Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 6 de 6
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Nat Commun ; 12(1): 1883, 2021 03 25.
Article de Anglais | MEDLINE | ID: mdl-33767198

RÉSUMÉ

Natural product structure and fragment-based compound development inspire pseudo-natural product design through different combinations of a given natural product fragment set to compound classes expected to be chemically and biologically diverse. We describe the synthetic combination of the fragment-sized natural products quinine, quinidine, sinomenine, and griseofulvin with chromanone or indole-containing fragments to provide a 244-member pseudo-natural product collection. Cheminformatic analyses reveal that the resulting eight pseudo-natural product classes are chemically diverse and share both drug- and natural product-like properties. Unbiased biological evaluation by cell painting demonstrates that bioactivity of pseudo-natural products, guiding natural products, and fragments differ and that combination of different fragments dominates establishment of unique bioactivity. Identification of phenotypic fragment dominance enables design of compound classes with correctly predicted bioactivity. The results demonstrate that fusion of natural product fragments in different combinations and arrangements can provide chemically and biologically diverse pseudo-natural product classes for wider exploration of biologically relevant chemical space.


Sujet(s)
Produits biologiques/composition chimique , Produits biologiques/synthèse chimique , Découverte de médicament/méthodes , Chimio-informatique , 4H-1-Benzopyran-4-ones/composition chimique , Griséofulvine/composition chimique , Indoles/composition chimique , Morphinanes/composition chimique , Quinidine/composition chimique , Quinine/composition chimique , Bibliothèques de petites molécules/composition chimique
2.
Cell Chem Biol ; 28(12): 1750-1757.e5, 2021 12 16.
Article de Anglais | MEDLINE | ID: mdl-33725479

RÉSUMÉ

Signaling pathways are frequently activated through signal-receiving membrane proteins, and the discovery of small molecules targeting these receptors may yield insights into their biology. However, due to their intrinsic properties, membrane protein targets often cannot be identified by means of established approaches, in particular affinity-based proteomics, calling for the exploration of new methods. Here, we report the identification of indophagolin as representative member of an indoline-based class of autophagy inhibitors through a target-agnostic phenotypic assay. Thermal proteome profiling and subsequent biochemical validation identified the purinergic receptor P2X4 as a target of indophagolin, and subsequent investigations suggest that indophagolin targets further purinergic receptors. These results demonstrate that thermal proteome profiling may enable the de novo identification of membrane-bound receptors as cellular targets of bioactive small molecules.


Sujet(s)
Autophagie/effets des médicaments et des substances chimiques , Protéome/génétique , Antagonistes des récepteurs purinergiques P2X/pharmacologie , Récepteurs purinergiques P2X4/métabolisme , Température , Membrane cellulaire/effets des médicaments et des substances chimiques , Membrane cellulaire/métabolisme , Membrane cellulaire/anatomopathologie , Relation dose-effet des médicaments , Femelle , Analyse de profil d'expression de gènes , Humains , Mâle , Structure moléculaire , Antagonistes des récepteurs purinergiques P2X/composition chimique , Récepteurs purinergiques P2X4/génétique , Relation structure-activité , Cellules cancéreuses en culture
3.
J Med Chem ; 63(20): 11972-11989, 2020 10 22.
Article de Anglais | MEDLINE | ID: mdl-32907324

RÉSUMÉ

Transcriptional enhanced associate domain (TEAD) transcription factors together with coactivators and corepressors modulate the expression of genes that regulate fundamental processes, such as organogenesis and cell growth, and elevated TEAD activity is associated with tumorigenesis. Hence, novel modulators of TEAD and methods for their identification are in high demand. We describe the development of a new "thiol conjugation assay" for identification of novel small molecules that bind to the TEAD central pocket. The assay monitors prevention of covalent binding of a fluorescence turn-on probe to a cysteine in the central pocket by small molecules. Screening of a collection of compounds revealed kojic acid analogues as TEAD inhibitors, which covalently target the cysteine in the central pocket, block the interaction with coactivator yes-associated protein with nanomolar apparent IC50 values, and reduce TEAD target gene expression. This methodology promises to enable new medicinal chemistry programs aimed at the modulation of TEAD activity.


