Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
ACS Appl Mater Interfaces ; 15(34): 40963-40974, 2023 Aug 30.
Article de Anglais | MEDLINE | ID: mdl-37599413

RÉSUMÉ

High-voltage and high-power devices are indispensable in spacecraft for outer space explorations, whose operations require aerospace materials with adequate vacuum surface insulation performance. Despite persistent attempts to fabricate such materials, current efforts are restricted to trial-and-error methods and a universal design guideline is missing. The present work proposes to improve the vacuum surface insulation by tailoring the surface trap state density and energy level of the metal oxides with varied bandgaps, using coating on a polyimide (PI) substrate, aiming for a more systematical workflow for the insulation material design. First-principle calculations and trap diagnostics are employed to evaluate the material properties and reveal the interplay between trap states and the flashover threshold, supported by dedicated analyses of the flashover voltage, secondary electron emission (SEE) from insulators, and surface charging behaviors. Experimental results suggest that the coated PI (i.e., CuO@PI, SrO@PI, MgO@PI, and Al2O3@PI) can effectively increase the trap density and alter the trap energy levels. Elevated trap density is demonstrated to always yield lower SEE. In addition, increasing shallow trap density accelerates surface charge dissipation, which is favorable for improving surface insulation. CuO@PI exhibits the most remarkable increase in shallow trap density, and accordingly, the highest flashover voltage is 42.5% higher than that of pristine PI. This study reveals the critical role played by surface trap states in flashover mitigation and offers a novel strategy to optimize the surface insulation of materials.

2.
ACS Omega ; 7(25): 21868-21876, 2022 Jun 28.
Article de Anglais | MEDLINE | ID: mdl-35785304

RÉSUMÉ

Propane-1,2,3-triol-loaded polysulfone (PSF) microcapsules were prepared by the solvent evaporation method. The particle size of the microcapsules is about 140 µm. The shell wall thickness is about 17 µm approximately. The microcapsules have high thermal stability and antiwear performance. The self-healing coating was prepared by adding the prepared capsule into the epoxy resin coating. After electrochemical and corrosion immersion experiments, the resistance modulus of the coating added to the microcapsules was higher than the others in a 3.5 wt % NaCl corrosion solution, and it had the lowest corrosion current density, so the self-healing microcapsule coatings showed excellent healing ability and corrosion inhibition function for microcracks. This was attributed to the formation of a hydrophobic film after propane-1,2,3-triol was released from the damaged microcapsules.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE