Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 5 de 5
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Waste Manag ; 186: 259-270, 2024 Sep 15.
Article de Anglais | MEDLINE | ID: mdl-38943817

RÉSUMÉ

In a world with a population exceeding 8 billion people and continuing to grow, pollution from food and plastic waste is causing long-term issues in ecosystems. Potential solutions may be found by exploiting insect-based bioconversion. In this context, we investigated the impact of polyvinyl chloride microparticles (PVC-MPs) on the development of Hermetia illucens (black soldier fly; BSF) and its midgut bacterial and fungal microbiota. The impact of PVC-MPs was evaluated feeding BSF larvae with a PVC-MPs-supplemented diet. The larvae exposed to different PVC-MPs concentrations (2.5%, 5%, 10% and 20% w/w) developed into adults with no significant increase in pupal mortality. Faster development and smaller pupae were observed when 20% PVC-MPs was provided. The BSF larvae ingest PVC-MPs, resulting in a reduction in MPs size. Larvae exposed to PVC-MPs did not exhibit differences in gut morphology. Regarding the impact of PVC-MPs on the structure of both bacterial and fungal communities, the overall alpha- and beta-diversity did not exhibit significant changes. However, the presence of PVC-MPs significantly affected the relative abundances of Enterobacteriaceae and Paenibacillaceae among the bacteria and of Dipodascaceae and Plectospharellaceae among the fungi (including yeast and filamentous life forms), suggesting that PVC-MP contamination has a taxa-dependent impact. These results indicate that BSF larvae can tolerate PVC-MPs in their diet, supporting the potential use of these insects in organic waste management, even in the presence of high levels of PVC-MP contamination.


Sujet(s)
Diptera , Microbiome gastro-intestinal , Larve , Microplastiques , Animaux , Larve/microbiologie , Diptera/microbiologie , Microbiome gastro-intestinal/effets des médicaments et des substances chimiques , Poly(chlorure de vinyle) , Champignons/métabolisme , Bactéries/classification , Bactéries/métabolisme , Régime alimentaire , Mycobiome
2.
J Fungi (Basel) ; 10(5)2024 May 20.
Article de Anglais | MEDLINE | ID: mdl-38786721

RÉSUMÉ

Wooden Cultural Heritage (WCH) represents a significant portion of the world's historical and artistic heritage, consisting of immovable and movable artefacts. Despite the expertise developed since ancient times to enhance its durability, wooden artefacts are inevitably prone to degradation. Fungi play a pivotal role in the deterioration of WCH in terrestrial ecosystems, accelerating its decay and leading to alterations in color and strength. Reviewing the literature of the last 25 years, we aimed to provide a comprehensive overview of fungal diversity affecting WCH, the biochemical processes involved in wood decay, and the diagnostic tools available for fungal identification and damage evaluation. Climatic conditions influence the occurrence of fungal species in threatened WCH, characterized by a prevalence of wood-rot fungi (e.g., Serpula lacrymans, Coniophora puteana) in architectural heritage in temperate and continental climates and Ascomycota in indoor and harsh environments. More efforts are needed to address the knowledge fragmentation concerning biodiversity, the biology of the fungi involved, and succession in the degradative process, which is frequently centered solely on the main actors. Multidisciplinary collaboration among engineers, restorers, and life sciences scientists is vital for tackling the challenges posed by climate change with increased awareness. Traditional microbiology and culture collections are fundamental in laying solid foundations for a more comprehensive interpretation of big data.

3.
Braz J Microbiol ; 55(2): 1625-1634, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38652442

RÉSUMÉ

Antarctic soils represent one of the most pristine environments on Earth, where highly adapted and often endemic microbial species withstand multiple extremes. Specifically, fungal diversity is extremely low in Antarctic soils and species distribution and diversity are still not fully characterized in the continent. Despite the unique features of this environment and the international interest in its preservation, several factors pose severe threats to the conservation of inhabiting ecosystems. In this light, we aimed to provide an overview of the effects on fungal communities of the main changes endangering the soils of the continent. Among these, the increasing human presence, both for touristic and scientific purposes, has led to increased use of fuels for transport and energy supply, which has been linked to an increase in unintentional environmental contamination. It has been reported that several fungal species have evolved cellular processes in response to these soil contamination episodes, which may be exploited for restoring contaminated areas at low temperatures. Additionally, the effects of climate change are another significant threat to Antarctic ecosystems, with the expected merging of previously isolated ecosystems and their homogenization. A possible reduction of biodiversity due to the disappearance of well-adapted, often endemic species, as well as an increase of biodiversity, due to the spreading of non-native, more competitive species have been suggested. Despite some studies describing the specialization of fungal communities and their correlation with environmental parameters, our comprehension of how soil communities may respond to these changes remains limited. The majority of studies attempting to precisely define the effects of climate change, including in situ and laboratory simulations, have mainly focused on the bacterial components of these soils, and further studies are necessary, including the other biotic components.


Sujet(s)
Biodiversité , Changement climatique , Champignons , Microbiologie du sol , Régions antarctiques , Champignons/classification , Champignons/génétique , Champignons/isolement et purification , Écosystème , Sol/composition chimique , Mycobiome
4.
Sci Total Environ ; 926: 171786, 2024 May 20.
Article de Anglais | MEDLINE | ID: mdl-38508248

RÉSUMÉ

Despite the important role that biocrust communities play in maintaining ecosystem structure and functioning in deglaciated barren soil, few studies have been conducted on the dynamics of biotic communities and the impact of physicochemical characteristics in shaping the different successional stages. In this study an integrated approach encompassing physicochemical parameters and molecular taxonomy was used for identifying the indicator taxa and the presence of intra- and inter-kingdom interactions in five different crust/biocrust successional stages: i) physical crust, ii) cyanobacteria-dominated biocrust, iii) cyanobacteria/moss-dominated biocrust, iv) moss-dominated biocrust and v) bryophyte carpet. The phylum Gemmatimonadota was the bacterial indicator taxon in the early stage, promoting both inter- and intra-kingdom interactions, while Cyanobacteria and Nematoda phyla played a pivotal role in formation and dynamics of cyanobacteria-dominated biocrusts. A multitrophic community, characterized by a shift from oligotrophic to copiotrophic bacteria and the presence of saproxylic arthropod and herbivore insects was found in the cyanobacteria/moss-dominated biocrust, while a more complex biota, characterized by an increased fungal abundance (classes Sordariomycetes, Leotiomycetes, and Dothideomycetes, phylum Ascomycota), associated with highly trophic consumer invertebrates (phyla Arthropoda, Rotifera, Tardigrada), was observed in moss-dominated biocrusts. The class Bdelloidea and the family Hypsibiidae (phyla Rotifera and Tardigrada, respectively) were metazoan indicator taxon in bryophyte carpet, suggesting their potential role in shaping structure and function of this late successional stage. Nitrogen and phosphorus were the main physicochemical limiting factors driving the shift among different crust/biocrust successional stages. Identification and characterization of indicator taxa, biological intra- and inter-kingdom interactions and abiotic factors driving the shift among different crust/biocrust successional stages provide a detailed picture on crust/biocrust dynamics, revealing a strong interconnection among micro- and macrobiota systems. These findings enhance our understanding of biocrust ecosystems in High Arctic, providing valuable insights for their conservation and management in response to environmental shifts due to climate change.


Sujet(s)
Bryophyta , Cyanobactéries , Animaux , Écosystème , Sol/composition chimique , Biote , Microbiologie du sol
5.
Sci Total Environ ; 912: 169350, 2024 Feb 20.
Article de Anglais | MEDLINE | ID: mdl-38103606

RÉSUMÉ

The prevention and control of biological patinas on outdoor stone monuments represent a demanding challenge for the conservation of cultural heritage also due to some microorganisms, particularly resistant to treatments, such as black meristematic fungi, an eco-physiological group well known for its tolerance to extreme conditions. Even if several methods and eco-friendly products have been proposed as new alternatives, traditional biocides are still far from being completely replaced. Recolonization is a natural process that occurs sooner or later after cleaning. The time that elapses until its occurrence can vary considerably depending on environmental conditions and the used products; unfortunately, the papers describing the effect of treatments over time are rare. This work aims to shed light on the recolonization process of marble surfaces in the ancient monumental cemetery of Bonaria (Cagliari) after nine years from treatments, evaluating the long-term efficiency of two different cleaning methods, namely dimethyl sulfoxide-based gel (DMSO-based gel) and Biotin T (a didecyldimethylammonium chloride-based product-). In this context, the microflora present before treatments and in the following years was assessed by culture-based methods and identified by molecular techniques, with attention on black meristematic fungi, which were used as reference for the most resistant lithobiontic organisms. Different environmental parameters, such as temperature, exposition, dominant winds, and rainfall, were considered, and infrared thermography, portable light microscopy, and image analysis were used. This research evidenced the influence of water availability and lightning in recolonization processes, the transition from the pioneer fungal community versus more resistant black fungal species after Biotin T treatment, and the long-lasting efficiency of the DMSO-based gel. These findings prove that this low-impact method deserves more attention in the conservation of outdoor marble monuments, emphasizing the importance of long-term studies.


Sujet(s)
Biotine , Carbonate de calcium , Études de suivi , Diméthylsulfoxyde , Champignons
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE