Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 33
Filtrer
1.
Nat Commun ; 13(1): 7483, 2022 12 05.
Article de Anglais | MEDLINE | ID: mdl-36470868

RÉSUMÉ

TRPV2 is a ligand-operated temperature sensor with poorly defined pharmacology. Here, we combine calcium imaging and patch-clamp electrophysiology with cryo-electron microscopy (cryo-EM) to explore how TRPV2 activity is modulated by the phytocannabinoid Δ9-tetrahydrocannabiorcol (C16) and by probenecid. C16 and probenecid act in concert to stimulate TRPV2 responses including histamine release from rat and human mast cells. Each ligand causes distinct conformational changes in TRPV2 as revealed by cryo-EM. Although the binding for probenecid remains elusive, C16 associates within the vanilloid pocket. As such, the C16 binding location is distinct from that of cannabidiol, partially overlapping with the binding site of the TRPV2 inhibitor piperlongumine. Taken together, we discover a new cannabinoid binding site in TRPV2 that is under the influence of allosteric control by probenecid. This molecular insight into ligand modulation enhances our understanding of TRPV2 in normal and pathophysiology.


Sujet(s)
Cannabidiol , Cannabinoïdes , Rats , Humains , Animaux , Cannabidiol/pharmacologie , Canaux cationiques TRPV/métabolisme , Cannabinoïdes/pharmacologie , Probénécide/pharmacologie , Ligands , Cryomicroscopie électronique
2.
Nat Commun ; 13(1): 6113, 2022 10 17.
Article de Anglais | MEDLINE | ID: mdl-36253390

RÉSUMÉ

TRP channels sense temperatures ranging from noxious cold to noxious heat. Whether specialized TRP thermosensor modules exist and how they control channel pore gating is unknown. We studied purified human TRPA1 (hTRPA1) truncated proteins to gain insight into the temperature gating of hTRPA1. In patch-clamp bilayer recordings, ∆1-688 hTRPA1, without the N-terminal ankyrin repeat domain (N-ARD), was more sensitive to cold and heat, whereas ∆1-854 hTRPA1, also lacking the S1-S4 voltage sensing-like domain (VSLD), gained sensitivity to cold but lost its heat sensitivity. In hTRPA1 intrinsic tryptophan fluorescence studies, cold and heat evoked rearrangement of VSLD and the C-terminus domain distal to the transmembrane pore domain S5-S6 (CTD). In whole-cell electrophysiology experiments, replacement of the CTD located cysteines 1021 and 1025 with alanine modulated hTRPA1 cold responses. It is proposed that hTRPA1 CTD harbors cold and heat sensitive domains allosterically coupled to the S5-S6 pore region and the VSLD, respectively.


Sujet(s)
Répétition ankyrine , Température élevée , Alanine , Humains , Membre-1 de la sous-famille A de canaux cationiques à potentiel de récepteur transitoire/génétique , Membre-1 de la sous-famille A de canaux cationiques à potentiel de récepteur transitoire/métabolisme , Thermoception , Tryptophane
3.
Eur J Med Chem ; 213: 113042, 2021 Mar 05.
Article de Anglais | MEDLINE | ID: mdl-33257173

RÉSUMÉ

Paracetamol, one of the most widely used pain-relieving drugs, is deacetylated to 4-aminophenol (4-AP) that undergoes fatty acid amide hydrolase (FAAH)-dependent biotransformation into N-arachidonoylphenolamine (AM404), which mediates TRPV1-dependent antinociception in the brain of rodents. However, paracetamol is also converted to the liver-toxic metabolite N-acetyl-p-benzoquinone imine already at therapeutic doses, urging for safer paracetamol analogues. Primary amine analogues with chemical structures similar to paracetamol were evaluated for their propensity to undergo FAAH-dependent N-arachidonoyl conjugation into TRPV1 activators both in vitro and in vivo in rodents. The antinociceptive and antipyretic activity of paracetamol and primary amine analogues was examined with regard to FAAH and TRPV1 as well as if these analogues produced acute liver toxicity. 5-Amino-2-methoxyphenol (2) and 5-aminoindazole (3) displayed efficient target protein interactions with a dose-dependent antinociceptive effect in the mice formalin test, which in the second phase was dependent on FAAH and TRPV1. No hepatotoxicity of the FAAH substrates transformed into TRPV1 activators was observed. While paracetamol attenuates pyrexia via inhibition of brain cyclooxygenase, its antinociceptive FAAH substrate 4-AP was not antipyretic, suggesting separate mechanisms for the antipyretic and antinociceptive effect of paracetamol. Furthermore, compound 3 reduced fever without a brain cyclooxygenase inhibitory action. The data support our view that analgesics and antipyretics without liver toxicity can be derived from paracetamol. Thus, research into the molecular actions of paracetamol could pave the way for the discovery of analgesics and antipyretics with a better benefit-to-risk ratio.


Sujet(s)
Acétaminophène/composition chimique , Amidohydrolases/métabolisme , Analgésiques/composition chimique , Antipyrétiques/composition chimique , Canaux cationiques TRPV/métabolisme , Canaux cationiques TRP/métabolisme , Acétaminophène/pharmacologie , Aminophénols/composition chimique , Analgésiques/pharmacologie , Animaux , Antipyrétiques/pharmacologie , Acides arachidoniques/composition chimique , Encéphale , Femelle , Humains , Indazoles/composition chimique , Foie , Mâle , Souris de lignée C57BL , Modèles moléculaires , Douleur/traitement médicamenteux , Mesure de la douleur , Prostaglandin-endoperoxide synthases/métabolisme , Rat Wistar , Relation structure-activité
4.
Int J Mol Sci ; 21(18)2020 Sep 11.
Article de Anglais | MEDLINE | ID: mdl-32933054

RÉSUMÉ

The human Transient Receptor Potential A1 (hTRPA1) ion channel, also known as the wasabi receptor, acts as a biosensor of various potentially harmful stimuli. It is activated by a wide range of chemicals, including the electrophilic compound N-methylmaleimide (NMM), but the mechanism of activation is not fully understood. Here, we used mass spectrometry to map and quantify the covalent labeling in hTRPA1 at three different concentrations of NMM. A functional truncated version of hTRPA1 (Δ1-688 hTRPA1), lacking the large N-terminal ankyrin repeat domain (ARD), was also assessed in the same way. In the full length hTRPA1, the labeling of different cysteines ranged from nil up to 95% already at the lowest concentration of NMM, suggesting large differences in reactivity of the thiols. Most important, the labeling of some cysteine residues increased while others decreased with the concentration of NMM, both in the full length and the truncated protein. These findings indicate a conformational switch of the proteins, possibly associated with activation or desensitization of the ion channel. In addition, several lysines in the transmembrane domain and the proximal N-terminal region were labeled by NMM, raising the possibility that lysines are also key targets for electrophilic activation of hTRPA1.


Sujet(s)
Membre-1 de la sous-famille A de canaux cationiques à potentiel de récepteur transitoire/métabolisme , Répétition ankyrine/physiologie , Cystéine/métabolisme , Humains , Ouverture et fermeture des portes des canaux ioniques/physiologie , Lysine/métabolisme , Spectrométrie de masse/méthodes , Domaines protéiques/physiologie , Thiols/métabolisme
5.
Cell Calcium ; 91: 102255, 2020 11.
Article de Anglais | MEDLINE | ID: mdl-32717533

RÉSUMÉ

The role of mammalian Transient Receptor Potential Ankyrin 1 (TRPA1) as a mechanosensor is controversial. Here, we report that purified human TRPA1 (hTRPA1) with and without its N-terminal ankyrin repeat domain responded with pressure-dependent single-channel current activity when reconstituted into artificial lipid bilayers. The hTRPA1 activity was abolished by the thiol reducing agent TCEP. Thus, depending on its redox state, hTRPA1 is an inherent mechanosensitive ion channel gated by force-from-lipids.


Sujet(s)
Ouverture et fermeture des portes des canaux ioniques , Double couche lipidique/métabolisme , Mécanotransduction cellulaire , Membre-1 de la sous-famille A de canaux cationiques à potentiel de récepteur transitoire/métabolisme , Humains , Membre-1 de la sous-famille A de canaux cationiques à potentiel de récepteur transitoire/composition chimique
6.
Cell Calcium ; 90: 102228, 2020 09.
Article de Anglais | MEDLINE | ID: mdl-32554053

RÉSUMÉ

Extracellular influx of calcium or release of calcium from intracellular stores have been shown to activate mammalian TRPA1 as well as to sensitize and desensitize TRPA1 electrophilic activation. Calcium binding sites on both intracellular N- and C-termini have been proposed. Here, we demonstrate based on Förster resonance energy transfer (FRET) and bilayer patch-clamp studies, a direct calmodulin-independent action of calcium on the purified human TRPA1 (hTRPA1), causing structural changes and activation without immediate subsequent desensitization of hTRPA1 with and without its N-terminal ankyrin repeat domain (N-ARD). Thus, calcium alone activates hTRPA1 by a direct interaction with binding sites outside the N-ARD.


Sujet(s)
Répétition ankyrine , Calcium/métabolisme , Calmoduline/métabolisme , Membre-1 de la sous-famille A de canaux cationiques à potentiel de récepteur transitoire/composition chimique , Membre-1 de la sous-famille A de canaux cationiques à potentiel de récepteur transitoire/métabolisme , Transfert d'énergie par résonance de fluorescence , Humains , Ouverture et fermeture des portes des canaux ioniques/effets des médicaments et des substances chimiques
7.
Proc Natl Acad Sci U S A ; 116(48): 24359-24365, 2019 11 26.
Article de Anglais | MEDLINE | ID: mdl-31719194

RÉSUMÉ

Thermosensitive transient receptor potential (TRP) ion channels detect changes in ambient temperature to regulate body temperature and temperature-dependent cellular activity. Rodent orthologs of TRP vanilloid 2 (TRPV2) are activated by nonphysiological heat exceeding 50 °C, and human TRPV2 is heat-insensitive. TRPV2 is required for phagocytic activity of macrophages which are rarely exposed to excessive heat, but what activates TRPV2 in vivo remains elusive. Here we describe the molecular mechanism of an oxidation-induced temperature-dependent gating of TRPV2. While high concentrations of H2O2 induce a modest sensitization of heat-induced inward currents, the oxidant chloramine-T (ChT), ultraviolet A light, and photosensitizing agents producing reactive oxygen species (ROS) activate and sensitize TRPV2. This oxidation-induced activation also occurs in excised inside-out membrane patches, indicating a direct effect on TRPV2. The reducing agent dithiothreitol (DTT) in combination with methionine sulfoxide reductase partially reverses ChT-induced sensitization, and the substitution of the methionine (M) residues M528 and M607 to isoleucine almost abolishes oxidation-induced gating of rat TRPV2. Mass spectrometry on purified rat TRPV2 protein confirms oxidation of these residues. Finally, macrophages generate TRPV2-like heat-induced inward currents upon oxidation and exhibit reduced phagocytosis when exposed to the TRP channel inhibitor ruthenium red (RR) or to DTT. In summary, our data reveal a methionine-dependent redox sensitivity of TRPV2 which may be an important endogenous mechanism for regulation of TRPV2 activity and account for its pivotal role for phagocytosis in macrophages.


Sujet(s)
Méthionine/métabolisme , Canaux cationiques TRPV/composition chimique , Canaux cationiques TRPV/métabolisme , Canaux calciques/composition chimique , Canaux calciques/génétique , Canaux calciques/métabolisme , Chloramines/composition chimique , Escherichia coli/génétique , Température élevée , Humains , Peroxyde d'hydrogène/composition chimique , Macrophages , Méthionine/composition chimique , Mutation , Oxydants/composition chimique , Oxydoréduction , Techniques de patch-clamp , Phagocytose , Canaux cationiques TRPM/composition chimique , Canaux cationiques TRPM/métabolisme , Canaux cationiques TRPV/génétique , Composés tosyliques/composition chimique
8.
FASEB J ; 32(10): 5751-5759, 2018 10.
Article de Anglais | MEDLINE | ID: mdl-29738273

RÉSUMÉ

The mode of action of paracetamol (acetaminophen), which is widely used for treating pain and fever, has remained obscure, but may involve several distinct mechanisms, including cyclooxygenase inhibition and transient receptor potential ankyrin 1 (TRPA1) channel activation, the latter being recently associated with paracetamol's propensity to elicit hypothermia at higher doses. Here, we examined whether the antipyretic effect of paracetamol was due to TRPA1 activation or cyclooxygenase inhibition. Treatment of wild-type and TRPA1 knockout mice rendered febrile by immune challenge with LPS with a dose of paracetamol that did not produce hypothermia (150 mg/kg) but is known to be analgetic, abolished fever in both genotypes. Paracetamol completely suppressed the LPS-induced elevation of prostaglandin E2 in the brain and also reduced the levels of several other prostanoids. The hypothermia induced by paracetamol was abolished in mice treated with the electrophile-scavenger N-acetyl cysteine. We conclude that paracetamol's antipyretic effect in mice is dependent on inhibition of cyclooxygenase activity, including the formation of pyrogenic prostaglandin E2, whereas paracetamol-induced hypothermia likely is mediated by the activation of TRPA1 by electrophilic metabolites of paracetamol, similar to its analgesic effect in some experimental paradigms.-Mirrasekhian, E., Nilsson, J. L. Å., Shionoya, K., Blomgren, A., Zygmunt, P. M., Engblom, D., Högestätt, E. D., Blomqvist, A. The antipyretic effect of paracetamol occurs independent of transient receptor potential ankyrin 1-mediated hypothermia and is associated with prostaglandin inhibition in the brain.


Sujet(s)
Acétaminophène/effets indésirables , Antipyrétiques/effets indésirables , Encéphale/métabolisme , Dinoprostone/biosynthèse , Hypothermie/métabolisme , Membre-1 de la sous-famille A de canaux cationiques à potentiel de récepteur transitoire/biosynthèse , Acétaminophène/pharmacologie , Animaux , Antipyrétiques/pharmacologie , Encéphale/anatomopathologie , Hypothermie/induit chimiquement , Hypothermie/anatomopathologie , Souris , Souris knockout
9.
Nat Commun ; 8(1): 947, 2017 10 16.
Article de Anglais | MEDLINE | ID: mdl-29038531

RÉSUMÉ

Recent evidence suggests that the ion channel TRPA1 is implicated in lung adenocarcinoma (LUAD), where its role and mechanism of action remain unknown. We have previously established that the membrane receptor FGFR2 drives LUAD progression through aberrant protein-protein interactions mediated via its C-terminal proline-rich motif. Here we report that the N-terminal ankyrin repeats of TRPA1 directly bind to the C-terminal proline-rich motif of FGFR2 inducing the constitutive activation of the receptor, thereby prompting LUAD progression and metastasis. Furthermore, we show that upon metastasis to the brain, TRPA1 gets depleted, an effect triggered by the transfer of TRPA1-targeting exosomal microRNA (miRNA-142-3p) from brain astrocytes to cancer cells. This downregulation, in turn, inhibits TRPA1-mediated activation of FGFR2, hindering the metastatic process. Our study reveals a direct binding event and characterizes the role of TRPA1 ankyrin repeats in regulating FGFR2-driven oncogenic process; a mechanism that is hindered by miRNA-142-3p.TRPA1 has been reported to contribute lung cancer adenocarcinoma (LUAD), but the mechanisms are unclear. Here the authors propose that TRPA1/FGFR2 interaction is functional in LUAD and show that astrocytes oppose brain metastasis by mediating the downregulation of TRPA1 through exosome-delivered miRNA-142-3p.


Sujet(s)
microARN/métabolisme , Oncogènes , Récepteur FGFR2/métabolisme , Membre-1 de la sous-famille A de canaux cationiques à potentiel de récepteur transitoire/métabolisme , Animaux , Répétition ankyrine , Astrocytes/métabolisme , Tumeurs du cerveau/secondaire , Lignée cellulaire tumorale , Prolifération cellulaire , Exosomes/métabolisme , Cellules HEK293 , Humains , microARN/génétique , Liaison aux protéines , Rats , Récepteur FGFR2/composition chimique
10.
J Biol Chem ; 291(52): 26899-26912, 2016 Dec 23.
Article de Anglais | MEDLINE | ID: mdl-27875296

RÉSUMÉ

Temperature sensors are crucial for animals to optimize living conditions. The temperature response of the ion channel transient receptor potential A1 (TRPA1) is intriguing; some orthologs have been reported to be activated by cold and others by heat, but the molecular mechanisms responsible for its activation remain elusive. Single-channel electrophysiological recordings of heterologously expressed and purified Anopheles gambiae TRPA1 (AgTRPA1), with and without the N-terminal ankyrin repeat domain, demonstrate that both proteins are functional because they responded to the electrophilic compounds allyl isothiocyanate and cinnamaldehyde as well as heat. The proteins' similar intrinsic fluorescence properties and corresponding quenching when activated by allyl isothiocyanate or heat suggest lipid bilayer-independent conformational changes outside the N-terminal domain. The results show that AgTRPA1 is an inherent thermo- and chemoreceptor, and analogous to what has been reported for the human TRPA1 ortholog, the N-terminal domain may tune the response but is not required for the activation by these stimuli.


Sujet(s)
Répétition ankyrine , Culicidae/métabolisme , Ouverture et fermeture des portes des canaux ioniques/physiologie , Canaux cationiques TRP/métabolisme , Séquence d'acides aminés , Animaux , Sites de fixation , Basse température , Cristallographie aux rayons X , Température élevée , Humains , Liaison aux protéines , Conformation des protéines , Similitude de séquences d'acides aminés , Canaux cationiques TRP/isolement et purification
11.
Sci Rep ; 6: 28763, 2016 06 28.
Article de Anglais | MEDLINE | ID: mdl-27349477

RÉSUMÉ

Thermosensitive Transient Receptor Potential (TRP) channels are believed to respond to either cold or heat. In the case of TRP subtype A1 (TRPA1), there seems to be a species-dependent divergence in temperature sensation as non-mammalian TRPA1 is heat-sensitive whereas mammalian TRPA1 is sensitive to cold. It has been speculated but never experimentally proven that TRPA1 and other temperature-sensitive ion channels have the inherent capability of responding to both cold and heat. Here we show that redox modification and ligands affect human TRPA1 (hTRPA1) cold and heat sensing properties in lipid bilayer and whole-cell patch-clamp recordings as well as heat-evoked TRPA1-dependent calcitonin gene-related peptide (CGRP) release from mouse trachea. Studies of purified hTRPA1 intrinsic tryptophan fluorescence, in the absence of lipid bilayer, consolidate hTRPA1 as an intrinsic bidirectional thermosensor that is modified by the redox state and ligands. Thus, the heat sensing property of TRPA1 is conserved in mammalians, in which TRPA1 may contribute to sensing warmth and uncomfortable heat in addition to noxious cold.


Sujet(s)
Membre-1 de la sous-famille A de canaux cationiques à potentiel de récepteur transitoire/métabolisme , Thermoception/physiologie , Animaux , Peptide relié au gène de la calcitonine/composition chimique , Peptide relié au gène de la calcitonine/génétique , Peptide relié au gène de la calcitonine/métabolisme , Cellules HEK293 , Humains , Souris knockout , Oxydoréduction , Membre-1 de la sous-famille A de canaux cationiques à potentiel de récepteur transitoire/composition chimique , Membre-1 de la sous-famille A de canaux cationiques à potentiel de récepteur transitoire/génétique , Trachée/composition chimique , Trachée/métabolisme
12.
J Neurosci ; 36(19): 5264-78, 2016 05 11.
Article de Anglais | MEDLINE | ID: mdl-27170124