Sujet(s)
Découverte de médicament , Pyrones/pharmacologie , Bibliothèques de petites molécules/pharmacologie , Thiols/pharmacologie , Facteurs de transcription/antagonistes et inhibiteurs , Relation dose-effet des médicaments , Fluorescence , Humains , Modèles moléculaires , Structure moléculaire , Pyrones/composition chimique , Bibliothèques de petites molécules/composition chimique , Relation structure-activité , Thiols/composition chimique , Facteurs de transcription/génétique
4.
Angew Chem Int Ed Engl ; 59(30): 12470-12476, 2020 07 20.
Article de Anglais | MEDLINE | ID: mdl-32108411

RÉSUMÉ

Pseudo-natural-product (NP) design combines natural product fragments to provide unprecedented NP-inspired compounds not accessible by biosynthesis, but endowed with biological relevance. Since the bioactivity of pseudo-NPs may be unprecedented or unexpected, they are best evaluated in target agnostic cell-based assays monitoring entire cellular programs or complex phenotypes. Here, the Cinchona alkaloid scaffold was merged with the indole ring system to synthesize indocinchona alkaloids by Pd-catalyzed annulation. Exploration of indocinchona alkaloid bioactivities in phenotypic assays revealed a novel class of azaindole-containing autophagy inhibitors, the azaquindoles. Subsequent characterization of the most potent compound, azaquindole-1, in the morphological cell painting assay, guided target identification efforts. In contrast to the parent Cinchona alkaloids, azaquindoles selectively inhibit starvation- and rapamycin-induced autophagy by targeting the lipid kinase VPS34.


Sujet(s)
Autophagie/effets des médicaments et des substances chimiques , Produits biologiques/pharmacologie , Catalyse , Phosphatidylinositol 3-kinases de classe III/antagonistes et inhibiteurs , Conception de médicament , Antienzymes/pharmacologie , Humains , Cellules MCF-7 , Palladium/composition chimique
5.
Angew Chem Int Ed Engl ; 59(14): 5721-5729, 2020 03 27.
Article de Anglais | MEDLINE | ID: mdl-31769920

RÉSUMÉ

Chemical proteomics is widely applied in small-molecule target identification. However, in general it does not identify non-protein small-molecule targets, and thus, alternative methods for target identification are in high demand. We report the discovery of the autophagy inhibitor autoquin and the identification of its molecular mode of action using image-based morphological profiling in the cell painting assay. A compound-induced fingerprint representing changes in 579 cellular parameters revealed that autoquin accumulates in lysosomes and inhibits their fusion with autophagosomes. In addition, autoquin sequesters Fe2+ in lysosomes, resulting in an increase of lysosomal reactive oxygen species and ultimately cell death. Such a mechanism of action would have been challenging to unravel by current methods. This work demonstrates the potential of the cell painting assay to deconvolute modes of action of small molecules, warranting wider application in chemical biology.


Sujet(s)
Autophagie , Fer/métabolisme , Lysosomes/métabolisme , Autophagosomes/métabolisme , Autophagie/effets des médicaments et des substances chimiques , Lignée cellulaire tumorale , Alcaloïdes de Cinchona/composition chimique , Alcaloïdes de Cinchona/pharmacologie , Humains , Microscopie de fluorescence , Espèces réactives de l'oxygène/métabolisme , Relation structure-activité
6.
Chem Commun (Camb) ; 52(84): 12486-12489, 2016 Oct 13.
Article de Anglais | MEDLINE | ID: mdl-27711354

RÉSUMÉ

The potential of deuterated pharmaceuticals is being widely demonstrated. Here we describe the first trideuteromethylation under radical reaction conditions using deuterated dimethyl sulfoxide as a reagent for the synthesis of labelled heterocycles and trideuteromethylated compounds. A broad scope of the developed method for the synthesis of various scaffolds was demonstrated.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...