Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 1.473
Filtrer
1.
Langmuir ; 2024 Sep 20.
Article de Anglais | MEDLINE | ID: mdl-39303101

RÉSUMÉ

All-solid-state lithium metal batteries (ASSLMBs) have been regarded as promising candidates to settle the safety issues of liquid electrolytes for rechargeable lithium batteries. However, the currently reported gel polymer electrolytes still have flammable liquid solvents, thus leading to the potential safety hazard. Here, solvent-free deep eutectic solid polymer electrolytes (SPEs) are designed and fabricated via an in situ polymerization, which are composed of a poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) electrospun membrane, succinonitrile (SN), poly(ethylene glycol) diacrylate (PEGDA200, Mn = 200 g mol-1), lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), and lithium difluoro(oxalato)borate (LiDFOB). The deep eutectic solvent (DES) with SN/LiTFSI provides a superior room-temperature ionic conductivity, while the PEGDA200 precursor acts as cross-linking network to form SPEs under thermal initiation for free radical polymerization, and LiDFOB can form a stable solid electrolyte interface (SEI) layer. The PVDF-HFP electrospun membrane with a three-dimensional nanofibrous network structure for SN/PEGDA200/LiTFSI/LiDFOB SPEs exhibits a wide electrochemical stability window, high lithium-ion transference number, and good compatibility with the lithium metal anode. Furthermore, the obtained SPEs assembled with Li//LiMn0.6Fe0.4PO4, Li//LiFePO4, and Li//LiNi0.8Co0.1Mn0.1O2 asymmetric cells show excellent cycling performance and rate capability at a wide temperature. This strategy provides a promising path in designing high-energy-density ASSLMBs for practical application.

2.
Chem Sci ; 2024 Sep 05.
Article de Anglais | MEDLINE | ID: mdl-39309103

RÉSUMÉ

The resurgence of interest in sodium-ion batteries (SIBs) is largely driven by their natural abundance and favourable cost, apart from their comparable electrochemical performance when compared with lithium-ion batteries (LIBs). The uneven geographic distribution of the raw materials required for LIBs has also contributed to this. The solid-state electrolyte (SSE) is typically one of the vital components for energy storage in SIBs and for achieving high electrochemical performances. SSEs are preferred over liquid electrolytes primarily due to their enhanced safety and stability, apart from the option of achieving higher energy density. A single sodium-ion selective conductor minimises dendrite formation and cell polarisation, among many other benefits over binary ionic conductors in battery operation. Here, we demonstrate the first example of a sulfonated supramolecular organic two-dimensional (2D) nanosheet as a novel class of single sodium-ion conductors prepared from the self-assembly of a functionalised guanidinium ion (AD-1). Solvent-assisted exfoliation of the bulk powder in water yielded nanosheet morphology, whereas nanotube morphology was achieved in isopropanol (IPA). In contrast, self-assembly with systematic water/IPA solvent ratio variations produced marigold, sunflower, and nanorod morphologies. Thermodynamic parameters, crystallinity, elemental composition, and varying natures of hydrogen bonding in five distinct morphologies were determined using microscopic and spectroscopic studies. The single Na+ conducting properties of each morphology are correlated in terms of morphology, crystallinity, and the solvent used to achieve that specific morphology. Importantly, with high crystallinity and directional ion channels, 2D nanosheet morphology exhibits the highest single Na+-ion conductivity of 3.72 × 10-4 S cm-1 with an activation energy of 0.28 eV, showing a moderately high Na+-ion transference number of 0.83 at room temperature without incorporating any additional sodium salts and organic solvents. This report is believed to be the first to show the significance of nanostructure morphologies in achieving high single-Na+-ion transport.

3.
Article de Anglais | MEDLINE | ID: mdl-39323228

RÉSUMÉ

Organic electrochemical transistors (OECTs) have emerged as attractive devices for bioelectronics, wearable electronics, soft robotics, and energy storage devices. The electrolyte, being a fundamental component of OECTs, plays a crucial role in their performance. Recently, it has been demonstrated that ionic liquid crystal elastomers (iLCEs) can be used as a solid electrolyte for OECTs. Their capabilities, however, have only been shown for relatively large size substrate-free OECTs. Here, we study the influence of the different alignments of iLCEs on steady state and transient behavior of OECTs using a lateral geometry with source, drain, and gate in the same plane. We achieve excellent electrical response with an ON/OFF switching ratio of >105 and minimal leakage current. The normalized maximum transconductance gm/w of the most sensitive iLCE was found to be 33 S m-1, which is one of the highest among all solid-state-based OECTs reported so far. Additionally, iLCEs show high stability and can be removed and reattached multiple times to the same OECT device without decreasing performance.

4.
RSC Adv ; 14(42): 30618-30629, 2024 Sep 24.
Article de Anglais | MEDLINE | ID: mdl-39324040

RÉSUMÉ

Solid-state polymer electrolytes (SSPEs) are promising materials for Li-ion batteries due to their enhanced safety features, which are crucial for preventing short circuits and explosions, replacing traditional liquid electrolytes with solid electrolytes are increasingly important to improve battery reliability and lifespan. There are essentially three-types of solid-state electrolytes such as solid polymer electrolyte, composite based polymer electrolyte and gel-based polymer electrolyte are largely used in battery applications. Additionally, battery separators must have high ionic conductivity and porosity to boost safety and performance. Durable solid composites electrolytes with excellent thermal and mechanical properties are key to reducing the risk of lithium dendrite growth, thereby improving overall battery efficiency. Despite their potential, challenges like scalability, cost and real-world performance optimizations still need to be addressed.

5.
Adv Mater ; : e2409838, 2024 Sep 13.
Article de Anglais | MEDLINE | ID: mdl-39268782

RÉSUMÉ

Lithium-ion batteries using quasi-solid gel electrolytes (QSEs) have gained increasing interest due to their enhanced safety features. However, their commercial viability is hindered by low ionic conductivity and poor solid-solid contact interfaces. In this study, a QSE synthesized by in situ polymerizing methyl methacrylate (MMA) in 1,2-dimethoxyethane (DME)-based electrolyte is introduced, which exhibits remarkable performance in high-loading graphite||LiNi0.8Co0.1Mn0.1O2 (NCM811) pouch cells. Owing to the unique solvent-lacking solvation structure, the graphite exfoliation caused by the well-known solvent co-intercalation is prohibited, and this unprecedented phenomenon is found to be universal for other graphite-unfriendly solvents. The high ionic conductivity and great interfacial contact provided by DME enable the quasi-solid graphite||NCM811 pouch cell to demonstrate superior C-rate capability even at a high cathode mass loading (17.5 mg cm-2), surpassing liquid carbonate electrolyte cells. Meanwhile, the optimized QSE based on carbonates exhibits excellent cycle life (92.4% capacity retention after 1700 cycles at 0.5C/0.5C) and reliable safety under harsh conditions. It also outperforms liquid electrolytes in other high-energy-density batteries with larger volume change. These findings elucidate the polymer's pivotal role in QSEs, offering new insights for advancing quasi-solid-state battery commercialization.

6.
Prog Nucl Magn Reson Spectrosc ; 142-143: 1-54, 2024.
Article de Anglais | MEDLINE | ID: mdl-39237252

RÉSUMÉ

This review focuses on the application of nuclear magnetic resonance (NMR) spectroscopy in the study of lithium and sodium battery electrolytes. Lithium-ion batteries are widely used in electronic devices, electric vehicles, and renewable energy systems due to their high energy density, long cycle life, and low self-discharge rate. The sodium analog is still in the research phase, but has significant potential for future development. In both cases, the electrolyte plays a critical role in the performance and safety of these batteries. NMR spectroscopy provides a non-invasive and non-destructive method for investigating the structure, dynamics, and interactions of the electrolyte components, including the salts, solvents, and additives, at the molecular level. This work attempts to give a nearly comprehensive overview of the ways that NMR spectroscopy, both liquid and solid state, has been used in past and present studies of various electrolyte systems, including liquid, gel, and solid-state electrolytes, and highlights the insights gained from these studies into the fundamental mechanisms of ion transport, electrolyte stability, and electrode-electrolyte interfaces, including interphase formation and surface microstructure growth. Overviews of the NMR methods used and of the materials covered are presented in the first two chapters. The rest of the review is divided into chapters based on the types of electrolyte materials studied, and discusses representative examples of the types of insights that NMR can provide.

7.
Article de Anglais | MEDLINE | ID: mdl-39283192

RÉSUMÉ

In this study, we present an all-solid-state electrochromic device (ECD) that eliminates the need for hard-to-obtain materials and conventional liquid/gel electrolytes. Using a cost-effective and industrially scalable spray coating technique, we developed an ECD containing a layer of zinc oxide nanorods (ZnOnano) synthesized via a simple solochemical route. The device configuration includes a preformed Al-coated glass substrate, acting as a counter electrode, within a glass/Al/ZnOnano/PEDOT:PSS architecture. The device exhibits reversible switching between light blue and dark blue states upon application of -1.2 V and +2.8 V, respectively, with a significant difference in transmittance between bleached and colored states in the visible-NIR spectrum, featuring a high coloration efficiency of 275.62 cm2/C at 600 nm. The response times required for both coloring and bleaching states were 9.92 s and 7.51 s, respectively, for a sample with an active area of 5.5 × 2.5 cm2. Regarding the electrochemical stability of the ZnO-based ECD, the transmittance modulation reached around 8.01% at 600 nm after 12,800 s, following initial variations observed during the first 10 cycles. These results represent significant progress in electrochromic technology, offering a sustainable and efficient alternative to traditional ECDs. The use of economical fabrication techniques and the exclusion of critical materials highlight the potential for widespread industrial adoption of this novel ECD design.

8.
Small ; : e2405007, 2024 Sep 10.
Article de Anglais | MEDLINE | ID: mdl-39252636

RÉSUMÉ

Highly Li-concentrated electrolytes are acknowledged for their compatibility with Li metal negative electrodes and high voltage positive electrodes to achieve high-energy Li metal batteries, showcasing stable and facile interfaces for Li deposition/dissolution and high anodic stability. This study aims to explore a highly concentrated electrolyte by adopting entropy-driven chemistry for Li metal-free (so-called anode-free) batteries. The combination of lithium bis(fluorosulfonyl)amide (LiFSA) and lithium trifluoromethanesulfonate (LiOTf) salts in a pyrrolidinium-based ionic liquid is found to significantly modify the coordination structure, resulting in an unprecedented 60 mol% Li concentration and a low solvent-to-salt ratio of 0.67:1 in the electrolyte system. This novel 60 mol% Li electrolyte demonstrates unique coordination stricture, featuring a high ratio of monodentate-anion structures and aggregates, which facilitates an enhanced Li+ transference number and improved anodic stability. Moreover, the developed electrolyte provides a facile de-coordination process and leads to the formation of an anion-based solid electrolyte interface, which enables stable Li deposition/dissolution properties and demonstrates excellent cycling stability in the Li metal-free full cell with a Li[Ni0.8Co0.1Mn0.1]O2 (NCM811) positive electrode.

9.
Chem Commun (Camb) ; 2024 Sep 11.
Article de Anglais | MEDLINE | ID: mdl-39258509

RÉSUMÉ

Sulfonimide salts are considered as promising electrolyte materials in the construction of high-performant rechargeable lithium-ion batteries (LIBs) and lithium metal batteries (LMBs), owing to their delocalized negative charges, superior structural flexibility, and decent thermal/chemical stability. In this work, a historical overview of the development of sulfonimide anions in the field of electrolyte materials is presented, and the unique features of sulfonimide anions are discussed, in comparison with some popular anions [e.g., hexafluorophosphate anion (PF6-)] being employed for batteries. The key advances in the design of sulfonimide salts as electrolyte materials are scrutinized, encompassing their use in nonaqueous liquid electrolytes, ionic liquid electrolytes, and solid polymer electrolytes. Based on the existing reports and our experiences in this domain, possible research directions related to further improvement of sulfonimide-based electrolytes are highlighted. Besides demonstrating the status quo and research progress, this work also expands the structural design toolkit of sulfonimide-based electrolytes, which may accelerate the development and realization of sulfonimide anion-based electrolytes in practical LIBs/LMBs and simultaneously give new impetus to other kinds of rechargeable battery technologies (e.g., sodium and potassium batteries).

10.
Chem Commun (Camb) ; 60(74): 10046-10063, 2024 Sep 12.
Article de Anglais | MEDLINE | ID: mdl-39171458

RÉSUMÉ

Lithium metal batteries have garnered significant attention due to their high energy density and broad application prospects. However, the practical use of traditional liquid electrolytes is constrained by safety and stability challenges. In the exploration of novel electrolytes, solid-state electrolyte materials have emerged as a focal point. Covalent organic frameworks (COFs), with their large conjugated structures and unique electronic properties, are gradually gaining attention as an emerging class of solid-state electrolyte materials. In recent years, outstanding electrochemical performance has been achieved through the design and synthesis of various types of COF-based solid-state electrolytes, along with successful integration with other functional materials. This review will provide an overview of the research progress on COFs as solid-state electrolyte materials for lithium metal batteries and offer insights into their future potential in battery technology.

11.
ACS Appl Mater Interfaces ; 16(34): 44350-44360, 2024 Aug 28.
Article de Anglais | MEDLINE | ID: mdl-39145510

RÉSUMÉ

Single-ion conductive polymer electrolytes can improve the safety of lithium ion batteries (LIBs) by increasing the lithium transference number (tLi+) and avoiding the growth of lithium dendrites. Meanwhile, the self-assembled ordered structure of liquid crystal polymer networks (LCNs) can provide specific channels for the ordered transport of Li ions. Herein, single-ion conductive nematic and cholesteric LCN electrolyte membranes (denoted as NLCN-Li and CLCN-Li) were successfully prepared. NLCN-Li was then coated on commercial Celgard 2325 while CLCN-Li was coated on poly(vinylidene fluoride-hexafluoropropylene) film, coupled with plasticizer, to make NLCN-Li/Cel and CLCN-Li/Pv quasi-solid-state electrolyte membranes, respectively. Their electrochemical properties were evaluated, and it was found that they possessed benign thermal stability and electrolyte/electrode compatibility, high tLi+ up to 0.98 and high electrochemical stability window up to 5.2 V. A small amount (0.5M) of extra Li salt added to the plasticizer could improve the ion conductivity from 1.79 × 10-5 to 5.04 × 10-4 S cm-1, while the tLi+ remained 0.85. The assembled LFP|Li batteries also exhibited excellent cycling and rate performances. The orderliness of the LCN layer played an important role in the distribution and movement of Li ions, thereby affecting the Li deposition and growth of Li dendrites. As the first report of nematic and cholesteric LCN single-ion conductors, this work sheds light on the design and fabrication of ordered quasi-solid-state electrolytes for high-performance and safe LIBs.

12.
ACS Appl Mater Interfaces ; 16(34): 45399-45410, 2024 Aug 28.
Article de Anglais | MEDLINE | ID: mdl-39146494

RÉSUMÉ

Solid polymer electrolytes (SPEs) are regarded as a superior alternative to traditional liquid electrolytes of lithium-ion batteries (LIBs) due to their improved safety features. The practical implementation of SPEs faces challenges, such as low ionic conductivity at room temperature (RT) and inadequate interfacial contact, leading to high interfacial resistance across the electrode and electrolyte interfaces. In this study, we addressed these issues by designing a quasi-gel polymer electrolyte (QGPE), a blend of poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP), poly(ethylene oxide) (PEO), and succinonitrile (SN), with the desired mechanical strength, ionic conductivity, and interfacial stability through a simple solution casting technique. The QGPE features a thin solvated PEO layer on its surface, which wets the electrode, reducing the interfacial resistance and ensuring a homogeneous Li-ion flux across the interface. The optimized QGPE exhibits a good lithium-ion conductivity of 1.14 × 10-3 S cm-1 with a superior lithium-ion transference number of 0.7 at 25 °C. The Li/QGPE/Li symmetric cell exhibits a highly reversible lithium plating/stripping process for over 1300 h with minimal voltage polarization of ∼20 mV. The Li/QGPE/LiFePO4 full cell demonstrates good rate capability and excellent long-term cycling performance at a 0.1 C rate at 25 °C, maintaining a specific discharge capacity of 148 mAh g-1 over 200 cycles. The effectiveness of QGPE for LIBs is proven using a graphite/QGPE/LiFePO4 4 × 4 cm pouch cell, showcasing outstanding flexibility and tolerance against intentional abuse.

13.
ACS Appl Mater Interfaces ; 16(34): 44341-44349, 2024 Aug 28.
Article de Anglais | MEDLINE | ID: mdl-39152897

RÉSUMÉ

Oxidase enzyme-based electrochemical bioassays have garnered considerable interest due to their specificity and high efficiency. However, in traditional solid-liquid diphase enzyme electrode systems, the low solubility of oxygen and its slow mass transfer rate limit the oxidase catalytic reaction kinetics, thereby affecting the bioassay performance, including the detection accuracy, sensitivity, and linear dynamic range. ZIF-8 nanoparticles (NPs) possess hydrophobic and high-porosity characteristics, enabling them to serve as oxygen nanocarriers. In this work, we constructed a solid-liquid-air triphase enzyme electrode by encapsulating ZIF-8 NPs within an oxidase network. Hydrophobic ZIF-8 NPs can provide a rapid and sufficient supply of oxygen for the oxidase-catalyzed reactions, which enhances and stabilizes the kinetics of oxidase-catalyzed reactions. This approach eliminates the issue of "oxygen deficiency" at the traditional solid-liquid diphase interface. Consequently, the triphase enzyme electrode exhibits a 12-fold higher linear detection range than the diphase system and possesses good detection accuracy in electrolytes even with fluctuating oxygen levels. This work proposes a novel approach to construct triphase reaction systems for addressing the gas deficiency problem in heterogeneous catalysis.


Sujet(s)
Électrodes , Cinétique , Catalyse , Oxygène/composition chimique , Oxidoreductases/composition chimique , Oxidoreductases/métabolisme , Réseaux organométalliques/composition chimique , Techniques de biocapteur/méthodes , Techniques électrochimiques/méthodes , Nanoparticules/composition chimique , Enzymes immobilisées/composition chimique , Enzymes immobilisées/métabolisme , Dosage biologique , Imidazoles
14.
Angew Chem Int Ed Engl ; : e202410463, 2024 Aug 14.
Article de Anglais | MEDLINE | ID: mdl-39141694

RÉSUMÉ

Solid inorganics, known for kinetically inhibiting polymer crystallization and enhancing ionic conductivity, have attracted significant attention in solid polymer electrolytes. However, current composite polymer electrolytes (CPEs) are still facing challenges in Li metal batteries, falling short of inhibiting severe dendritic growth and resulting in very limited cycling life. This study introduces Ga62.5In21.5Sn16 (Galinstan) liquid metal (LM) as an active liquid alternative to conventional passive solid fillers, aiming at realizing self-healing protection against dendrite problems. Compared to solid inorganics, for example silica, LM droplets could more significantly reduce polymer crystallinity and enhance Li-ion conductivity due to their liquid nature, especially at temperatures below the polymer melting point. More importantly, LMs are unraveled as dynamic chemical traps, which are capable of blocking and consuming lithium dendrites upon contact via in situ alloying during battery operation and further inhibiting dendritic growth due to the lower deposition energy barrier of the formed Li-LM alloy. As a proof of concept, by strategically designing an asymmetric CPE with the active LM filling, a solid-state Li/LiFePO4 battery achieves promising full-cell functionality with notable rate performance and stable cycle life. This active filler-mediated self-healing approach could bring new insights into the battery design in versatile solid-state systems.

15.
Int J Biol Macromol ; 277(Pt 2): 134356, 2024 Oct.
Article de Anglais | MEDLINE | ID: mdl-39089551

RÉSUMÉ

With the rapid advancement of flexible, portable devices, hydrogel electrolytes have gained considerable attention as potential replacements for conventional liquid electrolytes. A hydrogel electrolyte was synthesised by cross-linking acrylic acid (AA), acrylamide (AM), carboxymethyl cellulose (CMC), and zinc sulphate (ZnSO4). The formation of hydrogen bonds and chelate interactions between the P(AA-co-AM) polymer, CMC, and ZnSO4 created a robust network, enhancing the mechanical properties of the hydrogel electrolytes. Notably, the hydrogel electrolyte containing 0.6 % CMC demonstrated superior mechanical strength (compression strength of 1.22 MPa, tensile stress of 230 kPa, tensile strain of 424 %, adhesion strength of 1.98 MPa on wood). Additionally, the CMC/P(AA-co-AM) hydrogels exhibited commendable electrical performance (38 mS/cm) and a high gauge factor (2.9), enabling the precise detection of physiological activity signals through resistance measurements. The unique network structure of the hydrogel electrolyte also ensured a stable bonding interface between the electrode and the electrolyte. After 2000 charge-discharge cycles, the supercapacitor maintained good capacitance characteristics, with a capacitance retention rate of 71.21 % and a stable Coulombic efficiency of 98.85 %, demonstrating excellent cyclic stability. This study introduces a novel methodology for fabricating multifunctional all-solid-state supercapacitors and suggests that the hydrogel can significantly advance the development of wearable energy storage devices.


Sujet(s)
Capacité électrique , Électrolytes , Hydrogels , Dispositifs électroniques portables , Électrolytes/composition chimique , Hydrogels/composition chimique , Techniques électrochimiques/méthodes , Électrodes , Carboxyméthylcellulose de sodium/composition chimique
16.
ACS Appl Mater Interfaces ; 16(33): 44236-44248, 2024 Aug 21.
Article de Anglais | MEDLINE | ID: mdl-39121451

RÉSUMÉ

Hybrid battery cells that combine a garnet-type Li7La3Zr2O12 (LLZO) solid electrolyte with other solid, polymer or liquid electrolytes are increasingly investigated. In such cells with layered electrolytes, ensuring a low-resistive heteroionic interface between neighboring electrolytes is crucial for preventing major additional overpotentials during operation. Electrochemical impedance spectroscopy is frequently used to extract such parameters, usually on multilayer symmetrical model cells that contain the different electrolytes stacked in series. Unfortunately, the impedance contributions of the heteroionic interfaces often overlap with those of the electrolyte|electrode interfaces, necessitating the use of sophisticated four-point cells that probe the electrochemical potential away from the polarization source. In this work, an alternative solution to this problem is demonstrated by taking advantage of the inherent fast charge transfer kinetics of LLZO with its parent metal electrode. The "resistance-free" nature of a reversible Li|LLZO interface enables a precise evaluation of the heteroionic interface impedance in symmetric two-point cells of the type Li|LLZO|electrolyte|LLZO|Li with negligible electrode contribution. This is exemplified for symmetric multilayer cells containing tantalum-doped LLZO and a poly(ethylene oxide) (PEO)-based dry polymer electrolyte. Validation and comparison of impedance data with results from symmetric four-point cells and two-point cells with ion-blocking electrodes demonstrate the advantage of the proposed method. Overall, this study presents a simple and reliable method for studying heteroionic interface impedances in LLZO-containing multilayer cells.

17.
Angew Chem Int Ed Engl ; : e202412434, 2024 Aug 23.
Article de Anglais | MEDLINE | ID: mdl-39177989

RÉSUMÉ

The practical application of solid-state polymer lithium-metal batteries (LMBs) is plagued by the inferior ionic conductivity of the applied polymer electrolytes (PEs), which is caused by the coupling of ion transport with the motion of polymer segments. Here, solvated molecules based on ionic liquid and lithium salt with strong Li+-solvent interaction are inserted into an elaborately engineered perfluoropolymer electrolyte via ionic dipole interaction, extensively facilitating Li+ transport and improving mechanical properties. The intensified formation of solvation structures of contact ion pairs and ionic aggregates, as well as the strong electron-withdrawal properties of the F atoms in perfluoropolymers, give the PE high electrochemical stability and excellent interfacial stability. As a result, Li||Li symmetric cells demonstrate a lifetime of 2500 h and an exceptionally high critical current density above 2.3 mA cm-2, Li||LiFePO4 batteries exhibit consistent cycling for 550 cycles at 10 C, and Li||uncoated LiNi0.8Co0.1Mn0.1O2 cells achieve 1000 cycles at 0.5 C with an average Coulombic efficiency of 98.45%, one of the best results reported to date based on PEs. Our discovery sheds fresh light on the targeted synergistic regulation of the electro-chemo-mechanical properties of PEs to extend the cycle life of LMBs.

18.
Nat Commun ; 15(1): 7247, 2024 Aug 23.
Article de Anglais | MEDLINE | ID: mdl-39179530

RÉSUMÉ

The positive electrode|electrolyte interface plays an important role in all-solid-state Li batteries (ASSLBs) based on garnet-type solid-state electrolytes (SSEs) like Li6.4La3Zr1.4Ta0.6O12 (LLZTO). However, the trade-off between solid-solid contact and chemical stability leads to a poor positive electrode|electrolyte interface and cycle performance. In this study, we achieve thermodynamic compatibility and adequate physical contact between high-entropy cationic disordered rock salt positive electrodes (HE-DRXs) and LLZTO through ultrafast high-temperature sintering (UHS). This approach constructs a highly stable positive electrode|electrolyte interface, reducing the interface resistance to 31.6 Ω·cm2 at 25 °C, making a 700 times reduction compared to the LiCoO2 | LLZTO interface. Moreover, the conformal and tight HE-DRX | LLZTO solid-state interface avoids the transition metal migration issue observed with HE-DRX in liquid electrolytes. At 150 °C, HE-DRXs in ASSLBs (Li|LLZTO | HE-DRXs) exhibit an average specific capacity of 239.7 ± 2 mAh/g at 25 mA/g, with a capacity retention of 95% after 100 cycles relative to the initial cycle-a stark contrast to the 76% retention after 20 cycles at 25 °C in conventional liquid batteries. Our strategy, which considers the principles of thermodynamics and kinetics, may open avenues for tackling the positive electrode|electrolyte interface issue in ASSLBs based on garnet-type SSEs.

19.
Angew Chem Int Ed Engl ; : e202412006, 2024 Aug 28.
Article de Anglais | MEDLINE | ID: mdl-39193808

RÉSUMÉ

Designing solid electrolyte is deemed as an effective approach to suppress the side reaction of zinc anode and active material dissolution of cathodes in liquid electrolytes for zinc metal batteries (ZMBs). Herein, kaolin is comprehensively investigated as raw material to prepare solid electrolyte (KL-Zn) for ZMBs. As demonstrated, KL-Zn electrolyte is an excellent electronic insulator and zinc ionic conductor, which presents wide voltage window of 2.73 V, high ionic conductivity of 5.08 mS cm-1, and high Zn2+ transference number of 0.79. For the Zn//Zn cells, superior cyclic stability lasting for 2200 h can be achieved at 0.2 mA cm-2. For the Zn//NH4V4O10 batteries, stable capacity of 245.8 mAh g-1 can be maintained at 0.2 A g-1 after 200 cycles along with high retention ratio of 81%, manifesting KL-Zn electrolyte contributes to stabilize the crystal structure of NH4V4O10 cathode. These satisfying performances can be attributed to the enlarged interlayer spacing, zinc (de)solvation-free mechanism and fast diffusion kinetics of KL-Zn electrolyte, availably guaranteeing uniform zinc deposition for zinc anode and reversible zinc (de)intercalation for NH4V4O10 cathode. Additionally, this work also verifies the application possibility of KL-Zn electrolyte for Zn//MnO2 batteries and Zn//I2 batteries, suggesting the universality of mineral-based solid electrolyte.

20.
ACS Nano ; 18(34): 23253-23264, 2024 Aug 27.
Article de Anglais | MEDLINE | ID: mdl-39145659

RÉSUMÉ

Solid polymer electrolytes (SPEs) represent a pivotal advance toward high-energy solid-state lithium metal batteries. However, inadequate interfacial contact remains a significant bottleneck, impeding scalability and application. Inadequate interfacial contact remains a significant bottleneck, impeding scalability and application. Recent efforts have focused on transforming liquid/solid interfaces into solid/solid ones through in situ polymerization, which shows potential especially in reducing interface impedance. Here, we designed high-voltage SSLMBs with dual-reinforced stable interfaces by combining interface modification with an in situ polymerization technology inspired by targeted effects in medicine. Theoretical calculations and time-of-flight secondary ion mass spectrometry (TOF-SIMS) analysis demonstrate that tetramethylene sulfone (TMS) and bis(2,2,2-trifluoromethyl) carbonate (TFEC) exhibit selective adsorption at the interface of the LiNi0.8Co0.1Mn0.1O2 (NCM) cathode and Li anode, respectively. These compounds further decompose to form a stable cathode-electrolyte interface (CEI) film and a solid electrolyte interface (SEI) film, thereby simultaneously achieving a superior interface between the SPE and both the Li anode and NCM cathode. The developed Li||SPE||Li cell sustained cycling for more than 1000 h at 0.3 mA cm-2, and the NCM||SPE||Li cell also demonstrated an excellent capacity retention of 86.8% after 1000 cycles at 1 °C. This work will provide valuable insights for the rational design of high-voltage SSLMBs with stable interfaces, leveraging in situ polymerization as a cornerstone technology.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE