Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 7 de 7
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Environ Geochem Health ; 46(2): 36, 2024 Jan 16.
Article de Anglais | MEDLINE | ID: mdl-38227076

RÉSUMÉ

Urban agriculture should be promoted as long as the food produced is safe for consumption. Located in the metropolitan region of São Paulo-Brazil, Santo André has intense industrial activities and more recently an increasing stimulus to urban gardening. One of the potential risks associated to this activity is the presence of potentially toxic elements (PTEs). In this study, the concentration of PTEs (As, Ba, Cd, Co, Cu, Cr, Ni, Mo, Pb, Sb, Se, V and Zn) was evaluated by soil (n = 85) and soil amendments (n = 19) in urban gardens from this municipality. Only barium was above regulatory limits in agricultural soil ranging from 20 to 112 mg kg-1. Geochemical indexes (Igeo, Cf and Er) revealed moderate to severe pollution for As, Ba, Cr, Cu, Pb Se and Zn, especialy in Capuava petrochemical complex gardens. A multivariate statistical approach discriminated Capuava gardens from the others and correlated As, Cr and V as main factors of pollution. However, carcinogenic and non-carcinogenic risks were below the acceptable range for regulatory purposes of 10-6-10-4 for adults. Soil amendments were identified as a possible source of contamination for Ba, Zn and Pb which ranged from 37 to 4137 mg kg-1, 20 to 701 mg kg-1 and 0.7 to 73 mg kg-1, respectively. The results also indicated the presence of six pathogenic bacteria in these amendments. Besides that, the occurrence of antimicrobial resistance for Shigella, Enterobacter and Citrobacter isolates suggests that soil management practices improvement is necessary.


Sujet(s)
Jardinage , Jardins , Adulte , Humains , Brésil , Plomb , Sol
2.
Environ Sci Pollut Res Int ; 28(31): 42261-42274, 2021 Aug.
Article de Anglais | MEDLINE | ID: mdl-33797721

RÉSUMÉ

Shallow urban polluted reservoirs at tropical regions can be hotspots for CO2 and CH4 emissions. In this study, we investigated the relationships between eutrophication and GHG emissions in a highly urbanized tropical reservoir in São Paulo Metropolitan Area (Brazil). CO2 and CH4 fluxes and limnological variables (water and sediment) were collected at three sampling stations classified as hypereutrophic and eutrophic. Analysis of variance (ANOVA) and the principal component analysis (PCA) determined the most significant parameters to CO2 and CH4 fluxes. ANOVA showed significant differences of CO2 and CH4 fluxes between sampling stations with different trophic state. The hypereutrophic station showed higher mean fluxes for both CO2 and CH4 (5.43 ± 1.04 and 0.325 ± 0.167 g m-2 d-1, respectively) than the eutrophic stations (3.36 ± 0.54 and 0.060 ± 0.005 g m-2 d-1). The PCA showed a strong relationship between nutrients in the water column (surface and bottom) and GHG fluxes. We concluded that GHG fluxes were higher whenever the trophic state increases as observed previously in temperate and tropical reservoirs. High concentrations of nutrients in the water column in the studied area support the high production of autotrophic biomass that, when sedimented, ends up serving as organic matter for CH4 producers. These outcomes reinforce the necessity of water quality improvement and eutrophication mitigation in highly urbanized reservoirs in tropical regions.


Sujet(s)
Dioxyde de carbone , Gaz à effet de serre , Brésil , Dioxyde de carbone/analyse , Eutrophisation , Gaz à effet de serre/analyse , Méthane/analyse
3.
Front Microbiol ; 12: 647921, 2021.
Article de Anglais | MEDLINE | ID: mdl-33815337

RÉSUMÉ

Freshwater reservoirs emit greenhouse gases (GHGs) such as methane (CH4) and carbon dioxide (CO2), contributing to global warming, mainly when impacted by untreated sewage and other anthropogenic sources. These gases can be produced by microbial organic carbon decomposition, but little is known about the microbiota and its participation in GHG production and consumption in these environments. In this paper we analyzed the sediment microbiota of three eutrophic tropical urban freshwater reservoirs, in different seasons and evaluated the correlations between microorganisms and the atmospheric CH4 and CO2 flows, also correlating them to limnological variables. Our results showed that deeper water columns promote high methanogen abundance, with predominance of acetoclastic Methanosaeta spp. and hydrogenotrophs Methanoregula spp. and Methanolinea spp. The aerobic methanotrophic community was affected by dissolved total carbon (DTC) and was dominated by Crenothrix spp. However, both relative abundance of the total methanogenic and aerobic methanotrophic communities in sediments were uncoupled to CH4 and CO2 flows. Network based approach showed that fermentative microbiota, including Leptolinea spp. and Longilinea spp., which produces substrates for methanogenesis, influence CH4 flows and was favored by anthropogenic pollution, such as untreated sewage loads. Additionally, less polluted conditions favored probable anaerobic methanotrophs such as Candidatus Bathyarchaeota, Sva0485, NC10, and MBG-D/DHVEG-1, which promoted lower gaseous flows, confirming the importance of sanitation improvement to reduce these flows in tropical urban freshwater reservoirs and their local and global warming impact.

4.
Environ Sci Pollut Res Int ; 28(13): 16350-16367, 2021 Apr.
Article de Anglais | MEDLINE | ID: mdl-33389577

RÉSUMÉ

Nanoparticles (NPs) can be used in several ways in agriculture, including increasing production rates and improving nutritional values in plants. The present study aims to clarify how biogenic copper oxide nanoparticles (CuO NPs) applied by two routes of exposure (foliar spray and soil irrigation) affect the elemental uptake by lettuce. In vivo experiments using lettuce (n = 4) were performed with CuO NPs in comparison with copper salt (CuSO4), considering a final mass added of 20 mg of CuO per plant. The elemental composition of roots was mostly affected by the soil irrigation exposure for both Cu forms (NPs and salt). Neither Cu form added by soil irrigation was translocated to leaves. Copper concentration in leaves was mainly affected by foliar spray exposure for both Cu forms (NPs and salt). All Cu forms through foliar spray were sequestered in the leaves and no translocation to roots was observed. Foliar spray of CuO NPs caused no visual damage in leaves, resulted in less disturbance of elemental composition, and improved dry weight, number of leaves, CO2 assimilation, and the levels of K, Na, S, Ag, Cd, Cr, Cu, and Zn in leaves without causing significant changes in daily intake of most elements, except for Cu. Although Cu concentration increased in leaves by foliar spray of CuO NPs, it remained safe for consumption.


Sujet(s)
Nanoparticules métalliques , Nanoparticules , Cuivre/analyse , Lactuca , Racines de plante/composition chimique , Sol
6.
Chemosphere ; 266: 128939, 2021 Mar.
Article de Anglais | MEDLINE | ID: mdl-33248733

RÉSUMÉ

Constructed wetlands (CWs) are decentralized wastewater treatment systems considered to be green and low cost. They have the potential to effectively remove pollutants and recycle nutrients with plant composting. However, they need large areas to implement them due to the usual high Hydraulic Retention Times (HRT), reaching up to 50 days. The main objective of the present study was to evaluate the influence of HRT (HRT = 3, 7, and 10 days), and seasonality on Total Phosphorus (TP) removal, and standing stock in a pilot scale free water surface CW (FWS CW). Unplanted and planted (Eichhornia crassipes) tanks were evaluated in wet and dry seasons. The FWS CW was set up as a complementary treatment to a secondary level wastewater treatment plant. The system was monitored weekly for ten months, totalizing 29 replicate samplings (n = 58). Planted tanks were harvested every week to keep free space for plant reproduction (∼40%). The mean removal efficiency of TP ranged between 82% and 95% without a significant difference between HRT (pvalue > 0.05). However, when the effects of the sedimentation of the unplanted tanks were disregarded, the lowest HRT (3 days) tank presented the highest standing stock of TP. The wet season presented a significant difference in TP removal results (pvalue < 0.05), associated with higher macrophyte growth rate due to more intense solar irradiation and incorporation of TP by E. crassipes. The results point out advances in P removal and recycling by a low-cost ecological engineering system.


Sujet(s)
Eichhornia , Polluants chimiques de l'eau , Azote/analyse , Phosphore , Élimination des déchets liquides , Eaux usées , Eau , Polluants chimiques de l'eau/analyse , Zones humides
7.
Environ Monit Assess ; 192(4): 232, 2020 Mar 12.
Article de Anglais | MEDLINE | ID: mdl-32166379

RÉSUMÉ

Copper oxide nanoparticles (CuO NPs) have been extensively explored for use in agriculture. Previous studies have indicated that application of CuO NPs might be promising for development and conservation of plants, pest control, and for the recovery of degraded soils. However, depending on the applied concentration copper can cause phytotoxic effects. In this work, biosynthesized CuO NPs (using green tea extract) were evaluated on their effects on lettuce (Lactuca sativa L.) seedling growth, which were exposed at concentrations ranged between 0.2 and 300 µg mL-1. From the biosynthesized were obtained ultra-small CuO NPs (~ 6.6 nm), with high stability in aqueous suspension. Toxicity bioassays have shown that at low concentrations (up to 40 µg mL-1), CuO NPs did not affect or even enhanced the seed germination. At higher concentrations (higher than 40 µg mL-1), inhibition of seed germination and radicle growth ranging from 35 to 75% was observed. With the increase of CuO NPs concentrations, nitrite and S-nitrosothiols levels in radicles increased, whereas superoxide dismutase and total antioxidant activities decreased. The nitrite and S-nitrosothiols levels in lettuce radicles showed a direct dose response to CuO NP application, which may indicate nitric oxide-dependent signaling pathways in the plant responses. Therefore, the results demonstrated that at low concentrations (≤ 20 µg mL-1) of CuO NPs, beneficial effects are obtained from seedlings, enhancing plant growth, and the involvement of nitric oxide signaling in the phytotoxic effects induced by high concentration of this formulation. Graphical abstract.


Sujet(s)
Cuivre , Lactuca , Nanoparticules métalliques , Nanoparticules , Antioxydants , Cuivre/pharmacologie , Surveillance de l'environnement , Lactuca/effets des médicaments et des substances chimiques , Lactuca/croissance et développement , Monoxyde d'azote , Plant
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE