Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Front Public Health ; 12: 1357052, 2024.
Article de Anglais | MEDLINE | ID: mdl-38596517

RÉSUMÉ

Introduction: The single and combined association between brominated flame retardants (BFRs) and cardiovascular diseases (CVD) has remained unelucidated. This research aimed at exploring the associations between mixture of BFRs and CVD. Methods: This research encompassed adult participants from the National Health and Nutrition Examination Survey in 2005-2016. The weighted quantile sum (WQS) model and quantile g-computation (QGC) model were applied to examine the combined effects of BFRs mixture on CVD. Results: In this research, overall 7,032 individuals were included. In comparison with the lowest quartile, the highest quartile of PBB153 showed a positive association with CVD, with odds ratio (OR) values and 95% confidence intervals (CI) of 19.2 (10.9, 34.0). Furthermore, the acquired data indicated that PBB153 (OR: 1.23; 95% CI: 1.02, 1.49), PBB99 (OR: 1.29; 95% CI: 1.06, 1.58), and PBB154 (OR: 1.29; 95% CI: 1.02, 1.63) were linked to congestive heart failure. PBB153 was also related to coronary heart disease (OR: 1.29; 95% CI: 1.06, 1.56). Additionally, a positive correlation between the BFRs mixture and CVD (positive model: OR: 1.23; 95% CI: 1.03, 1.47) was observed in the weighted quantile sum (WQS) model and the quantile g-computation (QGC) model. Discussion: Therefore, exposure to BFRs has been observed to heighten the risk of cardiovascular disease in US adults, particularly in the case of PBB153. Further investigation is warranted through a large-scale cohort study to validate and strengthen these findings.


Sujet(s)
Maladies cardiovasculaires , Ignifuges , Polybromobiphényles , Adulte , Humains , Maladies cardiovasculaires/épidémiologie , Études transversales , Études de cohortes , Enquêtes nutritionnelles
2.
Angew Chem Int Ed Engl ; 62(13): e202219084, 2023 Mar 20.
Article de Anglais | MEDLINE | ID: mdl-36738172

RÉSUMÉ

Ultrathin covalent organic framework (COF) membranes are urgently demanded in molecular/ionic separations. Herein, we reported an electrochemical interfacial polymerization strategy to fabricate ultrathin COF membranes with thickness of 85 nm, by actively manipulate self-healing effect and self-inhibiting effect. The resulting COF membrane exhibited superior performance in brine desalination with the permeation flux of 92 kg m-2 h-1 and the rejection of 99.96 %. Our electrochemical interfacial polymerization strategy enriches the fabrication approach of COF membranes and facilitates the rational design of ultrathin membranes.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...