RÉSUMÉ

UNLABELLED: Photosensitization, an exaggerated sensitivity to harmless light, occurs genetically in rare diseases, such as porphyrias, and in photodynamic therapy where short-term toxicity is intended. A common feature is the experience of pain from bright light. In human subjects, skin exposure to 405 nm light induced moderate pain, which was intensified by pretreatment with aminolevulinic acid. In heterologous expression systems and cultured sensory neurons, exposure to blue light activated TRPA1 and, to a lesser extent, TRPV1 channels in the absence of additional photosensitization. Pretreatment with aminolevulinic acid or with protoporphyrin IX dramatically increased the light sensitivity of both TRPA1 and TRPV1 via generation of reactive oxygen species. Artificial lipid bilayers equipped with purified human TRPA1 showed substantial single-channel activity only in the presence of protoporphyrin IX and blue light. Photosensitivity and photosensitization could be demonstrated in freshly isolated mouse tissues and led to TRP channel-dependent release of proinflammatory neuropeptides upon illumination. With antagonists in clinical development, these findings may help to alleviate pain during photodynamic therapy and also allow for disease modification in porphyria patients. SIGNIFICANCE STATEMENT: Cutaneous porphyria patients suffer from burning pain upon exposure to sunlight and other patients undergoing photodynamic therapy experience similar pain, which can limit the therapeutic efforts. This study elucidates the underlying molecular transduction mechanism and identifies potential targets of therapy. Ultraviolet and blue light generates singlet oxygen, which oxidizes and activates the ion channels TRPA1 and TRPV1. The disease and the therapeutic options could be reproduced in models ranging from isolated ion channels to human subjects, applying protoporphyrin IX or its precursor aminolevulinic acid. There is an unmet medical need, and our results suggest a therapeutic use of the pertinent antagonists in clinical development.


Sujet(s)
Photothérapie dynamique , Photosensibilisants/pharmacologie , Porphyries/métabolisme , Canaux cationiques TRPV/métabolisme , Canaux cationiques TRP/métabolisme , Acide amino-lévulinique/pharmacologie , Animaux , Cellules cultivées , Cellules HEK293 , Humains , Souris , Souris de lignée C57BL , Neuropeptides/métabolisme , Porphyries/thérapie , Protoporphyrines/pharmacologie , Espèces réactives de l'oxygène/métabolisme , Cellules réceptrices sensorielles/métabolisme , Peau/effets des médicaments et des substances chimiques , Peau/effets des radiations , Membre-1 de la sous-famille A de canaux cationiques à potentiel de récepteur transitoire
13.
Proc Natl Acad Sci U S A ; 111(47): 16901-6, 2014 Nov 25.
Article de Anglais | MEDLINE | ID: mdl-25389312

RÉSUMÉ

We have purified and reconstituted human transient receptor potential (TRP) subtype A1 (hTRPA1) into lipid bilayers and recorded single-channel currents to understand its inherent thermo- and chemosensory properties as well as the role of the ankyrin repeat domain (ARD) of the N terminus in channel behavior. We report that hTRPA1 with and without its N-terminal ARD (Δ1-688 hTRPA1) is intrinsically cold-sensitive, and thus, cold-sensing properties of hTRPA1 reside outside the N-terminal ARD. We show activation of hTRPA1 by the thiol oxidant 2-((biotinoyl)amino)ethyl methanethiosulfonate (MTSEA-biotin) and that electrophilic compounds activate hTRPA1 in the presence and absence of the N-terminal ARD. The nonelectrophilic compounds menthol and the cannabinoid Δ(9)-tetrahydrocannabiorcol (C16) directly activate hTRPA1 at different sites independent of the N-terminal ARD. The TRPA1 antagonist HC030031 inhibited cold and chemical activation of hTRPA1 and Δ1-688 hTRPA1, supporting a direct interaction with hTRPA1 outside the N-terminal ARD. These findings show that hTRPA1 is an intrinsically cold- and chemosensitive ion channel. Thus, second messengers, including Ca(2+), or accessory proteins are not needed for hTRPA1 responses to cold or chemical activators. We suggest that conformational changes outside the N-terminal ARD by cold, electrophiles, and nonelectrophiles are important in hTRPA1 channel gating and that targeting chemical interaction sites outside the N-terminal ARD provides possibilities to fine tune TRPA1-based drug therapies (e.g., for treatment of pain associated with cold hypersensitivity and cardiovascular disease).


Sujet(s)
Répétition ankyrine , Canaux calciques/physiologie , Basse température , Protéines de tissu nerveux/physiologie , Canaux cationiques TRP/physiologie , Canaux calciques/composition chimique , Humains , Protéines de tissu nerveux/composition chimique , Techniques de patch-clamp , Membre-1 de la sous-famille A de canaux cationiques à potentiel de récepteur transitoire , Canaux cationiques TRP/composition chimique
14.
Nat Commun ; 5: 4381, 2014 Jul 15.
Article de Anglais | MEDLINE | ID: mdl-25023795

RÉSUMÉ

Nitroxyl (HNO) is a redox sibling of nitric oxide (NO) that targets distinct signalling pathways with pharmacological endpoints of high significance in the treatment of heart failure. Beneficial HNO effects depend, in part, on its ability to release calcitonin gene-related peptide (CGRP) through an unidentified mechanism. Here we propose that HNO is generated as a result of the reaction of the two gasotransmitters NO and H2S. We show that H2S and NO production colocalizes with transient receptor potential channel A1 (TRPA1), and that HNO activates the sensory chemoreceptor channel TRPA1 via formation of amino-terminal disulphide bonds, which results in sustained calcium influx. As a consequence, CGRP is released, which induces local and systemic vasodilation. H2S-evoked vasodilatatory effects largely depend on NO production and activation of HNO-TRPA1-CGRP pathway. We propose that this neuroendocrine HNO-TRPA1-CGRP signalling pathway constitutes an essential element for the control of vascular tone throughout the cardiovascular system.


Sujet(s)
Peptide relié au gène de la calcitonine/métabolisme , Sulfure d'hydrogène/métabolisme , Monoxyde d'azote/pharmacologie , Oxydes d'azote/métabolisme , Canaux cationiques TRP/métabolisme , Animaux , Aorte/effets des médicaments et des substances chimiques , Aorte/métabolisme , Tronc cérébral/effets des médicaments et des substances chimiques , Tronc cérébral/métabolisme , Peptide relié au gène de la calcitonine/génétique , Humains , Immunohistochimie , Techniques in vitro , Souris , Souris knockout , Transduction du signal/effets des médicaments et des substances chimiques , Transduction du signal/génétique , Spectrométrie de masse MALDI , Membre-1 de la sous-famille A de canaux cationiques à potentiel de récepteur transitoire , Canaux cationiques TRP/génétique , Ganglion trigéminal/effets des médicaments et des substances chimiques , Ganglion trigéminal/métabolisme
15.
Handb Exp Pharmacol ; 222: 583-630, 2014.
Article de Anglais | MEDLINE | ID: mdl-24756722

RÉSUMÉ

The transient receptor potential ankyrin subtype 1 protein (TRPA1) is a nonselective cation channel permeable to Ca(2+), Na(+), and K(+). TRPA1 is a promiscuous chemical nocisensor that is also involved in noxious cold and mechanical sensation. It is present in a subpopulation of Aδ- and C-fiber nociceptive sensory neurons as well as in other sensory cells including epithelial cells. In primary sensory neurons, Ca(2+) and Na(+) flowing through TRPA1 into the cell cause membrane depolarization, action potential discharge, and neurotransmitter release both at peripheral and central neural projections. In addition to being activated by cysteine and lysine reactive electrophiles and oxidants, TRPA1 is indirectly activated by pro-inflammatory agents via the phospholipase C signaling pathway, in which cytosolic Ca(2+) is an important regulator of channel gating. The finding that non-electrophilic compounds, including menthol and cannabinoids, activate TRPA1 may provide templates for the design of non-tissue damaging activators to fine-tune the activity of TRPA1 and raises the possibility that endogenous ligands sharing binding sites with such non-electrophiles exist and regulate TRPA1 channel activity. TRPA1 is promising as a drug target for novel treatments of pain, itch, and sensory hyperreactivity in visceral organs including the airways, bladder, and gastrointestinal tract.


Sujet(s)
Canaux calciques/métabolisme , Protéines de tissu nerveux/métabolisme , Canaux cationiques TRP/métabolisme , Animaux , Canaux calciques/composition chimique , Canaux calciques/génétique , Perméabilité des membranes cellulaires , Régulation de l'expression des gènes , Prédisposition génétique à une maladie , Humains , Ouverture et fermeture des portes des canaux ioniques , Potentiels de membrane , Souris , Souris knockout , Protéines de tissu nerveux/composition chimique , Protéines de tissu nerveux/génétique , Phénotype , Conformation des protéines , Transduction du signal , Relation structure-activité , Membre-1 de la sous-famille A de canaux cationiques à potentiel de récepteur transitoire , Canaux cationiques TRP/composition chimique , Canaux cationiques TRP/déficit , Canaux cationiques TRP/génétique
16.
Basic Clin Pharmacol Toxicol ; 114(2): 210-6, 2014 Feb.
Article de Anglais | MEDLINE | ID: mdl-24034343

RÉSUMÉ

The transient receptor potential vanilloid 4 (TRPV4) is a calcium permeable ion channel expressed in airway epithelial cells. Based on studies of cell lines and animals, TRPV4 has been suggested to play a role in the regulation of ciliary beat frequency (CBF). Whether the same is true for human ciliated epithelial cells is not known. Therefore, the aim was to examine the expression and function of TRPV4 in human native nasal epithelial cells. Expression of TRPV4 mRNA in nasal epithelial cells and in the cell lines BEAS2B and 16HBE was confirmed by quantitative real-time PCR. A marked apical TRPV4 immunoreactivity was observed in nasal epithelial cells using immunocytochemistry. Responses to pharmacological modulation of TRPV4 were assessed with calcium imaging and CBF measurements. The TRPV4 agonist GSK1016790A produced concentration-dependent calcium responses in TRPV4-expressing HEK293, BEAS2B and 16HBE cells, and the TRPV4 antagonist HC067047 caused a rightward shift of the GSK1016790A concentration-response curves. Nasal epithelial cells responded to the TRPV4 agonist GSK1016790A with increased intracellular calcium signals and increased CBF, followed by cessation of ciliary beating and cell death. These effects were prevented or inhibited by the TRPV4 antagonist HC067047, the TRP channel blocker ruthenium red or removal of extracellular calcium. We conclude that TRPV4 is expressed in human primary nasal epithelial cells and modulates epithelial calcium levels and CBF. Thus, TRPV4 may participate in mucociliary clearance and airway protection. However, exaggerated activation of TRPV4 may result in epithelial cell death.


Sujet(s)
Cils vibratiles/physiologie , Cellules épithéliales/métabolisme , Canaux cationiques TRPV/génétique , Calcium/métabolisme , Canaux calciques/métabolisme , Lignée cellulaire , Régulation de l'expression des gènes , Cellules HEK293 , Humains , ARN messager/génétique , ARN messager/métabolisme , Canaux cationiques TRPV/antagonistes et inhibiteurs , Canaux cationiques TRPV/métabolisme
17.
PLoS One ; 8(12): e81618, 2013.
Article de Anglais | MEDLINE | ID: mdl-24312564

RÉSUMÉ

Phospholipase C-mediated hydrolysis of phosphatidylinositol 4,5-bisphosphate generates diacylglycerol, inositol 1,4,5-trisphosphate and protons, all of which can regulate TRPV1 activity via different mechanisms. Here we explored the possibility that the diacylglycerol metabolites 2-arachidonoylglycerol and 1-arachidonoylglycerol, and not metabolites of these monoacylglycerols, activate TRPV1 and contribute to this signaling cascade. 2-Arachidonoylglycerol and 1-arachidonoylglycerol activated native TRPV1 on vascular sensory nerve fibers and heterologously expressed TRPV1 in whole cells and inside-out membrane patches. The monoacylglycerol lipase inhibitors methylarachidonoyl-fluorophosphonate and JZL184 prevented the metabolism of deuterium-labeled 2-arachidonoylglycerol and deuterium-labeled 1-arachidonoylglycerol in arterial homogenates, and enhanced TRPV1-mediated vasodilator responses to both monoacylglycerols. In mesenteric arteries from TRPV1 knock-out mice, vasodilator responses to 2-arachidonoylglycerol were minor. Bradykinin and adenosine triphosphate, ligands of phospholipase C-coupled membrane receptors, increased the content of 2-arachidonoylglycerol in dorsal root ganglia. In HEK293 cells expressing the phospholipase C-coupled histamine H1 receptor, exposure to histamine stimulated the formation of 2-AG, and this effect was augmented in the presence of JZL184. These effects were prevented by the diacylglycerol lipase inhibitor tetrahydrolipstatin. Histamine induced large whole cell currents in HEK293 cells co-expressing TRPV1 and the histamine H1 receptor, and the TRPV1 antagonist capsazepine abolished these currents. JZL184 increased the histamine-induced currents and tetrahydrolipstatin prevented this effect. The calcineurin inhibitor ciclosporin and the endogenous "entourage" compound palmitoylethanolamide potentiated the vasodilator response to 2-arachidonoylglycerol, disclosing TRPV1 activation of this monoacylglycerol at nanomolar concentrations. Furthermore, intracerebroventricular injection of JZL184 produced TRPV1-dependent antinociception in the mouse formalin test. Our results show that intact 2-arachidonoylglycerol and 1-arachidonoylglycerol are endogenous TRPV1 activators, contributing to phospholipase C-dependent TRPV1 channel activation and TRPV1-mediated antinociceptive signaling in the brain.


Sujet(s)
Monoglycérides/métabolisme , Canaux cationiques TRPV/métabolisme , Type C Phospholipases/métabolisme , Animaux , Acides arachidoniques/biosynthèse , Benzodioxoles/pharmacologie , Endocannabinoïdes/biosynthèse , Femelle , Ganglions sensitifs des nerfs spinaux/cytologie , Ganglions sensitifs des nerfs spinaux/effets des médicaments et des substances chimiques , Ganglions sensitifs des nerfs spinaux/métabolisme , Glycérides/biosynthèse , Cellules HEK293 , Humains , Mâle , Souris , Monoglycérides/biosynthèse , Nociception/effets des médicaments et des substances chimiques , Pipéridines/pharmacologie , Rats , Cellules réceptrices sensorielles/cytologie , Cellules réceptrices sensorielles/effets des médicaments et des substances chimiques , Cellules réceptrices sensorielles/métabolisme
18.
PLoS One ; 8(8): e70690, 2013.
Article de Anglais | MEDLINE | ID: mdl-23940628

RÉSUMÉ

The discovery that paracetamol is metabolized to the potent TRPV1 activator N-(4-hydroxyphenyl)-5Z,8Z,11Z,14Z-eicosatetraenamide (AM404) and that this metabolite contributes to paracetamol's antinociceptive effect in rodents via activation of TRPV1 in the central nervous system (CNS) has provided a potential strategy for developing novel analgesics. Here we validated this strategy by examining the metabolism and antinociceptive activity of the de-acetylated paracetamol metabolite 4-aminophenol and 4-hydroxy-3-methoxybenzylamine (HMBA), both of which may undergo a fatty acid amide hydrolase (FAAH)-dependent biotransformation to potent TRPV1 activators in the brain. Systemic administration of 4-aminophenol and HMBA led to a dose-dependent formation of AM404 plus N-(4-hydroxyphenyl)-9Z-octadecenamide (HPODA) and arvanil plus olvanil in the mouse brain, respectively. The order of potency of these lipid metabolites as TRPV1 activators was arvanil = olvanil>>AM404> HPODA. Both 4-aminophenol and HMBA displayed antinociceptive activity in various rodent pain tests. The formation of AM404, arvanil and olvanil, but not HPODA, and the antinociceptive effects of 4-aminophenol and HMBA were substantially reduced or disappeared in FAAH null mice. The activity of 4-aminophenol in the mouse formalin, von Frey and tail immersion tests was also lost in TRPV1 null mice. Intracerebroventricular injection of the TRPV1 blocker capsazepine eliminated the antinociceptive effects of 4-aminophenol and HMBA in the mouse formalin test. In the rat, pharmacological inhibition of FAAH, TRPV1, cannabinoid CB1 receptors and spinal 5-HT3 or 5-HT1A receptors, and chemical deletion of bulbospinal serotonergic pathways prevented the antinociceptive action of 4-aminophenol. Thus, the pharmacological profile of 4-aminophenol was identical to that previously reported for paracetamol, supporting our suggestion that this drug metabolite contributes to paracetamol's analgesic activity via activation of bulbospinal pathways. Our findings demonstrate that it is possible to construct novel antinociceptive drugs based on fatty acid conjugation as a metabolic pathway for the generation of TRPV1 modulators in the CNS.


Sujet(s)
Amidohydrolases/métabolisme , Aminophénols/pharmacologie , Analgésiques/pharmacologie , Benzylamines/pharmacologie , Canaux cationiques TRPV/agonistes , Aminophénols/pharmacocinétique , Analgésiques/pharmacocinétique , Animaux , Acides arachidoniques/métabolisme , Benzylamines/pharmacocinétique , Encéphale/métabolisme , Capsaïcine/analogues et dérivés , Capsaïcine/métabolisme , Concentration inhibitrice 50 , Mâle , Souris , Souris de lignée C57BL , Souris knockout , Activité motrice/effets des médicaments et des substances chimiques , Nociception/effets des médicaments et des substances chimiques , Rats , Rat Sprague-Dawley , Récepteur cannabinoïde de type CB1/métabolisme , Canaux cationiques TRPV/métabolisme , Vasodilatation/effets des médicaments et des substances chimiques
19.
Sci Rep ; 2: 380, 2012.
Article de Anglais | MEDLINE | ID: mdl-22532928

RÉSUMÉ

Transient receptor potential ankyrin 1 (TRPA1) is an ion channel involved in thermosensation and nociception. TRPA1 is activated by exogenous irritants and also by oxidants formed in inflammatory reactions. However, our understanding of its role in inflammation is limited. Here, we tested the hypothesis that TRPA1 is involved in acute inflammatory edema. The TRPA1 agonist allyl isothiocyanate (AITC) induced inflammatory edema when injected intraplantarly to mice, mimicking the classical response to carrageenan. Interestingly, the TRPA1 antagonist HC-030031 and the cyclo-oxygenase (COX) inhibitor ibuprofen inhibited not only AITC but also carrageenan-induced edema. TRPA1-deficient mice displayed attenuated responses to carrageenan and AITC. Furthermore, AITC enhanced COX-2 expression in HEK293 cells transfected with human TRPA1, a response that was reversed by HC-030031. This study demonstrates a hitherto unknown role of TRPA1 in carrageenan-induced inflammatory edema. The results also strongly suggest that TRPA1 contributes, in a COX-dependent manner, to the development of acute inflammation.


Sujet(s)
Carragénane/toxicité , Oedème/prévention et contrôle , Canaux cationiques TRP/physiologie , Acétanilides/pharmacologie , Animaux , Oedème/induit chimiquement , Cellules HEK293 , Humains , Ibuprofène/pharmacologie , Souris , Souris de lignée C57BL , Purines/pharmacologie , Membre-1 de la sous-famille A de canaux cationiques à potentiel de récepteur transitoire , Canaux cationiques TRP/agonistes
20.
Basic Clin Pharmacol Toxicol ; 110(3): 264-8, 2012 Mar.
Article de Anglais | MEDLINE | ID: mdl-21951314

RÉSUMÉ

Transient receptor potential vanilloid-1 (TRPV1) has been implicated as a mediator of itch in allergic rhinitis. To address this possibility, we synthesized a TRPV1 blocker (SB-705498) for nasal administration in patients with seasonal allergic rhinitis. The pharmacological activity of SB-705498 was confirmed on human TRPV1-expressing HEK293 cells, using fluorometric calcium imaging, and in patients with allergic rhinitis subjected to nasal capsaicin challenges. The effect of SB-705498 was studied in patients with seasonal allergic rhinitis subjected to daily allergen challenges for 7 days, using a double-blind, placebo-controlled, randomized and cross-over design. SB-705498 was delivered by nasal lavage 2 min. before each allergen challenge. Primary end-point was total nasal symptom score on days 5-7. Nasal peak inspiratory flow (nPIF) and eosinophil cationic protein (ECP) content in nasal lavages were also monitored. Daily topical applications of SB-705498 at a concentration that inhibited capsaicin-induced nasal symptoms had no effect on total symptom score, nPIF and ECP levels in allergen-challenged patients with seasonal allergic rhinitis. The individual symptoms, nasal itch or sneezes, were also not affected. These findings may indicate that TRPV1 is not a key mediator of the symptoms in allergic rhinitis. However, additional studies, using drug formulations with a prolonged duration of action, should be conducted before TRPV1 is ruled out as a drug target in allergic rhinitis.


Sujet(s)
Pyrrolidines/pharmacologie , Rhinite allergique saisonnière/traitement médicamenteux , Canaux cationiques TRPV/antagonistes et inhibiteurs , Urée/analogues et dérivés , Adulte , Capsaïcine/immunologie , Études croisées , Méthode en double aveugle , Femelle , Fluorimétrie , Cellules HEK293 , Humains , Mâle , Canaux cationiques TRPV/métabolisme , Urée/pharmacologie , Jeune adulte
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...