Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Dev Cell ; 59(4): 448-464.e8, 2024 Feb 26.
Article de Anglais | MEDLINE | ID: mdl-38237589

RÉSUMÉ

Histone acetylation affects numerous cellular processes, such as gene transcription, in both plants and animals. However, the posttranslational modification-participated regulatory networks for crop-yield-related traits are largely unexplored. Here, we characterize a regulatory axis for controlling rice grain size and yield, centered on a potent histone acetyltransferase (chromatin modifier) known as HHC4. HHC4 interacts with and forms a ternary complex with adaptor protein ADA2 and transcription factor bZIP23, wherein bZIP23 recruits HHC4 to specific promoters, and ADA2 and HHC4 additively enhance bZIP23 transactivation on target genes. Meanwhile, HHC4 interacts with and is phosphorylated by GSK3-like kinase TGW3. The resultant phosphorylation triggers several functional impairments of the HHC4 ternary complex. In addition, we identify two major phosphorylation sites of HHC4 by TGW3-sites which play an important role in controlling rice grain size. Overall, our findings thus have critical implications for understanding epigenetic basis of grain size control and manipulating the knowledge for higher crop productivity.


Sujet(s)
Oryza , Animaux , Phosphorylation , Oryza/génétique , Oryza/métabolisme , Glycogen Synthase Kinase 3/métabolisme , Grains comestibles/génétique , Grains comestibles/métabolisme , Protéines végétales/génétique , Protéines végétales/métabolisme , Chromatine/métabolisme
2.
J Phys Chem A ; 111(40): 10044-9, 2007 Oct 11.
Article de Anglais | MEDLINE | ID: mdl-17880189

RÉSUMÉ

The ground state Raman spectra of all-trans-beta-carotene in n-hexane and CS2 solutions are measured by simultaneously changing the solvent environment and molecular structure under high hydrostatic pressure. The diverse pressure dependencies of several representative Raman bands are explained using a competitive mechanism involving bond length changes and vibronic coupling. It is therefore concluded that (a) the in-phase C=C stretching mode plays an essential role in the conversion of energy from S1 to S0 states in carotenoids, (b) internal conversion and intramolecular vibrational redistribution can be accelerated by high pressure, and (c) the environmental effect, but not the structural distortion or pi-electron delocalization, is responsible for the spectral properties of a given carotenoid species. These findings revealed the potential of high pressure in exploring the nature of the biological functions of carotenoids.


Sujet(s)
Analyse spectrale Raman/méthodes , Bêtacarotène/composition chimique , Biophysique/méthodes , Caroténoïdes/composition chimique , Chimie physique/méthodes , Hexanes/composition chimique , Modèles chimiques , Modèles statistiques , Pression , Spectrométrie de fluorescence/méthodes , Vibration
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE