/métabolisme , Néovascularisation pathologique/génétique , Néovascularisation pathologique/métabolisme , Néovascularisation pathologique/anatomopathologie , Souris , Cholestérol/métabolisme , Animaux , ARN messager/génétique , ARN messager/métabolisme , Hydroxymethylglutaryl-coA synthase/génétique , Hydroxymethylglutaryl-coA synthase/métabolisme , Lignée cellulaire tumorale , Régulation de l'expression des gènes tumoraux , Mâle , Femelle ,
16.
Neurosci Lett ; 837: 137916, 2024 Jul 24.
Article de Anglais | MEDLINE | ID: mdl-39059459

RÉSUMÉ

After peripheral nerve injury (PNI), the long-term healing process at the injury site involves a progressive accumulation of collagen fibers and the development of localized scar tissue. Excessive formation of scar tissue within nerves hinders the process of nerve repair. In this study, we demonstrate that scar formation following nerve injury induces alterations in the local physical microenvironment, specifically an increase in nerve stiffness. Recent research has indicated heightened expression of Piezo1 in Schwann cells (SCs). Our findings also indicate Piezo1 expression in SCs and its association with suppressed proliferation and migration. Transcriptomic data suggests that activation of Piezo1 results in elevated expression of senescence-associated genes. GO enrichment analysis reveals upregulation of the TGF-ß pathway. Overall, our study highlights the potential for Piezo1-induced signaling to regulate SC senescence and its potential significance in the pathophysiology of fibrotic scar formation surrounding peripheral nerves.

17.
Front Cardiovasc Med ; 11: 1387421, 2024.
Article de Anglais | MEDLINE | ID: mdl-38966753

RÉSUMÉ

Background: Digital Subtraction Angiography (DSA) is currently the most effective diagnostic method for vascular diseases, but it is still subject to various factors, resulting in uncertain diagnosis. Therefore, a new technology is needed to help clinical doctors improve diagnostic accuracy and efficiency. Purpose: The objective of the study was to investigate the effect of utilizing color-coded parametric imaging techniques on the accuracy of identifying active bleeding through DSA, the widely accepted standard for diagnosing vascular disorders. Methods: Several variables can delay the diagnosis and treatment of active bleeding with DSA. To resolve this, we carried out an in vitro simulation experiment to simulate vascular hemorrhage and utilized five color-coded parameters (area under curve, time to peak, time-of-arrival, transit time, and flow rate of contrast agent) to determine the optimal color coding parameters. We then verified it in a clinical study. Results: Five different color-coded parametric imaging methods were compared and the time-of-arrival color coding was the most efficient technique for diagnosing active hemorrhage, with a statistically significant advantage (P < 0.001). In clinical study, 135 patients (101 with confirmed bleeding and 34 with confirmed no bleeding) were collected. For patients whose bleeding could not be determined using DSA alone (55/101) and whose no bleeding could not be diagnosed by DSA alone (35/55), the combination of time-of-arrival color parametric imaging was helpful for diagnosis, with a statistically significant difference (P < 0.01 and P = 0.01). Conclusions: The time-of-arrival color coding imaging method is a valuable tool for detecting active bleeding. When combined with DSA, it improves the visual representation of active hemorrhage and improves the efficiency of diagnosis.

18.
World J Stem Cells ; 16(6): 619-622, 2024 Jun 26.
Article de Anglais | MEDLINE | ID: mdl-38948097

RÉSUMÉ

Proliferation and differentiation of intestinal stem cell (ISC) to replace damaged gut mucosal epithelial cells in inflammatory states is a critical step in ameliorating gut inflammation. However, when this disordered proliferation continues, it induces the ISC to enter a cancerous state. The gut microbiota on the free surface of the gut mucosal barrier is able to interact with ISC on a sustained basis. Microbiota metabolites are able to regulate the proliferation of gut stem and progenitor cells through transcription factors, while in steady state, differentiated colonocytes are able to break down such metabolites, thereby protecting stem cells at the gut crypt. In the future, the gut flora and its metabolites mediating the regulation of ISC differentiation will be a potential treatment for enteropathies.

19.
Article de Anglais | MEDLINE | ID: mdl-38958680

RÉSUMÉ

PURPOSE: While sedation is routinely used in pediatric PET examinations to preserve diagnostic quality, it may result in side effects and may affect the radiotracer's biodistribution. This study aims to investigate the feasibility of sedation-free pediatric PET imaging using ultra-fast total-body (TB) PET scanners and deep learning (DL)-based attenuation and scatter correction (ASC). METHODS: This retrospective study included TB PET (uExplorer) imaging of 35 sedated pediatric patients under four years old to determine the minimum effective scanning time. A DL-based ASC method was applied to enhance PET quantification. Both quantitative and qualitative assessments were conducted to evaluate the image quality of ultra-fast DL-ASC PET. Five non-sedated pediatric patients were subsequently used to validate the proposed approach. RESULTS: Comparisons between standard 300-second and ultra-fast 15-second imaging, CT-ASC and DL-ASC ultra-fast 15-second images, as well as DL-ASC ultra-fast 15-second images in non-sedated and sedated patients, showed no significant differences in qualitative scoring, lesion detectability, and quantitative Standard Uptake Value (SUV) (P = ns). CONCLUSIONS: This study demonstrates that pediatric PET imaging can be effectively performed without sedation by combining ultra-fast imaging techniques with a DL-based ASC. This advancement in sedation-free ultra-fast PET imaging holds potential for broader clinical adoption.

20.
Pestic Biochem Physiol ; 203: 106016, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-39084807

RÉSUMÉ

The novel bactericidal target-filamentous temperature-sensitive protein Z (FtsZ)-has drawn the attention of pharmacologists to address the emerging issues with drug/pesticide resistance caused by pathogenic bacteria. To enrich the structural diversity of FtsZ inhibitors, the antibacterial activity and structure-activity relationship (SAR) of natural sanguinarine and its analogs were investigated by using natural-products repurposing strategy. Notably, sanguinarine and chelerythrine exerted potent anti-Xanthomonas oryzae pv. oryzae (Xoo) activity, with EC50 values of 0.96 and 0.93 mg L-1, respectively, among these molecules. Furthermore, these two compounds could inhibit the GTPase activity of XooFtsZ, with IC50 values of 241.49 µM and 283.14 µM, respectively. An array of bioassays including transmission electron microscopy (TEM), fluorescence titration, and Fourier transform infrared spectroscopy (FT-IR) co-verified that sanguinarine and chelerythrine were potential XooFtsZ inhibitors that could interfere with the assembly of FtsZ filaments by inhibiting the GTPase hydrolytic ability of XooFtsZ protein. Additionally, the pot experiment suggested that chelerythrine and sanguinarine demonstrated excellent curative activity with values of 59.52% and 54.76%, respectively. Excitedly, these two natural compounds also showed outstanding druggability, validated by acceptable drug-like properties and low toxicity on rice. Overall, the results suggested that chelerythrine was a new and potential XooFtsZ inhibitor to develop new bactericide and provided important guiding values for rational drug design of FtsZ inhibitors. Notably, our findings provide a novel strategy to discover novel, promising and green bacterial compounds for the management of plant bacterial diseases.


Sujet(s)
Antibactériens , Protéines bactériennes , Benzophénanthridines , Protéines du cytosquelette , Isoquinoléines , Xanthomonas , Benzophénanthridines/pharmacologie , Benzophénanthridines/composition chimique , Antibactériens/pharmacologie , Antibactériens/composition chimique , Protéines bactériennes/antagonistes et inhibiteurs , Protéines bactériennes/métabolisme , Relation structure-activité , Isoquinoléines/pharmacologie , Isoquinoléines/composition chimique , Protéines du cytosquelette/antagonistes et inhibiteurs , Protéines du cytosquelette/métabolisme , Xanthomonas/effets des médicaments et des substances chimiques , Produits biologiques/pharmacologie , Produits biologiques/composition chimique , Tests de sensibilité microbienne
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE