Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 127
Filtrer
1.
BMC Complement Med Ther ; 24(1): 227, 2024 Jun 11.
Article de Anglais | MEDLINE | ID: mdl-38862934

RÉSUMÉ

OBJECTIVE: Endometrial cancer (EC) is an oestrogen-dependent tumour, the occurrence of which is closely related to an imbalance of oestrogen homeostasis. Our previous studies explored the effects of Resveratrol(Res) on oestrogen metabolism. However, systematic research on the exact mechanism of action of Res is still lacking. Based on network pharmacology, molecular docking and animal experiments, the effects and molecular mechanisms of Res on endometrial cancer were investigated. METHODS: The target of Res was obtained from the high-throughput experiment and reference-guided database of TCM (HERB) and the Encyclopedia of Traditional Chinese Medicine (ETCM) databases, and the target of endometrial cancer was obtained by using the Genecards database. Venny map was used to obtain the intersection target of Res in the treatment of endometrial cancer, and the protein interaction network of the intersection target was constructed by importing the data into the STRING database. Then, the drug-disease-target interaction network was constructed based on Cytoscape 3.9.1 software. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed for intersection targets using the OmicShare cloud platform. Res and core targets were analysed by molecular docking. EC model mice induced by MNNG were randomly divided into the control group, Res group, MNNG group, MNNG + Res group, and MNNG + Res + MAPK/ERKi group. The protein levels of ERK and p-ERK in the mouse uterus were detected by Western blot. The levels of E1, E2, E3, 16-epiE3, 17-epiE3, 2-MeOE1, 4-MeOE1, 2-MeOE2, 4-MeOE2, 3-MeOE1, 2-OHE1, 4-OHE1, 2-OHE2, 4-OHE2, and 16α-OHE1 in the serum and endometrial tissue of mice were measured by LC‒MS/MS. RESULTS: A total of 174 intersection targets of Res anti-endometrial cancer were obtained. The signalling pathways analysed by KEGG enrichment included the AGE-RAGE signalling pathway in diabetic complications, the PI3K-Akt signalling pathway and the MAPK signalling pathway. The top 10 core targets were MAPK3, JUN, TP53, CASP3, TNF, IL1B, AKT1, FOS, VEGFA and INS. Molecular docking showed that in addition to TNF, other targets had good affinity for Res, and the binding activity with MAPK3 was stable. Western blot results showed that Res increased the phosphorylation level of ERK and that MAPK/ERKi decreased ERK activation. In the LC-MS/MS analysis, the levels of 2-MeOE1, 2-MeOE2 and 4-MeOE1 in serum and uterine tissue showed a significantly decreasing trend in the MNNG group, while that of 4-OHE2 was increased (P < 0.05). The concentrations of 4-MeOE1 in serum and 2-MeOE1 and 2-MeOE2 in the endometrial tissue of mice were significantly increased after Res treatment, and those of 4-OHE2 in the serum and uterus of mice were significantly decreased (P < 0.05). Meanwhile, in the MAPK/ERKi intervention group, the effect of Res on the reversal of oestrogen homeostasis imbalance was obviously weakened. CONCLUSION: Res has multiple targets and multiple approaches in the treatment of endometrial cancer. In this study, it was found that Res regulates oestrogen metabolism by activating the MAPK/ERK pathway. This finding provides a new perspective for subsequent research on the treatment of endometrial cancer.


Sujet(s)
Tumeurs de l'endomètre , Oestrogènes , Système de signalisation des MAP kinases , Simulation de docking moléculaire , Resvératrol , Femelle , Tumeurs de l'endomètre/traitement médicamenteux , Tumeurs de l'endomètre/métabolisme , Animaux , Resvératrol/pharmacologie , Souris , Système de signalisation des MAP kinases/effets des médicaments et des substances chimiques , Oestrogènes/métabolisme , Oestrogènes/pharmacologie , Humains , Souris de lignée BALB C , Pharmacologie des réseaux , Cartes d'interactions protéiques
2.
Alzheimers Dement ; 2024 Jun 27.
Article de Anglais | MEDLINE | ID: mdl-38934363

RÉSUMÉ

INTRODUCTION: Cognitive impairment is a core feature of Down syndrome (DS), and the underlying neurobiological mechanisms remain unclear. Translation dysregulation is linked to multiple neurological disorders characterized by cognitive impairments. Phosphorylation of the translational factor eukaryotic elongation factor 2 (eEF2) by its kinase eEF2K results in inhibition of general protein synthesis. METHODS: We used genetic and pharmacological methods to suppress eEF2K in two lines of DS mouse models. We further applied multiple approaches to evaluate the effects of eEF2K inhibition on DS pathophysiology. RESULTS: We found that eEF2K signaling was overactive in the brain of patients with DS and DS mouse models. Inhibition of eEF2 phosphorylation through suppression of eEF2K in DS model mice improved multiple aspects of DS-associated pathophysiology including de novo protein synthesis deficiency, synaptic morphological defects, long-term synaptic plasticity failure, and cognitive impairments. DISCUSSION: Our data suggested that eEF2K signaling dysregulation mediates DS-associated synaptic and cognitive impairments. HIGHLIGHTS: Phosphorylation of the translational factor eukaryotic elongation factor 2 (eEF2) is increased in the Down syndrome (DS) brain. Suppression of the eEF2 kinase (eEF2K) alleviates cognitive deficits in DS models. Suppression of eEF2K improves synaptic dysregulation in DS models. Cognitive and synaptic impairments in DS models are rescued by eEF2K inhibitors.

3.
Neurobiol Aging ; 140: 116-121, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38763076

RÉSUMÉ

Synaptic dysfunction is highly correlated with cognitive impairments in Alzheimer's disease (AD), the most common dementia syndrome in the elderly. Long-term potentiation (LTP) and long-term depression (LTD) are two primary forms of synaptic plasticity with opposite direction of synaptic efficiency change. Both LTD and LTD are considered to mediate the cellular process of learning and memory. Substantial studies demonstrate AD-associated deficiency of both LTP and LTD. Meanwhile, the molecular signaling mechanisms underlying impairment of synaptic plasticity, particularly LTD, are poorly understood. By taking advantage of the novel transgenic mouse models recently developed in our lab, here we aimed to investigate the roles of AMP-activated protein kinase (AMPK), a central molecular senor that plays a critical role in maintaining cellular energy homeostasis, in regulation of LTD phenotypes in AD. We found that brain-specific suppression of the AMPKα1 isoform (but not AMPKα2 isoform) was able to alleviate mGluR-LTD deficits in APP/PS1 AD mouse model. Moreover, suppression of either AMPKα isoform failed to alleviate AD-related NMDAR-dependent LTD deficits. Taken together with our recent studies on roles of AMPK signaling in AD pathophysiology, the data indicate isoform-specific roles of AMPK in mediating AD-associated synaptic and cognitive impairments.


Sujet(s)
AMP-Activated Protein Kinases , Maladie d'Alzheimer , Modèles animaux de maladie humaine , Dépression synaptique à long terme , Souris transgéniques , Animaux , Maladie d'Alzheimer/physiopathologie , AMP-Activated Protein Kinases/métabolisme , Dépression synaptique à long terme/physiologie , Neurones/physiologie , Neurones/métabolisme , Plasticité neuronale
4.
BMC Psychiatry ; 24(1): 346, 2024 May 08.
Article de Anglais | MEDLINE | ID: mdl-38720293

RÉSUMÉ

BACKGROUND: Studies have revealed the effects of childhood adversity, anxiety, and negative coping on sleep quality in older adults, but few studies have focused on the association between childhood adversity and sleep quality in rural older adults and the potential mechanisms of this influence. In this study, we aim to evaluate sleep quality in rural older adults, analyze the impact of adverse early experiences on their sleep quality, and explore whether anxiety and negative coping mediate this relationship. METHODS: Data were derived from a large cross-sectional study conducted in Deyang City, China, which recruited 6,318 people aged 65 years and older. After excluding non-agricultural household registration and lack of key information, a total of 3,873 rural older adults were included in the analysis. Structural equation modelling (SEM) was used to analyze the relationship between childhood adversity and sleep quality, and the mediating role of anxiety and negative coping. RESULTS: Approximately 48.15% of rural older adults had poor sleep quality, and older adults who were women, less educated, widowed, or living alone or had chronic illnesses had poorer sleep quality. Through structural equation model fitting, the total effect value of childhood adversity on sleep quality was 0.208 (95% CI: 0.146, 0.270), with a direct effect value of 0.066 (95% CI: 0.006, 0.130), accounting for 31.73% of the total effect; the total indirect effect value was 0.142 (95% CI: 0.119, 0.170), accounting for 68.27% of the total effect. The mediating effects of childhood adversity on sleep quality through anxiety and negative coping were significant, with effect values of 0.096 (95% CI: 0.078, 0.119) and 0.024 (95% CI: 0.014, 0.037), respectively. The chain mediating effect of anxiety and negative coping between childhood adversity and sleep quality was also significant, with an effect value of 0.022 (95% CI: 0.017, 0.028). CONCLUSIONS: Anxiety and negative coping were important mediating factors for rural older adult's childhood adversity and sleep quality. This suggests that managing anxiety and negative coping in older adults may mitigate the negative effects of childhood adversity on sleep quality.


Sujet(s)
Adaptation psychologique , Expériences défavorables de l'enfance , Anxiété , Population rurale , Qualité du sommeil , Humains , Mâle , Femelle , Chine/épidémiologie , Sujet âgé , Population rurale/statistiques et données numériques , Études transversales , Anxiété/psychologie , Anxiété/épidémiologie , Expériences défavorables de l'enfance/statistiques et données numériques , Expériences défavorables de l'enfance/psychologie , Sujet âgé de 80 ans ou plus
5.
Drug Metab Dispos ; 52(5): 408-421, 2024 Apr 16.
Article de Anglais | MEDLINE | ID: mdl-38575184

RÉSUMÉ

Metastasis is the most common pathway of cancer death. The lack of effective predictors of breast cancer metastasis is a pressing issue in clinical practice. Therefore, exploring the mechanism of breast cancer metastasis to uncover reliable predictors is very important for the clinical treatment of breast cancer patients. In this study, tandem mass tag quantitative proteomics technology was used to detect protein content in primary breast tumor tissue samples from patients with metastatic and nonmetastatic breast cancer at diagnosis. We found that the high expression of yin-yang 1(YY1) is strongly associated with poor prognosis in high-grade breast cancer. YY1 expression was detected in both clinical tumor tissue samples and tumor tissue samples from mammary-specific polyomavirus middle T antigen overexpression mouse model mice. We demonstrated that upregulation of YY1 expression was closely associated with breast cancer metastasis and that high YY1 expression could promote the migratory invasive ability of breast cancer cells. Mechanistically, YY1 directly binds to the UGT2B7 mRNA initiation sequence ATTCAT, thereby transcriptionally regulating the inhibition of UGT2B7 expression. UGT2B7 can regulate the development of breast cancer by regulating estrogen homeostasis in the breast, and the abnormal accumulation of estrogen, especially 4-OHE2, promotes the migration and invasion of breast cancer cells, ultimately causing the development of breast cancer metastasis. In conclusion, YY1 can regulate the UGT2B7-estrogen metabolic axis and induce disturbances in estrogen metabolism in breast tumors, ultimately leading to breast cancer metastasis. Disturbances in estrogen metabolism in the breast tissue may be an important risk factor for breast tumor progression and metastasis SIGNIFICANCE STATEMENT: In this study, we propose for the first time a regulatory relationship between YY1 and the UGT2B7/estrogen metabolism axis and explore the molecular mechanism. Our study shows that the YY1/UGT2B7/estrogen axis plays an important role in the development and metastasis of breast cancer. This study further elucidates the potential mechanisms of YY1-mediated breast cancer metastasis and the possibility and promise of YY1 as a predictor of cancer metastasis.


Sujet(s)
Tumeurs du sein , Région mammaire , Humains , Animaux , Souris , Femelle , Lignée cellulaire tumorale , Région mammaire/métabolisme , Tumeurs du sein/métabolisme , Oestrogènes , Homéostasie , Prolifération cellulaire , Régulation de l'expression des gènes tumoraux , Glucuronosyltransferase/métabolisme , Facteur de transcription YY1/génétique , Facteur de transcription YY1/métabolisme
6.
Eur J Med Chem ; 271: 116428, 2024 May 05.
Article de Anglais | MEDLINE | ID: mdl-38653068

RÉSUMÉ

Recent evidence suggests that histone deacetylases (HDACs) are important regulators of autosomal dominant polycystic kidney disease (ADPKD). In the present study, a series of benzothiazole-bearing compounds were designed and synthesized as potential HDAC inhibitors. Given the multiple participation of HDACs in ADPKD cyst progression, we embarked on a targeted screen using HeLa nuclear extracts to identify potent pan-HDAC inhibitors. Compound 26 emerged as the most efficacious candidate. Subsequent pharmacological characterization showed that compound 26 effectively inhibits several HDACs, notably HDAC1, HDAC2, and HDAC6 (IC50 < 150 nM), displaying a particularly high sensitivity towards HDAC6 (IC50 = 11 nM). The selected compound significantly prevented cyst formation and expansion in an in vitro cyst model and was efficacious in reducing cyst growth in both an embryonic kidney cyst model and an in vivo ADPKD mouse model. Our results provided compelling evidence that compound 26 represents a new HDAC inhibitor for the treatment of ADPKD.


Sujet(s)
Benzothiazoles , Inhibiteurs de désacétylase d'histone , Polykystose rénale autosomique dominante , Inhibiteurs de désacétylase d'histone/pharmacologie , Inhibiteurs de désacétylase d'histone/composition chimique , Inhibiteurs de désacétylase d'histone/synthèse chimique , Polykystose rénale autosomique dominante/traitement médicamenteux , Polykystose rénale autosomique dominante/anatomopathologie , Humains , Animaux , Souris , Benzothiazoles/pharmacologie , Benzothiazoles/composition chimique , Benzothiazoles/synthèse chimique , Relation structure-activité , Structure moléculaire , Relation dose-effet des médicaments , Cellules HeLa , Histone deacetylases/métabolisme
7.
MedComm (2020) ; 5(4): e526, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-38606361

RÉSUMÉ

Malnutrition is a prevalent and severe issue in hospitalized patients with chronic diseases. However, malnutrition screening is often overlooked or inaccurate due to lack of awareness and experience among health care providers. This study aimed to develop and validate a novel digital smartphone-based self-administered tool that uses facial features, especially the ocular area, as indicators of malnutrition in inpatient patients with chronic diseases. Facial photographs and malnutrition screening scales were collected from 619 patients in four different hospitals. A machine learning model based on back propagation neural network was trained, validated, and tested using these data. The model showed a significant correlation (p < 0.05) and a high accuracy (area under the curve 0.834-0.927) in different patient groups. The point-of-care mobile tool can be used to screen malnutrition with good accuracy and accessibility, showing its potential for screening malnutrition in patients with chronic diseases.

8.
PeerJ ; 12: e16995, 2024.
Article de Anglais | MEDLINE | ID: mdl-38426145

RÉSUMÉ

Background: Hermetia illucens (HI), commonly known as the black soldier fly, has been recognized for its prowess in resource utilization and environmental protection because of its ability to transform organic waste into animal feed for livestock, poultry, and aquaculture. However, the potential of the black soldier fly's high protein content for more than cheap feedstock is still largely unexplored. Methods: This study innovatively explores the potential of H. illucens larvae (HIL) protein as a peptone substitute for microbial culture media. Four commercial proteases (alkaline protease, trypsin, trypsase, and papain) were explored to hydrolyze the defatted HIL, and the experimental conditions were optimized via response surface methodology experimental design. The hydrolysate of the defatted HIL was subsequently vacuum freeze-dried and deployed as a growth medium for three bacterial strains (Staphylococcus aureus, Bacillus subtilis, and Escherichia coli) to determine the growth kinetics between the HIL peptone and commercial peptone. Results: The optimal conditions were 1.70% w/w complex enzyme (alkaline protease: trypsin at 1:1 ratio) at pH 7.0 and 54 °C for a duration of 4 h. Under these conditions, the hydrolysis of defatted HIL yielded 19.25% ±0.49%. A growth kinetic analysis showed no significant difference in growth parameters (µmax, Xmax, and λ) between the HIL peptone and commercial peptone, demonstrating that the HIL hydrolysate could serve as an effective, low-cost alternative to commercial peptone. This study introduces an innovative approach to HIL protein resource utilization, broadening its application beyond its current use in animal feed.


Sujet(s)
Diptera , Peptones , Animaux , Trypsine , Hydrolyse , Cinétique , Larve , Milieux de culture
9.
J Med Chem ; 67(7): 5935-5944, 2024 Apr 11.
Article de Anglais | MEDLINE | ID: mdl-38509003

RÉSUMÉ

The dysregulated intracellular cAMP in the kidneys drives cystogenesis and progression in autosomal dominant polycystic kidney disease (ADPKD). Mounting evidence supports that vasopressin V2 receptor (V2R) antagonism effectively reduces cAMP levels, validating this receptor as a therapeutic target. Tolvaptan, an FDA-approved V2R antagonist, shows limitations in its clinical efficacy for ADPKD treatment. Therefore, the pursuit of better-in-class V2R antagonists with an improved efficacy remains pressing. Herein, we synthesized a set of peptide V2R antagonists. Peptide 33 exhibited a high binding affinity for the V2R (Ki = 6.1 ± 1.5 nM) and an extended residence time of 20 ± 1 min, 2-fold that of tolvaptan. This prolonged interaction translated into sustained suppression of cAMP production in washout experiments. Furthermore, peptide 33 exhibited improved efficacies over tolvaptan in both ex vivo and in vivo models of ADPKD, underscoring its potential as a promising lead compound for the treatment of ADPKD.


Sujet(s)
Polykystose rénale autosomique dominante , Humains , Tolvaptan/usage thérapeutique , Tolvaptan/métabolisme , Polykystose rénale autosomique dominante/traitement médicamenteux , Polykystose rénale autosomique dominante/métabolisme , Antagonistes des récepteurs de l'hormone antidiurétique/pharmacologie , Antagonistes des récepteurs de l'hormone antidiurétique/usage thérapeutique , Rein/métabolisme , Vasopressines/métabolisme , Récepteurs à la vasopressine/métabolisme
10.
Mol Cell Endocrinol ; 587: 112200, 2024 Jun 01.
Article de Anglais | MEDLINE | ID: mdl-38518841

RÉSUMÉ

OBJECTIVE: Myocardial injuries resulting from hypoxia are a significant concern, and this study aimed to explore potential protective strategies against such damage. Specifically, we sought to investigate the cardioprotective effects of 16α-hydroxyestrone (16α-OHE1). METHODS: Male Sprague‒Dawley (SD) rats were subjected to hypoxic conditions simulating high-altitude exposure at 6000 m in a low-pressure chamber for 7 days. Before and during hypoxic exposure, estradiol (E2) and various doses of 16α-OHE1 were administered for 14 days. Heart weight/body weight (HW/BW), myocardial structure, Myocardial injury indicators and inflammatory infiltration in rats were measured. H9C2 cells cultured under 5% O2 conditions received E2 and varying doses of 16α-OHE1; Cell viability, apoptosis, inflammatory infiltration, and Myocardial injury indicators were determined. Expression levels of ß2AR were determined in rat hearts and H9C2 cells. The ß2AR inhibitor, ICI 118,551, was employed to investigate ß2AR's role in 16α-OHE1's cardioprotective effects. RESULTS: Hypoxia led to substantial myocardial damage, evident in increased heart HW, CK-MB, cTnT, ANP, BNP, structural myocardial changes, inflammatory infiltration, and apoptosis. Pre-treatment with E2 and 16α-OHE1 significantly mitigated these adverse changes. Importantly, the protective effects of E2 and 16α-OHE1 were associated with the upregulation of ß2AR expression in both rat hearts and H9C2 cells. However, inhibition of ß2AR by ICI 118,551 in H9C2 cells nullified the protective effect of 16α-OHE1 on myocardium. CONCLUSION: Our findings suggest that 16α-OHE1 can effectively reduce hypoxia-induced myocardial injury in rats through ß2ARs, indicating a promising avenue for cardioprotection.


Sujet(s)
Hydroxyoestrones , Inflammation , Propanolamines , Mâle , Animaux , Rats , Hydroxyoestrones/pharmacologie , Rat Sprague-Dawley , Myocarde , Récepteurs adrénergiques
11.
Hum Cell ; 37(3): 689-703, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38551774

RÉSUMÉ

Polycystic ovary syndrome (PCOS) is a complex gynaecological endocrine disease that occurs in women of childbearing age. The pathogenesis of PCOS is still unclear and further exploration is needed. Here, proteomic analysis indicated that the expression of farnesyl diphosphate synthase (FDPS) protein in ovarian tissue of PCOS mice was significantly decreased. The purpose of this study is to investigate the relationship between potential biomarkers of PCOS and granulosa cells (GCs) function. The mechanisms by which FDPS affected the proliferation of granulosa cells were also explored both in vitro and in vivo. We found that knockdown of FDPS inhibited the proliferation of KGN (human ovarian granulosa cell line), while overexpression of FDPS had the opposite effect. FDPS activated Rac1 (Rac Family Small GTPase 1) activity and regulated MAPK/ERK signalling pathway, which affecting the proliferation of KGN cells significantly. In addition, treatment with the adeno-associated virus (AAV)-FDPS reverses the dehydroepiandrosterone (DHEA)-induced PCOS-phenotype in mice. Our data indicated that FDPS could regulate the proliferation of ovarian GCs by modulating MAPK/ERK (mitogen-activated protein kinase/extracellular regulated protein kinases) pathway via activating Rac1 activity. These findings suggest that FDPS could be of great value for the regulation of ovarian granulosa cell function and the treatment of PCOS.


Sujet(s)
microARN , Syndrome des ovaires polykystiques , Humains , Femelle , Souris , Animaux , Syndrome des ovaires polykystiques/génétique , Geranyltranstransferase/métabolisme , Protéomique , Cellules de la granulosa/métabolisme , Prolifération cellulaire , microARN/métabolisme , Apoptose , Protéine G rac1/génétique , Protéine G rac1/métabolisme
12.
Reprod Sci ; 2024 Mar 18.
Article de Anglais | MEDLINE | ID: mdl-38499949

RÉSUMÉ

Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders in women. This study aimed to investigate the therapeutic effects and mechanism of Jujuboside A on PCOS using a dehydroepiandrosterone (DHEA)-induced PCOS mouse model. Estrogen and androgen homeostasis was evaluated in serum from both clinical samples and PCOS mice. The stages of the estrous cycle were determined based on vaginal cytology. The ovarian morphology was observed by stained with hematoxylin and eosin. Moreover, we analyzed protein expression of cytochrome P450 1A1 (CYP1A1), cytochrome P450 1A2 (CYP1A2) and aryl hydrocarbon receptor (AhR) in ovary and KGN cells. Molecular docking, immunofluorescence, and luciferase assay were performed to confirm the activation of AhR by Jujuboside A. Jujuboside A effectively alleviated the disturbance of estrogen homeostasis and restored ovarian function, leading to an improvement in the occurrence and progression of PCOS. Furthermore, the protective effect of JuA against PCOS was dependent on increased CYP1A2 levels regulated by AhR. Our findings suggest that Jujuboside A improves estrogen disorders and may be a potential therapeutic agent for the treatment of PCOS.

13.
Front Biosci (Landmark Ed) ; 29(2): 66, 2024 Feb 06.
Article de Anglais | MEDLINE | ID: mdl-38420815

RÉSUMÉ

BACKGROUND: Gynecological malignancies, such as endometrial cancer (EC) and uterine cancer are prevalent. Increased Acyl-CoA synthetase long-chain family member 1 (ACSL1) activity may contribute to aberrant lipid metabolism, which is a potential factor that contributes to the pathogenesis of endometrial cancer. This study aimed to elucidate the potential molecular mechanisms by which ACSL1 is involved in lipid metabolism in endometrial cancer, providing valuable insights for targeted therapeutic strategies. METHODS: Xenograft mouse models were used to assess the effect of ACSL1 on the regulation of endometrial cancer progression. ACSL1 protein levels were assessed via immunohistochemistry and immunoblotting analysis. To assess the migratory potential of Ishikawa cells, wound-healing and Transwell invasion assays were performed. Changes in lipids in serum samples from mice with endometrial cancer xenotransplants were examined in an untargeted lipidomic study that combined multivariate statistical methods with liquid chromatography‒mass spectrometry (LC/MS). RESULTS: Patient sample and tissue microarray data suggested that higher ACSL1 expression is strongly associated with the malignant progression of EC. Overexpression of ACSL1 enhances fatty acid ß-oxidation and 5'-adenylate triphosphate (ATP) generation in EC cells, promoting cell proliferation and migration. Lipidomic analysis revealed that significant changes were induced by ACSL1, including changes to 28 subclasses of lipids and a total of 24,332 distinct lipids that were detected in both positive and negative ion modes. Moreover, pathway analysis revealed the predominant association of these lipid modifications with the AMPK/CPT1C/ATP pathway and fatty acid ß-oxidation. CONCLUSIONS: This study indicates that ACSL1 regulates the AMPK/CPT1C/ATP pathway, which induces fatty acid ß-oxidation, promotes proliferation and migration, and then leads to the malignant progression of EC.


Sujet(s)
Tumeurs de l'endomètre , Acides gras , Humains , Souris , Animaux , Femelle , Acides gras/métabolisme , AMP-Activated Protein Kinases/métabolisme , Métabolisme lipidique , Tumeurs de l'endomètre/génétique , Adénosine triphosphate/métabolisme , Coenzyme A ligases/génétique , Coenzyme A ligases/métabolisme
14.
Biochem Genet ; 2024 Feb 21.
Article de Anglais | MEDLINE | ID: mdl-38383835

RÉSUMÉ

At present, the main treatment method for wet AMD is single anti-VEGF therapy, which can require multiple injections, is costly and may have poor efficacy. Studies and clinical experiments have shown that the oral Chinese medicine Xueshuantong combined with anti-VEGF therapy is more effective, and this study aims to explore the molecular mechanism. The TCMSP database was used to identify the main Xueshuantong components. The PubChem database and SWISS Target Prediction data were used to find the SMILES molecular formulas of compounds and corresponding target genes and disease-related genes were searched using the GEO, DisGeNET, and GeneCards databases. Venny was used to identify the intersecting wet AMD-related genes and Xueshuantong targets and Cytoscape software was used to construct direct links between the drug components and disease targets. Then, PPI networks were constructed using the STRING website. R software was used for GO and KEGG enrichment analyses. Cytoscape software was used for topological analyses, and AutoDock Vina v.1.1.2 software was used for molecular docking. 64 compounds corresponding to four drugs were found by the TCMSP database, 1001 total drug targets were found by the PubChem database, 607 wet AMD target genes were found by the GEO, DisGeNET, and GeneCards databases, and 87 Xueshuantong target genes for wet AMD were obtained. Then, by constructing the drug component and disease target network and PPI network, we found that the components closely interacted with VEGF, TNF, caspase 3, CXCL8, and AKT1, which suggested that the therapeutic effects might be related to the inhibition of neovascularization, inflammation, and AKT pathway. Then, GO enrichment analysis showed that the biological processes response to hypoxia, positive regulation of angiogenesis, and inflammatory response were enriched. KEGG enrichment results showed that the HIF-1 and pi3k-akt pathways may mediate the inhibition of wet AMD by Xueshuantong. Topological analysis results identified 10 key proteins, including VEGF, TNF, AKT1, and TLR4. The results of molecular docking also confirmed their strong binding to their respective compounds. In this study, it was confirmed that Xueshuantong could inhibit wet AMD by targeting VEGF, TNF, TLR4, and AKT1, multichannel HIF-1, and the PI3K-AKT pathway, which further proved the therapeutic effects of Xueshuantong combined with single anti-VEGF therapy on wet AMD and provided new insights into the study of novel molecular drug targets for the treatment of wet AMD.

15.
J Pharm Anal ; 14(1): 52-68, 2024 Jan.
Article de Anglais | MEDLINE | ID: mdl-38352949

RÉSUMÉ

The occurrence of benign prostate hyperplasia (BPH) was related to disrupted sex steroid hormones, and metformin (Met) had a clinical response to sex steroid hormone-related gynaecological disease. However, whether Met exerts an antiproliferative effect on BPH via sex steroid hormones remains unclear. Here, our clinical study showed that along with prostatic epithelial cell (PEC) proliferation, sex steroid hormones were dysregulated in the serum and prostate of BPH patients. As the major contributor to dysregulated sex steroid hormones, elevated dihydrotestosterone (DHT) had a significant positive relationship with the clinical characteristics of BPH patients. Activation of adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) by Met restored dysregulated sex steroid hormone homeostasis and exerted antiproliferative effects against DHT-induced proliferation by inhibiting the formation of androgen receptor (AR)-mediated Yes-associated protein (YAP1)-TEA domain transcription factor (TEAD4) heterodimers. Met's anti-proliferative effects were blocked by AMPK inhibitor or YAP1 overexpression in DHT-cultured BPH-1 cells. Our findings indicated that Met would be a promising clinical therapeutic approach for BPH by inhibiting dysregulated steroid hormone-induced PEC proliferation.

16.
Anal Chem ; 96(5): 1913-1921, 2024 02 06.
Article de Anglais | MEDLINE | ID: mdl-38266028

RÉSUMÉ

2D nanosheets (NSs) have been widely used in drug-related applications. However, a comprehensive investigation into the cytotoxicity mechanism linked to the redox activity is lacking. In this study, with cytochrome c (Cyt c) as the model biospecies, the cytotoxicity of 2D NSs was evaluated systematically based on their redox effect with microfluidic techniques. The interface interaction, dissolution, and redox effect of 2D NSs on Cyt c were monitored with pulsed streaming potential (SP) measurement and capillary electrophoresis (CE). The relationship between the redox activity of 2D NSs and the function of Cyt c was evaluated in vitro with Hela cells. The results indicated that the dissolution and redox activity of 2D NSs can be simultaneously monitored with CE under weak interface interactions and at low sample volumes. Both WS2 NSs and MoS2 NSs can reduce Cyt c without significant dissolution, with reduction rates measured at 6.24 × 10-5 M for WS2 NSs and 3.76 × 10-5 M for MoS2 NSs. Furthermore, exposure to 2D NSs exhibited heightened reducibility, which prompted more pronounced alterations associated with Cyt c dysfunction, encompassing ATP synthesis, modifications in mitochondrial membrane potential, and increased reactive oxygen species production. These observations suggest a positive correlation between the redox activity of 2D NSs and their redox toxicity in Hela cells. These findings provide valuable insight into the redox properties of 2D NSs regarding cytotoxicity and offer the possibility to modify the 2D NSs to reduce their redox toxicity for clinical applications.


Sujet(s)
Cytochromes c , Molybdène , Humains , Cellules HeLa , Oxydoréduction
17.
Int J Biol Macromol ; 253(Pt 1): 126636, 2023 Dec 31.
Article de Anglais | MEDLINE | ID: mdl-37657565

RÉSUMÉ

Abuse of antibiotics has led to excessive amounts of antibiotic residues in food and environment, thus enhancing pathogenic bacterium resistance and threatening human health. Therefore, searching and developing safe and green antibiotic alternatives are necessary. In this study, an Artemisia argyi leaf polysaccharide (AALP) fraction was extracted and analyzed. Chemical composition analysis showed that the carbohydrate, uronic acid, protein, and polyphenol content in AALP were 68.3 % ± 4.13 %, 9.4 % ± 0.86 %, 1.79 % ± 0.27 %, and 0.16 % ± 0.035 %, respectively. Chromatographic results suggested that AALP contained rhamnose, arabinose, glucosamine, galactose, glucose, xylose, mannose, galacturonic acid, and glucuronic acid in a molar ratio of 9.26, 1.35, 1.18, 3.04, 48.51, 2.33, 31.26, 3.93, and 9.08; the weight average molecular weight, number average molecular weight, and polydispersity of AALP were 5.41 kDa, 4.63 kDa, and 1.168, respectively. Fourier transform infrared spectroscopy indicated that AALP constituted the polysaccharide-specific groups of CH, CO, and OH. Meanwhile, AALP showed a dose-dependent inhibitory effect on Staphylococcus aureus in the inhibition zone assay, and the minimal inhibitory concentration was 1.25 mg/mL. Furthermore, AALP disrupted the cell wall, depolarized the inner membrane potential, and inhibited the activities of succinate dehydrogenase and malate dehydrogenase in S. aureus.


Sujet(s)
Artemisia , Infections à staphylocoques , Humains , Staphylococcus aureus , Polyosides/composition chimique , Antibactériens/composition chimique , Artemisia/composition chimique , Feuilles de plante/composition chimique
18.
Int Ophthalmol ; 43(11): 4137-4150, 2023 Nov.
Article de Anglais | MEDLINE | ID: mdl-37552428

RÉSUMÉ

PURPOSE: As an autoimmune disease, Vogt‒Koyanagi‒Harada disease (VKHD) is a main type of uveitis in many countries and regions, significantly impacting patient vision. At present, information regarding VKHD is still limited, and further research is needed. We conducted a bibliometric analysis to characterize the overall status, current trends, and current focus of VKHD research. METHOD: Literature published from 1975 to 2022 was obtained from the Web of Science core collection and analysed with the R-language packages Bibliometrix, VOSviewer, and CiteSpace software. RESULTS: A total of 1050 papers on VKHD were retrieved from 261 journals, and 16,084 references were obtained from the papers in the original search. The average annual number of published articles was approximately 21.9, and the number of publications rapidly increased after 2004. The journal Ocular Immunology and Inflammation published the most papers on VKHD, while the American Journal of Ophthalmology has the highest citation frequency. The leading countries were Japan, China (PRC), and the United States of America (USA). Yang PZ from Chongqing Medical University was the most prolific and cited author. The most frequently cited study discussed revision of VKHD diagnostic criteria. An analysis of the highest frequency keywords showed that most research focused on the treatment, diagnosis, and pathogenesis of VKHD and its relationship with other related diseases. At present, the most urgent research direction is in the relationship between COVID-19 or COVID-19 vaccines and VKHD and the corresponding mechanisms underlying it. CONCLUSION: Utilizing dynamic and visualization tools, bibliometrics provides a clear depiction of the research history, development trends, and research hotspots in VKHD It serves as a valuable tool for identifying research gaps and areas that necessitate further exploration. Our study revealed potential directions for future VKHD research, including investigating specific molecular mechanisms underlying the disease, exploring the clinical utility of optical coherence tomography angiography and other diagnostic techniques, and conducting clinical research on novel therapeutic drugs.


Sujet(s)
Maladies auto-immunes , COVID-19 , Syndrome uvéo-méningo-encéphalique , Humains , Syndrome uvéo-méningo-encéphalique/diagnostic , Vaccins contre la COVID-19 , Bibliométrie
19.
Environ Toxicol ; 38(11): 2772-2782, 2023 Nov.
Article de Anglais | MEDLINE | ID: mdl-37551785

RÉSUMÉ

BACKGROUND: Diabetic nephropathy (DN) is a major cause of end-stage renal disease throughout the world, and m6A modification plays a critical role in the progression of DN. We aimed to find m6A-related genes and their regulatory mechanisms in DN. METHODS: The expression levels of four important m6A-related genes (METTL16, RBM15, IGF2BP1, and ALKBH5) were detected by quantitative real-time PCR (RT-qPCR). RBM15 was chosen and its function was explored. The downstream pathway of RBM15 was screened by transcriptome sequencing. The levels of AGE, inflammation, and oxidative stress were determined with enzyme-linked immunosorbent assay, and the expression of AGE-RAGE pathway-related proteins were detected by Western blot (WB). Cell proliferation was assessed by Cell counting Kit-8 (CCK-8). The levels of pyroptosis-related proteins were evaluated by RT-qPCR or WB. RESULTS: METTL16 and RBM15 were up regulated in the mouse model of DN, in which RBM15 was more significant. Silencing RBM15 recovered cell proliferation, reduced the levels of inflammation factors, and inhibited cell pyroptosis in high glucose-induced HK-2 cells. Transcriptome sequencing suggested that the AGE-RAGE pathway might be downstream of RBM15. RBM15 knockdown reduced AGE level and the expression of AGE-RAGE pathway-related proteins. After silencing RBM15, we found that activating the AGE-RAGE pathway inhibited cell proliferation, increased the levels of inflammation factors, promoted oxidative stress, and induced cell pyroptosis in HK-2 cell model of DN. CONCLUSION: The m6A-related gene RBM15 inhibited cell proliferation, promoted inflammation, oxidative stress, and cell pyroptosis, thereby facilitating the progression of DN through the activation of the AGE-RAGE pathway.

20.
Biochem Pharmacol ; 215: 115729, 2023 09.
Article de Anglais | MEDLINE | ID: mdl-37558004

RÉSUMÉ

Triple-negative breast cancer (TNBC) is an aggressive breast cancer subtype with high invasiveness, metastatic potential, and poor prognosis. Epithelial-mesenchymal transition (EMT) is pivotal in TNBC progression, becoming a promising target for TNBC treatment. Our study evaluated N-3, a novel synthetic bifendate derivative, which inhibited the EMT-associated migration and invasion of MDA-MB-231 and 4T1 TNBC cells. The results were consistent with the suppression of FOXC1 expression and transcriptional activity. Additional studies indicated that N-3 reduced the protein stability of FOXC1 by enhancing ubiquitination and degradation. Moreover, N-3 downregulated p-p38 expression and FOXC1 interaction, decreasing the stability of p38-regulated FOXC1. Further, N-3 blocked TNBC metastasis with an artificial lung metastasis model in vivo, related to FOXC1 suppression and EMT. These results highlight the potential of N-3 as a TNBC metastasis treatment. Therefore, FOXC1 regulation could be a novel targeted therapeutic strategy for TNBC metastasis.


Sujet(s)
Tumeurs du sein triple-négatives , Humains , Tumeurs du sein triple-négatives/anatomopathologie , Lignée cellulaire tumorale , Transition épithélio-mésenchymateuse/physiologie , Mouvement cellulaire , Régulation de l'expression des gènes tumoraux , Prolifération cellulaire , Facteurs de transcription Forkhead/génétique , Facteurs de transcription Forkhead/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...