Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 11 de 11
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Nature ; 620(7972): 163-171, 2023 Aug.
Article de Anglais | MEDLINE | ID: mdl-37495694

RÉSUMÉ

An outstanding mystery in biology is why some species, such as the axolotl, can regenerate tissues whereas mammals cannot1. Here, we demonstrate that rapid activation of protein synthesis is a unique feature of the injury response critical for limb regeneration in the axolotl (Ambystoma mexicanum). By applying polysome sequencing, we identify hundreds of transcripts, including antioxidants and ribosome components that are selectively activated at the level of translation from pre-existing messenger RNAs in response to injury. By contrast, protein synthesis is not activated in response to non-regenerative digit amputation in the mouse. We identify the mTORC1 pathway as a key upstream signal that mediates tissue regeneration and translational control in the axolotl. We discover unique expansions in mTOR protein sequence among urodele amphibians. By engineering an axolotl mTOR (axmTOR) in human cells, we show that these changes create a hypersensitive kinase that allows axolotls to maintain this pathway in a highly labile state primed for rapid activation. This change renders axolotl mTOR more sensitive to nutrient sensing, and inhibition of amino acid transport is sufficient to inhibit tissue regeneration. Together, these findings highlight the unanticipated impact of the translatome on orchestrating the early steps of wound healing in a highly regenerative species and provide a missing link in our understanding of vertebrate regenerative potential.


Sujet(s)
Ambystoma mexicanum , Évolution biologique , Biosynthèse des protéines , Régénération , Sérine-thréonine kinases TOR , Animaux , Humains , Souris , Ambystoma mexicanum/physiologie , Séquence d'acides aminés , Membres/physiologie , Régénération/physiologie , ARN messager/génétique , ARN messager/métabolisme , Sérine-thréonine kinases TOR/métabolisme , Cicatrisation de plaie , Complexe-1 cible mécanistique de la rapamycine/métabolisme , Spécificité d'espèce , Antioxydants/métabolisme , Nutriments/métabolisme , Polyribosomes/génétique , Polyribosomes/métabolisme
2.
Dev Cell ; 56(21): 2928-2937.e9, 2021 11 08.
Article de Anglais | MEDLINE | ID: mdl-34752747

RÉSUMÉ

Although gene expression is tightly regulated during embryonic development, the impact of translational control has received less experimental attention. Here, we find that eukaryotic translation initiation factor-3 (eIF3) is required for Shh-mediated tissue patterning. Analysis of loss-of-function eIF3 subunit c (Eif3c) mice reveal a unique sensitivity to the Shh receptor patched 1 (Ptch1) dosage. Genome-wide in vivo enhanced cross-linking immunoprecipitation sequence (eCLIP-seq) shows unexpected specificity for eIF3 binding to a pyrimidine-rich motif present in subsets of 5'-UTRs and a corresponding change in the translation of these transcripts by ribosome profiling in Eif3c loss-of-function embryos. We further find a transcript specific effect in Eif3c loss-of-function embryos whereby translation of Ptch1 through this pyrimidine-rich motif is specifically sensitive to eIF3 amount. Altogether, this work uncovers hidden specificity of housekeeping translation initiation machinery for the translation of key developmental signaling transcripts.


Sujet(s)
Facteur-3 d'initiation eucaryote/métabolisme , Biosynthèse des protéines/physiologie , Maturation post-traductionnelle des protéines/physiologie , Ribosomes/métabolisme , Animaux , Lignée cellulaire , Facteur-3 d'initiation eucaryote/génétique , Humains , Souris , ARN messager/génétique , Transduction du signal/physiologie
3.
Dev Cell ; 56(14): 2089-2102.e11, 2021 07 26.
Article de Anglais | MEDLINE | ID: mdl-34242585

RÉSUMÉ

In ribosomopathies, perturbed expression of ribosome components leads to tissue-specific phenotypes. What accounts for such tissue-selective manifestations as a result of mutations in the ribosome, a ubiquitous cellular machine, has remained a mystery. Combining mouse genetics and in vivo ribosome profiling, we observe limb-patterning phenotypes in ribosomal protein (RP) haploinsufficient embryos, and we uncover selective translational changes of transcripts that controlling limb development. Surprisingly, both loss of p53, which is activated by RP haploinsufficiency, and augmented protein synthesis rescue these phenotypes. These findings are explained by the finding that p53 functions as a master regulator of protein synthesis, at least in part, through transcriptional activation of 4E-BP1. 4E-BP1, a key translational regulator, in turn, facilitates selective changes in the translatome downstream of p53, and this thereby explains how RP haploinsufficiency may elicit specificity to gene expression. These results provide an integrative model to help understand how in vivo tissue-specific phenotypes emerge in ribosomopathies.


Sujet(s)
Protéines adaptatrices de la transduction du signal/métabolisme , Protéines du cycle cellulaire/métabolisme , Membres/embryologie , Haploinsuffisance , Biosynthèse des protéines , Maturation post-traductionnelle des protéines , Protéines ribosomiques/physiologie , Protéine p53 suppresseur de tumeur/physiologie , Protéines adaptatrices de la transduction du signal/génétique , Animaux , Plan d'organisation du corps , Protéines du cycle cellulaire/génétique , Régulation de l'expression des gènes au cours du développement , Souris , Souris knockout , Phénotype , Ribosomes/métabolisme
5.
Nat Cell Biol ; 23(2): 198-208, 2021 02.
Article de Anglais | MEDLINE | ID: mdl-33526902

RÉSUMÉ

Cells achieve highly efficient and accurate communication through cellular projections such as neurites and filopodia, yet there is a lack of genetically encoded tools that can selectively manipulate their composition and dynamics. Here, we present a versatile optogenetic toolbox of artificial multi-headed myosin motors that can move bidirectionally within long cellular extensions and allow for the selective transport of GFP-tagged cargo with light. Utilizing these engineered motors, we could transport bulky transmembrane receptors and organelles as well as actin remodellers to control the dynamics of both filopodia and neurites. Using an optimized in vivo imaging scheme, we further demonstrate that, upon limb amputation in axolotls, a complex array of filopodial extensions is formed. We selectively modulated these filopodial extensions and showed that they re-establish a Sonic Hedgehog signalling gradient during regeneration. Considering the ubiquitous existence of actin-based extensions, this toolbox shows the potential to manipulate cellular communication with unprecedented accuracy.


Sujet(s)
Communication cellulaire , Myosines/métabolisme , Optogénétique , Ingénierie des protéines , Cytosquelette d'actine/métabolisme , Ambystoma mexicanum/physiologie , Animaux , Transport biologique , Lignée cellulaire , Survie cellulaire/effets des radiations , Membres/physiologie , Protéines à fluorescence verte/métabolisme , Protéines Hedgehog/métabolisme , Cinétique , Lumière , Souris , Cellules souches embryonnaires de souris/métabolisme , Neurites/métabolisme , Pseudopodes/métabolisme , Régénération/physiologie , Transduction du signal , Vésicules de transport/métabolisme
7.
Nat Commun ; 8: 14443, 2017 02 14.
Article de Anglais | MEDLINE | ID: mdl-28195124

RÉSUMÉ

The degree and dynamics of translational control during mammalian development remain poorly understood. Here we monitored translation of the mammalian genome as cells become specified and organize into tissues in vivo. This identified unexpected and pervasive translational regulation of most of the core signalling circuitry including Shh, Wnt, Hippo, PI3K and MAPK pathways. We further identify and functionally characterize a complex landscape of upstream open reading frames (uORFs) across 5'-untranslated regions (UTRs) of key signalling components. Focusing on the Shh pathway, we demonstrate the importance of uORFs within the major SHH receptor, Ptch1, in control of cell signalling and neuronal differentiation. Finally, we show that the expression of hundreds of mRNAs underlying critical tissue-specific developmental processes is largely regulated at the translation but not transcript levels. Altogether, this work reveals a new layer of translational control to major signalling components and gene regulatory networks that diversifies gene expression spatially across developing tissues.


Sujet(s)
Régulation de l'expression des gènes au cours du développement , Mammifères/génétique , Mammifères/métabolisme , Maturation post-traductionnelle des protéines/génétique , Maturation post-traductionnelle des protéines/physiologie , Régions 5' non traduites/génétique , Régions 5' non traduites/physiologie , Animaux , Clustered regularly interspaced short palindromic repeats , Femelle , Protéines Hedgehog/métabolisme , Voie de signalisation Hippo , Protéines et peptides de signalisation intercellulaire/métabolisme , Souris , Mitogen-Activated Protein Kinase Kinases/métabolisme , Cellules NIH 3T3 , Cadres ouverts de lecture/génétique , Cadres ouverts de lecture/physiologie , Récepteur Patched-1/métabolisme , Phosphatidylinositol 3-kinases/métabolisme , Biosynthèse des protéines , Protein-Serine-Threonine Kinases/métabolisme , Maturation post-transcriptionnelle des ARN , ARN messager/métabolisme , Alignement de séquences , Voie de signalisation Wnt
8.
PLoS One ; 10(3): e0119455, 2015.
Article de Anglais | MEDLINE | ID: mdl-25760946

RÉSUMÉ

Hedgehog signaling is primarily transduced by two transcription factors: Gli2, which mainly acts as a full-length activator, and Gli3, which tends to be proteolytically processed from a full-length form (Gli3FL) to an N-terminal repressor (Gli3REP). Recent studies using a Sufu knockout mouse have indicated that Sufu is involved in regulating Gli2 and Gli3 activator and repressor activity at multiple steps of the signaling cascade; however, the mechanism of specific Gli2 and Gli3 regulation remains to be elucidated. In this study, we established an allelic series of ENU-induced mouse strains. Analysis of one of the missense alleles, SufuT396I, showed that Thr396 residue of Sufu played a key role in regulation of Gli3 activity. SufuT396I/T396I embryos exhibited severe polydactyly, which is indicative of compromised Gli3 activity. Concomitantly, significant quantitative reductions of unprocessed Gli3 (Gli3FL) and processed Gli3 (Gli3REP) were observed in vivo as well as in vitro. Genetic experiments showed that patterning defects in the limb buds of SufuT396I/T396I were rescued by a constitutive Gli3REP allele (Gli3∆699), strongly suggesting that SufuT396I reduced the truncated Gli3 repressor. In contrast, SufuT396I qualitatively exhibited no mutational effects on Gli2 regulation. Taken together, the results of this study show that the Thr396 residue of Sufu is specifically required for regulation of Gli3 but not Gli2. This implies a novel Sufu-mediated mechanism in which Gli2 activator and Gli3 repressor are differentially regulated.


Sujet(s)
Facteurs de transcription Krüppel-like/composition chimique , Facteurs de transcription Krüppel-like/métabolisme , Mutation faux-sens , Protéines de tissu nerveux/composition chimique , Protéines de tissu nerveux/métabolisme , Protéines de répression/génétique , Protéines de répression/métabolisme , Animaux , Plan d'organisation du corps , Membres/croissance et développement , Isoleucine/métabolisme , Souris , Polydactylie/embryologie , Polydactylie/génétique , Stabilité protéique , Thréonine/métabolisme , Protéine à doigts de zinc Gli2 , Protéine à doigts de zinc Gli3
9.
Dev Dyn ; 244(3): 468-78, 2015 Mar.
Article de Anglais | MEDLINE | ID: mdl-25581370

RÉSUMÉ

BACKGROUND: The vertebrate digit pattern is defined by the morphogen Sonic hedgehog (Shh), which controls the activity of Gli transcription factors. Gli1, 2 and 3 are dynamically expressed during patterning. Downstream of Shh, their activity is regulated by Sufu and Kif7, core components of the Shh signaling cascade. The precise roles of these regulators during limb development have not been fully described. We analyze the role of Sufu and Kif7 in the limb and demonstrate that their loss has distinct and synergistic effects on Gli activity and digit pattern. RESULTS: Using a series of mouse mutants, we show that Sufu and Kif7 are expressed throughout limb development and their deletion has distinct effects on Gli levels and limb formation. Concomitant deletion of Sufu and Kif7 results in constitutive pathway activity and severe limb truncation. This is consistent with the recently published two-population model, which suggests that precocious activation of Shh signaling inhibits organizing center formation and limb outgrowth. CONCLUSIONS: Together, our findings demonstrate that perturbations of Sufu and Kif7 affect Gli activity and recapitulate the full spectrum of vertebrate limb defects, ranging from severe truncation to polydactyly.


Sujet(s)
Plan d'organisation du corps/physiologie , Protéines Hedgehog/métabolisme , Membre pelvien/embryologie , Kinésine/métabolisme , Protéines de répression/métabolisme , Transduction du signal/physiologie , Animaux , Protéines Hedgehog/génétique , Kinésine/génétique , Souris , Souris knockout , Protéines oncogènes/génétique , Protéines oncogènes/métabolisme , Polydactylie/embryologie , Polydactylie/génétique , Protéines de répression/génétique , Transactivateurs/génétique , Transactivateurs/métabolisme , Protéine à doigt de zinc GLI1
10.
Dev Biol ; 397(2): 191-202, 2015 Jan 15.
Article de Anglais | MEDLINE | ID: mdl-25448692

RÉSUMÉ

Ptch1 and Ptch2 are highly conserved vertebrate homologs of Drosophila ptc, the receptor of the Hedgehog (Hh) signaling pathway. The vertebrate Ptch1 gene encodes a potent tumor suppressor and is well established for its role in embryonic development. In contrast, Ptch2 is poorly characterized and dispensable for embryogenesis. In flies and mice, ptc/Ptch1 controls Hh signaling through the regulation of Smoothened (Smo). In addition, Hh pathway activation also up-regulates ptc/Ptch1 expression to restrict the diffusion of the ligand. Recent studies have implicated Ptch2 in this ligand dependent antagonism, however whether Ptch2 encodes a functional Shh receptor remains unclear. In this report, we demonstrate that Ptch2 is a functional Shh receptor, which regulates Smo localization and activity in vitro. We also show that Ptch1 and Ptch2 are co-expressed in the developing mouse limb bud and loss of Ptch2 exacerbates the outgrowth defect in the limb-specific Ptch1 knockout mutants, demonstrating that Ptch1 and Ptch2 co-operate in regulating cellular responses to Shh in vivo.


Sujet(s)
Membres/embryologie , Morphogenèse/physiologie , Récepteurs de surface cellulaire/métabolisme , Animaux , Technique de Western , Lignée cellulaire , Protéines Hedgehog/métabolisme , Hybridation in situ , Souris , Souris knockout , Morphogenèse/génétique , Récepteurs patched , Récepteur Patched-1 , Récepteur Patched-2 , Récepteurs de surface cellulaire/génétique , Récepteurs couplés aux protéines G/métabolisme , Récepteur Smoothened
11.
Dev Cell ; 29(2): 241-9, 2014 Apr 28.
Article de Anglais | MEDLINE | ID: mdl-24726283

RÉSUMÉ

The patterning and growth of the embryonic vertebrate limb is dependent on Sonic hedgehog (Shh), a morphogen that regulates the activity of Gli transcription factors. However, Shh expression is not observed during the first 12 hr of limb development. During this phase, the limb bud is prepatterned into anterior and posterior regions through the antagonistic actions of transcription factors Gli3 and Hand2. We demonstrate that precocious activation of Shh signaling during this early phase interferes with the Gli3-dependent specification of anterior progenitors, disturbing establishment of signaling centers and normal outgrowth of the limb. Our findings illustrate that limb development requires a sweet spot in the level and timing of pathway activation that allows for the Shh-dependent expansion of posterior progenitors without interfering with early prepatterning functions of Gli3/Gli3R or specification of anterior progenitors.


Sujet(s)
Protéines Hedgehog/métabolisme , Bourgeons de membre/embryologie , Bourgeons de membre/métabolisme , Transduction du signal/physiologie , Animaux , Lignées animales non consanguines , Facteurs de transcription à motif basique hélice-boucle-hélice/génétique , Facteurs de transcription à motif basique hélice-boucle-hélice/métabolisme , Plan d'organisation du corps/physiologie , Bovins , Poulets , Régulation de l'expression des gènes au cours du développement , Protéines Hedgehog/génétique , Kinésine/génétique , Kinésine/métabolisme , Facteurs de transcription Krüppel-like/génétique , Facteurs de transcription Krüppel-like/métabolisme , Souris , Protéines de tissu nerveux/génétique , Protéines de tissu nerveux/métabolisme , Protéines de répression/génétique , Protéines de répression/métabolisme , Protéine à doigts de zinc Gli3
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE