Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 4 de 4
Filtrer
Plus de filtres











Gamme d'année
1.
Clinics (Sao Paulo) ; 75: e1339, 2020.
Article de Anglais | MEDLINE | ID: mdl-32130353

RÉSUMÉ

OBJECTIVES: Cerebral ischemia seriously threatens human health and is characterized by high rates of incidence, disability and death. Developing an ideal animal model of cerebral ischemia that reflects the human clinical features is critical for pathological studies and clinical research. The goal of this study is to establish a local cerebral ischemia model in rhesus macaque, thereby providing an optimal animal model to study cerebral ischemia. METHODS: Eight healthy rhesus monkeys were selected for this study. CT scans were performed before the operation to exclude cerebral vascular and intracranial lesions. Under guidance and monitoring with digital subtraction angiography (DSA), a microcatheter was inserted into the M1 segment of the middle cerebral artery (MCA) via the femoral artery. Then, autologous white thrombi were introduced to block blood flow. Immediately following embolization, multisequence MRI was used to monitor cerebrovascular and brain parenchymal conditions. Twenty-four hours after embolization, 2 monkeys were sacrificed and subjected to perfusion, fixation and pathological examination. RESULTS: The cerebral ischemia model was established in 7 rhesus monkeys; one animal died during intubation. DSA and magnetic resonance angiography (MRA) indicated the presence of an arterial occlusion. MRI showed acute local cerebral ischemia. HE staining revealed infarct lesions formed in the brain tissues, and thrombi were present in the cerebral artery. CONCLUSION: We established a rhesus macaque model of local cerebral ischemia by autologous thrombus placement. This model has important implications for basic and clinical research on cerebral ischemia. MRI and DSA can evaluate the models to ensure accuracy and effectiveness.


Sujet(s)
Encéphalopathie ischémique/imagerie diagnostique , Infarctus cérébral/imagerie diagnostique , Angiographie de soustraction digitale , Animaux , Chine , Humains , Macaca mulatta , Mâle , Modèles biologiques , Modèles cardiovasculaires
2.
Clinics ; Clinics;75: e1339, 2020. graf
Article de Anglais | LILACS | ID: biblio-1089602

RÉSUMÉ

OBJECTIVES: Cerebral ischemia seriously threatens human health and is characterized by high rates of incidence, disability and death. Developing an ideal animal model of cerebral ischemia that reflects the human clinical features is critical for pathological studies and clinical research. The goal of this study is to establish a local cerebral ischemia model in rhesus macaque, thereby providing an optimal animal model to study cerebral ischemia. METHODS: Eight healthy rhesus monkeys were selected for this study. CT scans were performed before the operation to exclude cerebral vascular and intracranial lesions. Under guidance and monitoring with digital subtraction angiography (DSA), a microcatheter was inserted into the M1 segment of the middle cerebral artery (MCA) via the femoral artery. Then, autologous white thrombi were introduced to block blood flow. Immediately following embolization, multisequence MRI was used to monitor cerebrovascular and brain parenchymal conditions. Twenty-four hours after embolization, 2 monkeys were sacrificed and subjected to perfusion, fixation and pathological examination. RESULTS: The cerebral ischemia model was established in 7 rhesus monkeys; one animal died during intubation. DSA and magnetic resonance angiography (MRA) indicated the presence of an arterial occlusion. MRI showed acute local cerebral ischemia. HE staining revealed infarct lesions formed in the brain tissues, and thrombi were present in the cerebral artery. CONCLUSION: We established a rhesus macaque model of local cerebral ischemia by autologous thrombus placement. This model has important implications for basic and clinical research on cerebral ischemia. MRI and DSA can evaluate the models to ensure accuracy and effectiveness.


Sujet(s)
Humains , Animaux , Mâle , Infarctus cérébral/imagerie diagnostique , Encéphalopathie ischémique/imagerie diagnostique , Angiographie de soustraction digitale , Chine , Macaca mulatta , Modèles biologiques , Modèles cardiovasculaires
3.
Clinics (Sao Paulo) ; 74: e715, 2019 03 07.
Article de Anglais | MEDLINE | ID: mdl-30864640

RÉSUMÉ

Cerebrovascular diseases pose a serious threat to human survival and quality of life and represent a major cause of human death and disability. Recently, the incidence of cerebrovascular diseases has increased yearly. Rapid and accurate diagnosis and evaluation of cerebrovascular diseases are of great importance to reduce the incidence, morbidity and mortality of cerebrovascular diseases. With the rapid development of medical ultrasound, the clinical relationship between ultrasound imaging technology and the diagnosis and treatment of cerebrovascular diseases has become increasingly close. Ultrasound techniques such as transcranial acoustic angiography, doppler energy imaging, three-dimensional craniocerebral imaging and ultrasound thrombolysis are novel and valuable techniques in the study of cerebrovascular diseases. In this review, we introduce some of the new ultrasound techniques from both published studies and ongoing trials that have been confirmed to be convenient and effective methods. However, additional evidence from future studies will be required before some of these techniques can be widely applied or recommended as alternatives.


Sujet(s)
Angiopathies intracrâniennes/imagerie diagnostique , Échographie/tendances , Angiographie cérébrale/méthodes , Humains , Traitement thrombolytique/instrumentation , Échographie/méthodes , Échographie-doppler transcrânienne/méthodes
4.
Clinics ; Clinics;74: e715, 2019. graf
Article de Anglais | LILACS | ID: biblio-989640

RÉSUMÉ

Cerebrovascular diseases pose a serious threat to human survival and quality of life and represent a major cause of human death and disability. Recently, the incidence of cerebrovascular diseases has increased yearly. Rapid and accurate diagnosis and evaluation of cerebrovascular diseases are of great importance to reduce the incidence, morbidity and mortality of cerebrovascular diseases. With the rapid development of medical ultrasound, the clinical relationship between ultrasound imaging technology and the diagnosis and treatment of cerebrovascular diseases has become increasingly close. Ultrasound techniques such as transcranial acoustic angiography, doppler energy imaging, three-dimensional craniocerebral imaging and ultrasound thrombolysis are novel and valuable techniques in the study of cerebrovascular diseases. In this review, we introduce some of the new ultrasound techniques from both published studies and ongoing trials that have been confirmed to be convenient and effective methods. However, additional evidence from future studies will be required before some of these techniques can be widely applied or recommended as alternatives.


Sujet(s)
Humains , Angiopathies intracrâniennes/imagerie diagnostique , Échographie/tendances , Angiographie cérébrale/méthodes , Traitement thrombolytique/instrumentation , Échographie/méthodes , Échographie-doppler transcrânienne/méthodes
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE