Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 124
Filtrer
1.
Pharmaceuticals (Basel) ; 17(6)2024 Jun 20.
Article de Anglais | MEDLINE | ID: mdl-38931479

RÉSUMÉ

Efforts have been made to improve the therapeutic efficiency of tumor treatments, and metal-organic frameworks (MOFs) have shown excellent potential in tumor therapy. Monotherapy for the treatment of tumors has limited effects due to the limitation of response conditions and inevitable multidrug resistance, which seriously affect the clinical therapeutic effect. In this study, we chose to construct a multiple cascade synergistic tumor drug delivery system MIL-101(Fe)-DOX-TCPP-MnO2@PDA-Ag (MDTM@P-Ag) using MOFs as drug carriers. Under near-infrared (NIR) laser irradiation, 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin (TCPP) and Ag NPs loaded on MDTM@P-Ag can be activated to generate cytotoxic reactive oxygen species (ROS) and achieve photothermal conversion, thus effectively inducing the apoptosis of tumor cells and achieving a combined photodynamic/photothermal therapy. Once released at the tumor site, manganese dioxide (MnO2) can catalyze the decomposition of hydrogen peroxide (H2O2) in the acidic microenvironment of the tumor to generate oxygen (O2) and alleviate the hypoxic environment of the tumor. Fe3+/Mn2+ will mediate a Fenton/Fenton-like reaction to generate cytotoxic hydroxyl radicals (·OH), while depleting the high concentration of glutathione (GSH) in the tumor, thus enhancing the chemodynamic therapeutic effect. The successful preparation of the tumor drug delivery system and its good synergistic chemodynamic/photodynamic/photothermal therapeutic effect in tumor treatment can be demonstrated by the experimental results of material characterization, performance testing and in vitro experiments.

2.
Adv Sci (Weinh) ; : e2403391, 2024 Jun 24.
Article de Anglais | MEDLINE | ID: mdl-38925593

RÉSUMÉ

The development of lithium-sulfur (Li─S) batteries has been hampered by the shuttling effect of lithium polysulfides (LiPSs). An effective method to address this issue is to use an electrocatalyst to accelerate the catalytic conversion of LiPSs. In this study, heterogeneous MnP-MnO2 nanoparticles are uniformly synthesized and embedded in porous carbon (MnP-MnO2/C) as core catalysts to improve the reaction kinetics of LiPSs. In situ characterization and density functional theory (DFT) calculations confirm that the MnP-MnO2 heterostructure undergo surface sulfidation during the charge/discharge process, forming the MnS2 phase. Surface sulfidation of the MnP-MnO2 heterostructure catalyst significantly accelerated the SRR and Li2S activation, effectively inhibiting the LiPSs shuttling effect. Consequently, the MnP-MnO2/C@S cathode achieves outstanding rate performance (10 C, 500 mAh g-1) and ultrahigh cycling stability (0.017% decay rate per cycle for 2000 cycles at 5 C). A pouch cell with MnP-MnO2/C@S cathode delivers a high energy density of 429 Wh kg-1. This study may provide a new approach to investigating the surface sulfidation of electrocatalysts, which is valuable for advancing high-energy-density Li-S batteries.

3.
Nanoscale Adv ; 6(12): 3169-3180, 2024 Jun 11.
Article de Anglais | MEDLINE | ID: mdl-38868827

RÉSUMÉ

The development of effective bifunctional electrocatalysts that can realize water splitting to produce oxygen and hydrogen through oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is still a great challenge to be addressed. Herein, we report a simple and versatile approach to fabricate bifunctional OER and HER electrocatalysts derived from ZIF67/MXene hybrids via sulfurization of the precursors in hydrogen sulfide gas atmosphere at high temperatures. The as-prepared CoS@C/MXene nanocomposites were characterized using a series of technologies including X-ray diffraction, gas sorption, scanning electronic microscopy, transmission electronic microscopy, energy dispersive spectroscopy, and X-ray photoelectron spectroscopy. The synthesized CoS@C/MXene composites are electrocatalytically active in both HER and OER, and the CSMX-800 composite displayed the highest electrocatalytic performance towards OER and HER among all the produced samples. CSMX-800 exhibited overpotentials of 257 mV at 10 mA cm-2 for OER and 270 mV at 10 mA cm-2 for HER. Moreover, it also possesses small Tafel slope values of 93 mV dec-1 and 103 mV dec-1 for OER and HER, respectively. The enhanced electrocatalytic performance of the MXene-containing composites is due to their high surface area, enhanced conductivity, and faster charge transfer. This work demonstrated that CoS@C/MXene based electrocatalyst has great potential in electrochemical water splitting for hydrogen production, thus reducing carbon emissions and protecting the environment.

4.
Foods ; 13(10)2024 May 17.
Article de Anglais | MEDLINE | ID: mdl-38790869

RÉSUMÉ

The harvest year of maize seeds has a significant impact on seed vitality and maize yield. Therefore, it is vital to identify new seeds. In this study, an on-line near-infrared (NIR) spectra collection device (899-1715 nm) was designed and employed for distinguishing maize seeds harvested in different years. Compared with least squares support vector machine (LS-SVM), k-nearest neighbor (KNN), and extreme learning machine (ELM), the partial least squares discriminant analysis (PLS-DA) model has the optimal recognition performance for maize seed harvest years. Six different preprocessing methods, including Savitzky-Golay smoothing (SGS), standard normal variate transformation (SNV), multiplicative scatter correction (MSC), Savitzky-Golay 1 derivative (SG-D1), Savitzky-Golay 2 derivative (SG-D2), and normalization (Norm), were used to improve the quality of the spectra. The Monte Carlo cross-validation uninformative variable elimination (MC-UVE), competitive adaptive reweighted sampling (CARS), bootstrapping soft shrinkage (BOSS), successive projections algorithm (SPA), and their combinations were used to obtain effective wavelengths and decrease spectral dimensionality. The MC-UVE-BOSS-PLS-DA model achieved the classification with an accuracy of 88.75% using 93 features based on Norm preprocessed spectral data. This study showed that the self-designed NIR collection system could be used to identify the harvested years of maize seed.

5.
Int J Biol Macromol ; 269(Pt 2): 132207, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38723823

RÉSUMÉ

To overcome the low efficacy of sonodynamic therapy (SDT) caused by hypoxia in the tumor microenvironment, we developed a multiple anti-tumor nanoplatform with synergistic SDT, photothermal therapy (PTT), and ferroptosis effects. PCN-224@FcCaO2/Mn/dihydroartemisinin/imiquimod/PDA (PFC) was prepared by modified with dihydroartemisinin (DHA), imiquimod (R837), CaO2, ferrocene (Fc) and Mn2+ on the PCN-224 (Cu) to achieve self-replenishment of H2O2/O2 and GSH consumption. FcCaO2 decomposed into H2O2 in the tumor microenvironment, triggering the Fenton effect to produce OH, and Cu2+ reduced the potential loss of OH by the depletion of GSH. Under ultrasonic (US) and laser irradiation, PFC exhibits exciting PTT and SDT effects from polydopamine (PDA) and PCN-224. Mn2+ not only promoted the reaction of H2O2 to produce O2 to effectively enhance SDT but also induced tumor cell apoptosis by Mn2+ combined with DHA. PFC induced ferroptosis via Fe interaction with DHA to produce ROS and reduce the expression of GPX4. The released R837 and tumor-associated antigens from SDT/PTT can produce damage associated molecular patterns (DAMPs), which can initiate adaptive immune responses to kill cancer cells, and released again to promote the tumor immune cycle. What's more, SDT/PTT and ferroptosis combined with aPD-L1 can effectively suppress both primary and distant tumor growth.


Sujet(s)
Indoles , Réseaux organométalliques , Thérapie photothermique , Polymères , Indoles/composition chimique , Indoles/pharmacologie , Polymères/composition chimique , Polymères/pharmacologie , Humains , Animaux , Souris , Thérapie photothermique/méthodes , Réseaux organométalliques/composition chimique , Réseaux organométalliques/pharmacologie , Lignée cellulaire tumorale , Nanoparticules/composition chimique , Apoptose/effets des médicaments et des substances chimiques , Ferroptose/effets des médicaments et des substances chimiques , Microenvironnement tumoral/effets des médicaments et des substances chimiques , Association thérapeutique , Inhibiteurs de points de contrôle immunitaires/pharmacologie , Inhibiteurs de points de contrôle immunitaires/composition chimique , Peroxyde d'hydrogène/pharmacologie , Imiquimod/pharmacologie , Métallocènes/composition chimique , Métallocènes/pharmacologie
6.
iScience ; 27(4): 109535, 2024 Apr 19.
Article de Anglais | MEDLINE | ID: mdl-38617562

RÉSUMÉ

Electrochromic (EC) glazing has garnered significant attention recently as a crucial solution for enhancing energy efficiency in future construction and automotive sectors. EC glazing could significantly reduce the energy usage of buildings compared to traditional blinds and glazing. Despite their commercial availability, several challenges remain, including issues with switching time, leakage of electrolytes, production costs, etc. Consequently, these areas demand more attention and further studies. Among inorganic-based EC materials, tungsten oxide nanostructures are essential due to its outstanding advantages such as low voltage demand, high coloration coefficient, large optical modulation range, and stability. This review will summarize the principal design and mechanism of EC device fabrication. It will highlight the current gaps in understanding the mechanism of EC theory, discuss the progress in material development for EC glazing, including various solutions for improving EC materials, and finally, introduce the latest advancements in photo-EC devices that integrate photovoltaic and EC technologies.

7.
RSC Adv ; 14(20): 13719-13733, 2024 Apr 25.
Article de Anglais | MEDLINE | ID: mdl-38681837

RÉSUMÉ

Developing low-cost and efficient photocatalyst/co-catalyst systems that promote CO2 reduction remains a challenge. In this work, Ag-Ti3C2Tx composites were made using a self-reduction technique, and unique Ag-Ti3C2Tx/ZnO ternary heterojunction structure photocatalysts were created using an electrostatic self-assembly process. The photocatalyst's close-contact heterogeneous interface increases photogenerated carrier migration efficiency. The combination of Ti3C2Tx and Ag improves the adsorption active sites and reaction centers for ZnO, making it a key site for CO2 adsorption and activation. The best photocatalysts had CO and CH4 reduction efficiencies of 11.985 and 0.768 µmol g-1 h-1, respectively. The CO2 conversion was 3.35 times better than that of pure ZnO, which demonstrated remarkable stability even after four cycle trials with no sacrificial agent. Furthermore, in situ diffuse reflectance infrared Fourier transform spectroscopy (in situ DRIFTS) and valence band spectroscopy were utilized to propose the photocatalytic reaction mechanism and electron transfer channels of the Ag-Ti3C2Tx/ZnO system, confirming that CHO* and CO* are the important intermediates in the generation of CH4 and CO. This study introduces a novel method for the development of new and efficient photocatalysts and reveals that Ti3C2Tx MXene is a viable co-catalyst for applications.

8.
Biol Trace Elem Res ; 2024 Mar 26.
Article de Anglais | MEDLINE | ID: mdl-38528285

RÉSUMÉ

Selenium nanoparticle (Nano-Se) is a new type of selenium supplement, which can improve the deficiency of traditional selenium supplements and maintain its physiological activity. Due to industrial pollution and irrational use in agriculture, Cu overexposure often occurs in animals and humans. In this study, Nano-Se alleviated CuSO4-induced testicular Cu accumulation, serum testosterone level decrease, testicular structural damage, and decrease in sperm quality. Meanwhile, Nano-Se reduced the ROS content in mice testis and enhanced the activities of T-AOC, GSH, SOD, and CAT compared with CuSO4 group. Furthermore, Nano-Se alleviated CuSO4-induced apoptosis by increasing the protein expression of Cleaved-Caspase-3, Cleaved-Caspase-9, Cleaved-Caspase-12, and Bax/Bcl-2 compared with CuSO4 group. At the same time, Nano-Se reversed CuSO4-induced increase of γ-H2AX protein expression in mice testis. In conclusion, this study confirmed that Nano-Se could alleviate oxidative stress, apoptosis, and DNA damage in the testis of mice with Cu excess, thereby protecting the spermatogenesis disorder induced by Cu.

9.
J Colloid Interface Sci ; 662: 298-312, 2024 May 15.
Article de Anglais | MEDLINE | ID: mdl-38354557

RÉSUMÉ

Tumors produce a hypoxic environment that greatly influences cancer treatment, and conventional chemotherapeutic drugs cannot selectively accumulate in the tumor region because of the lack of a tumor targeting mechanism, causing increased systemic toxicities and side effects. Hence, designing and developing new nanoplatforms that combine multimodal therapeutic regimens is essential to improve tumor therapeutic efficacy. Herein, we report the synthesis of ultrafine Cu nanoparticles loaded with a drug combination of cisplatin (Pt) and 1-methyl-d-tryptophan (1-MT) and externally coated with 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin (TCPP) photosensitizer, polydopamine (PDA) and CaO2 of MIL-101(Fe) as a new nanoplatform (Cu@MIL-101@PMTPC). The nanoplatform synergistically combined chemodynamic therapy (CDT), photodynamic therapy (PDT), and immunochemotherapy. The Fe3+ in MIL-101(Fe) and the surface Cu nanoparticles exhibited strong ability to consume intracellular glutathione (GSH), thereby generating a Fenton-like response in the tumor microenvironment (TME) with substantial peroxidase (POD)-like and superoxide dismutase (SOD)-like activities. In this design, we used the indoleamine 2,3-dioxygenase (IDO) inhibitor 1-MT to overcome chemotherapy-induced immune escape phenomena including enhanced CD8+ and CD4+ T cell expression, interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α) production, and accelerated immunogenic cell death. The targeted release of cisplatin loaded into Cu@MIL-101@PMTPC also reduced toxic side effects of chemotherapy. TCPP generated a large amount of singlet oxygen (1O2) upon specific laser irradiation to effectively kill tumor cells. CaO2 on the outer layer generated oxygen (O2) and hydrogen peroxide (H2O2) to ameliorate hypoxia in the tumor microenvironment, enhance the PDT effect, and provide a continuous supply of H2O2 for the Fenton-like reaction. Thus, this nanocarrier platform exhibited a powerful chemodynamic, photodynamic, and immunochemotherapeutic cascade, providing a new strategy for cancer treatment.


Sujet(s)
Réseaux organométalliques , Nanoparticules , Tumeurs , Photothérapie dynamique , Humains , Cisplatine/pharmacologie , Peroxyde d'hydrogène , Glutathion , Lignée cellulaire tumorale , Microenvironnement tumoral
10.
Quant Imaging Med Surg ; 14(2): 1616-1635, 2024 Feb 01.
Article de Anglais | MEDLINE | ID: mdl-38415168

RÉSUMÉ

Background: The high-definition standard (HD-standard) scan mode has been proven to display stents better than the standard (STND) scan mode but with more image noise. Deep learning image reconstruction (DLIR) is capable of reducing image noise. This study examined the impact of HD-standard scan mode with DLIR algorithms on stent and coronary artery image quality in coronary computed tomography angiography (CCTA) via a comparison with conventional STND scan mode and adaptive statistical iterative reconstruction-Veo (ASIR-V) algorithms. Methods: The data of 121 patients who underwent HD-standard mode scans (group A: N=47, with coronary stent) or STND mode scans (group B: N=74, without coronary stent) were retrospectively collected. All images were reconstructed with ASIR-V at a level of 50% (ASIR-V50%) and a level of 80% (ASIR-V80%) and with DLIR at medium (DLIR-M) and high (DLIR-H) levels. The noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), artifact index (AI), and in-stent diameter were measured as objective evaluation parameters. Subjective assessment involved a 5-point scale for overall image quality, image noise, stent appearance, stent artifacts, vascular sharpness, and diagnostic confidence. Diagnostic confidence was evaluated based on the presence or absence of significant stenosis (≥50% lumen reduction). Both subjective and objective evaluations were conducted by two radiologists independently, with kappa and intraclass correlation statistics being used to test the interobserver agreement. Results: There were 76 evaluable stents in group A, and the DLIR-H algorithm significantly outperformed other algorithms, demonstrating the lowest noise (41.6±7.1/41.3±7.2) and AI (32.4±8.9/31.2±10.1), the highest SNR (14.6±3.5/15.0±3.5) and CNR (13.6±3.8/13.9±3.8), and the largest in-stent diameter (2.18±0.61/2.19±0.61) in representing true stent diameter (all P values <0.01), as well as the highest score in each subjective evaluation parameter. In group B, a total of 296 coronary arteries were evaluated, and the DLIR-H algorithm provided the best objective image quality, with statistically superior noise, SNR, and CNR compared with the other algorithms (all P values <0.05). Moreover, the HD-standard mode scan with DLIR provided better image quality and a lower radiation dose than did the STND mode scan with ASIR-V (P<0.01). Conclusions: HD-standard scan mode with DLIR-H improves image quality of both stents and coronary arteries on CCTA under a lower radiation dose.

11.
RSC Adv ; 14(10): 6865-6873, 2024 Feb 21.
Article de Anglais | MEDLINE | ID: mdl-38410359

RÉSUMÉ

Flexible sensors have promising applications in the fields of health monitoring and artificial intelligence, which have attracted much attention from researchers. However, the design and manufacture of sensors with multiple sensing functions (like simultaneously having both temperature and pressure sensing capabilities) still present a significant challenge. Here, an ionic thermoelectric sensor for synchronous temperature and pressure sensing was developed on the basis of a carbon microtubes (CMTs)/potassium chloride (KCl)/gelatin composite consisting of gelatin as the polymer matrix, CMTs as the conductive material and KCl as the ion source. The designed CMTs/KCl/gelatin composite with the good ductility (830%) and flexibility can achieve a Seebeck coefficient of 4 mV K-1 and a dual stimulus responsiveness to pressure and temperature. In addition, not only the movement of the human body (e.g., fingers, arms), but also the temperature difference between the human body and the environment, were able to be monitored by the designed CMTs/KCl/gelatin sensors. This study provides a novel strategy for the design and preparation of high-performance flexible sensors by utilizing ion-gel thermoelectric materials and promotes the research of temperature and pressure sensing technologies.

12.
J Colloid Interface Sci ; 661: 606-613, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38310769

RÉSUMÉ

The problem limiting the use of hydrogen evolution reactions in industry is the inability of electrocatalysts to operate stably at high current densities, so the development of stable and efficient electrocatalysts is important for hydrogen production by water splitting. By designing a rational interface engineering not only can the problem of limited number of catalytic sites in the catalyst be solved, but also can facilitate electron transfer, thus enhancing the efficiency of water splitting. Here, we designed a two-stage chemical vapour deposition method to construct NiC/Mo2C nanorod arrays on nickel foam to enhance the electrocatalytic ability of the catalysts, which exhibited efficient HER catalytic activity due to their special tentacle-like nanorod structure and abundant heterogeneous junction surfaces, which brought about abundant active sites as well as promoted electron transfer capability. The resulting catalysts provide current densities of 10, 100 and 500 mA cm-2 with overpotentials of 31, 153 and 264 mV, and exhibit excellent stability at current densities of 10 mA cm-2 for 200 h. This discovery provides a new idea for the rational design of catalysts with special morphologies.

13.
Biol Trace Elem Res ; 2024 Feb 20.
Article de Anglais | MEDLINE | ID: mdl-38376728

RÉSUMÉ

Inflammation is a complex physiological process that enables the clearance of pathogens and repairing damaged tissues. Elevated serum copper concentration has been reported in cases of inflammation, but the role of copper in inflammatory responses remains unclear. This study used bovine macrophages to establish lipopolysaccharide (LPS)-induced inflammation model. There were five groups in the study: a group treated with LPS (100 ng/ml), a group treated with either copper chelator (tetrathiomolybdate, TTM) (20 µmol) or CuSO4 (25 µmol or 50 µmol) after LPS stimulation, and a control group. Copper concentrations increased in macrophages after the LPS treatment. TTM decreased mRNA expression of pro-inflammatory factors (IL-1ß, TNF-α, IL-6, iNOS, and COX-2), whereas copper supplement increased them. Compared to the control group, TLP4 and MyD88 protein levels were increased in the TTM and copper groups. However, TTM treatment decreased p-p65 and increased IкB-α while the copper supplement showed reversed results. In addition, the phagocytosis and migration of bovine macrophages decreased in the TTM treatment group while increased in the copper treatment groups. Results mentioned above indicated that copper could promote the LPS-induced inflammatory response in bovine macrophages, promote pro-inflammatory factors by activating the NF-кB pathway, and increase phagocytosis capacity and migration. Our study provides a possible targeted therapy for bovine inflammation.

14.
Angew Chem Int Ed Engl ; 63(16): e202319732, 2024 Apr 15.
Article de Anglais | MEDLINE | ID: mdl-38367015

RÉSUMÉ

Bio-catalysis represents a highly efficient and stereoselective method for the synthesis of valuable chiral compounds, however, the poor stability and limited reaction types of free enzymes restrict their wide application in industrial production. In this work, to overcome these problems, a multifunctional photoenzymatic nanoreactor CALB@COF-Ir was developed through the encapsulation of Candida antarctica lipase B (CALB) in a photosensitive covalent organic framework COF-Ir. This bio-nanocluster serves as efficient catalysts in asymmetric dynamic kinetic resolution (DKR) of secondary amines to give a series of chiral amines in high yields (up to 99 %) and enantioselectivities (up to 99 % ee). The well-designed COF-Ir not only acts as safety cover to prevent CALB from deactivation but promotes racemization of secondary amines via photo-induced hydrogen atom transfer (HAT) process. Photoelectric characterization and TDDFT calculation revealed that (ppy)2Ir units in COF-Ir play crucial role in this photocatalytic system which enhance its photo-redox properties through facilitating the separation between photoelectrons (e-) and holes (h+). Furthermore, the heterogeneous photoenzymatic nanoreactor could be recycled for five rounds with slight decline of catalytic reactivity.

15.
Angew Chem Int Ed Engl ; 63(11): e202319909, 2024 Mar 11.
Article de Anglais | MEDLINE | ID: mdl-38243685

RÉSUMÉ

Benzoxazole-linked covalent organic frameworks (BO-COFs), despite their exceptional chemical stability, are still in their infancy. This is primarily because the current prevalent methods require the use of special ortho-hydroxyl-substituted aromatic amines as monomers. Herein, we report an innovative strategy to access BO-COFs directly from imine-linked COFs (Im-COFs) without pre-embedded OH groups, using a two-step sequential oxidation/cyclization process. The two-step process included the oxidation of Im-COFs into amide-linked COFs, followed by a copper-catalyzed oxidative cyclization. Five representative BO-COFs were synthesized with retained crystallinity and high oxidization efficiency, offering the potential to convert a significant portion of Im-COFs into BO-COFs. The structural advantages of the newly designed BO-COFs were demonstrated through their application to photocatalytic organic transformations.

16.
Chem Commun (Camb) ; 60(13): 1782-1785, 2024 Feb 08.
Article de Anglais | MEDLINE | ID: mdl-38252554

RÉSUMÉ

Inspired by the bidentate coordination chemistry of metal ions, we incorporated hydroxyl (OH) and methoxy (OMe) groups into the skeleton of imine-linked COFs to improve their protonation ability via intramolecular hydrogen bonds (O-H⋯NC). In comparison with the pristine COFs possessing monodentate nitrogen coordination sites, OH and OMe functionalized COFs with (N,O)-bidentate chelating sites exhibited up to 13.8 times faster photocatalytic hydrogen evolution rates (HERs).

17.
Environ Toxicol ; 39(4): 2208-2217, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-38124272

RÉSUMÉ

Copper is an essential trace element for animal. Excessive intake of copper will cause a large accumulation of copper in the body, especially in the liver, and induce hepatotoxicity, however, there are few studies on the effects of copper on hepatic mitochondrial biogenesis and mitochondrial dynamics. In this study, mice were treated with different doses of CuSO4 (0, 10, 20, and 40 mg/kg) for 21 and 42 days by gavage. The results verified that CuSO4 decreased the content of mitochondrial respiratory chain complexes I-IV in mouse liver. CuSO4 treatment resulted the decrease in the protein and mRNA expression levels of PGC-1α, TFAM, and NRF1, which were the mitochondrial biogenesis regulator proteins. Meanwhile, the proteins involved in mitochondrial fusion were reduced by CuSO4 , such as Mfn1 and Mfn2, however, mitochondrial fission proteins Drip1 and Fis1 were significantly increased. Abovementioned results show that CuSO4 could induce mitochondria damage in the liver of mice, and mitochondrial biogenesis and mitochondrial dynamics are involved in the molecular mechanism of CuSO4 -induced hepatotoxicity.


Sujet(s)
Lésions hépatiques dues aux substances , Cuivre , Souris , Animaux , Cuivre/toxicité , Cuivre/métabolisme , Mitochondries/métabolisme , Dynamique mitochondriale/génétique , Protéines mitochondriales/génétique , Protéines mitochondriales/métabolisme , Lésions hépatiques dues aux substances/métabolisme
18.
iScience ; 26(12): 108435, 2023 Dec 15.
Article de Anglais | MEDLINE | ID: mdl-38077124

RÉSUMÉ

Layered double hydroxides (LDHs) are widely used in catalytic field, especially in photocatalysis, benefiting from the ultrathin 2D structure and luxuriant surface functional groups. However, the wide band gap and low utilization rate of solar spectrum affect their photocatalytic performance. Herein, we integrated n-type CoAl-LDH with p-type Cu2O nanoparticles to construct a p-n heterojunction with a strong built-in electric field, which can prevent photoinduced electron-hole pairs from recombination as well as facilitate charge transfer. With the X-ray photoelectron spectroscope and in situ Fourier transform infrared spectroscopy, we confirmed the charge transfer under light illumination complying with the type II-scheme mechanism and analyzed the intermediates during photocatalytic CO2 reduction reaction (CO2RR). The highest yields reached 320.9 µmol h-1 g-1 for CoAl-LDH@Cu2O-60 (LC-60) under 1 h light irradiation, which was about 1.6 times than the pristine CoAl-LDH. The sample also exhibited excellent stability which maintained 84.1% of initial performance after 4 circulations.

19.
RMD Open ; 9(4)2023 12 01.
Article de Anglais | MEDLINE | ID: mdl-38053456

RÉSUMÉ

OBJECTIVE: The pathogenesis of hand osteoarthritis (OA) remains unknown. Hyperuricaemia, which is related to inflammation, may play a role in hand OA, but evidence is lacking. In a large population-based study, we examined the association between hyperuricaemia and hand OA. METHODS: Participants were from the Xiangya OA Study, a community-based observational study. Hyperuricaemia was defined as serum urate >416 µmol/L in men and >357 µmol/L in women. Radiographic hand OA (RHOA) was defined as presence of the modified Kellgren-Lawrence grade ≥2 in any hand joint. Symptomatic hand OA (SHOA) was defined as presence of both self-reported symptoms and RHOA in the same hand. The associations of hyperuricaemia with RHOA or SHOA were examined using generalised estimating equations. RESULTS: Among 3628 participants, the prevalence of RHOA was higher in participants with hyperuricaemia than those with normouricaemia (26.9% vs 20.9%), with an adjusted OR (aOR) of 1.34 (95% CI 1.11 to 1.61). The associations were consistent in men (aOR 1.33, 95% CI 1.01 to 1.74) and women (aOR 1.35, 95% CI 1.05 to 1.74). Hyperuricaemia was mainly associated with bilateral RHOA (aOR 1.54, 95% CI 1.18 to 2.01) but not unilateral RHOA (aOR 1.13, 95% CI 0.89 to 1.45). Prevalence of SHOA was higher, although statistically insignificant, in participants with hyperuricaemia (aOR 1.39, 95% CI 0.94 to 2.07). CONCLUSION: In this population-based study, hyperuricaemia was associated with a higher prevalence of hand OA. Future prospective studies are required to investigate the temporal relationship. TRIAL REGISTRATION NUMBER: NCT04033757.


Sujet(s)
Articulations de la main , Hyperuricémie , Arthrose , Mâle , Humains , Femelle , Hyperuricémie/complications , Hyperuricémie/épidémiologie , Arthrose/épidémiologie , Arthrose/étiologie , Articulations de la main/imagerie diagnostique , Main , Études prospectives
20.
RSC Adv ; 13(50): 35457-35467, 2023 Nov 30.
Article de Anglais | MEDLINE | ID: mdl-38115985

RÉSUMÉ

Electrochromic (EC) glass has the potential to significantly improve energy efficiency in buildings by controlling the amount of light and heat that the building exchanges with its exterior. However, the development of EC materials is still hindered by key challenges such as slow switching time, low coloration efficiency, short cycling lifetime, and material degradation. Metal doping is a promising technique to enhance the performance of metal oxide-based EC materials, where adding a small amount of metal into the host material can lead to lattice distortion, a variation of oxygen vacancies, and a shorter ion transfer path during the insertion and de-insertion process. In this study, we investigated the effects of niobium, gadolinium, and erbium doping on tungsten oxide using a single-step solvothermal technique. Our results demonstrate that both insertion and de-insertion current density of a doped sample can be significantly enhanced by metal elements, with an improvement of about 5, 4 and 3.5 times for niobium, gadolinium and erbium doped tungsten oxide, respectively compared to a pure tungsten oxide sample. Moreover, the colouration efficiency increased by 16, 9 and 24% when doping with niobium, gadolinium and erbium, respectively. These findings suggest that metal doping is a promising technique for improving the performance of EC materials and can pave the way for the development of more efficient EC glass for building applications.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...