Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 877
Filtrer
1.
Foods ; 13(14)2024 Jul 20.
Article de Anglais | MEDLINE | ID: mdl-39063371

RÉSUMÉ

Pickled tea is an anaerobically fermented tea common in Thailand, Myanmar and Yunnan minority areas. γ-aminobutyric acid (GABA) is non-protein amino acid with multiple bioactives, which can be easily produced under anaerobic conditions. During the processing of pickled tea, controlling the process parameters is effective for the production of GABA-rich products; however, the precise parameters remain to be clarified. In the present study, the fresh leaves of Camellia sinensis (L.) Kuntze (C. sinensis) 'FudingDabai', C. sinensis 'MabianLv No. 1', C. sinensis 'Wuniuzao' and C. sinensis 'Fuxuan No. 9' were used as raw materials to process GABA-rich pickled tea. Single-factor and orthogonal experiments were conducted to determine the best tea cultivars and optimize the best processing parameters via comparing the content of GABA, tea polyphenols (TPs) and other biochemical components of GABA-rich pickled tea. The results of the signal-factor experiment showed that the fresh leaves of C. sinensis 'MabianLv No. 1' had the highest GABA content of 2.61 mg·g-1 after treatment with vacuum for 6 h; therefore, C. sinensis 'MabianLv No. 1' was selected as the raw material for the subsequent experiments. Orthogonal experiments showed that the highest GABA content of 2.53 mg·g-1 was found in the pickled tea with 8 h of vacuum treatment, 20 min of rolling after microwave fixing, 20 min of spreading and 20 d of anaerobic fermentation at room temperature. Further, the sensory evaluation showed that it possesses a strong sour taste with a slight sweetness and a light yellow color and better comprehensive quality. This indicates that these parameters are optimal for the processing of GABA-rich pickled tea. This study will provide scientific basis for the subsequent production of high GABA tea.

2.
Neuron ; 2024 Jul 09.
Article de Anglais | MEDLINE | ID: mdl-39002542

RÉSUMÉ

Regulated neural-metabolic-inflammatory responses are essential for maintaining physiological homeostasis. However, the molecular machinery that coordinates neural, metabolic, and inflammatory responses is largely unknown. Here, we show that semaphorin 6D (SEMA6D) coordinates anxiogenic, metabolic, and inflammatory outputs from the amygdala by maintaining synaptic homeostasis. Using genome-wide approaches, we identify SEMA6D as a pleiotropic gene for both psychiatric and metabolic traits in human. Sema6d deficiency increases anxiety in mice. When fed a high-fat diet, Sema6d-/- mice display attenuated obesity and enhanced myelopoiesis compared with control mice due to higher sympathetic activity via the ß3-adrenergic receptor. Genetic manipulation and spatial and single-nucleus transcriptomics reveal that SEMA6D in amygdalar interneurons is responsible for regulating anxiogenic and autonomic responses. Mechanistically, SEMA6D is required for synaptic maturation and γ-aminobutyric acid transmission. These results demonstrate that SEMA6D is important for the normal functioning of the neural circuits in the amygdala, coupling emotional, metabolic, and inflammatory responses.

3.
Food Chem ; 459: 140420, 2024 Jul 14.
Article de Anglais | MEDLINE | ID: mdl-39024869

RÉSUMÉ

The effects of γ-aminobutyric (GABA) on enzymatic browning, storage quality, membrane and reactive oxygen species (ROS) metabolism in fresh-cut stem lettuce were investigated. The results illustrated that GABA treatment delayed browning degree, polyphenol oxidase (PPO) activity and the expression of LsPPO. Meanwhile, higher chlorophyll and ascorbic acid contents were exhibited in GABA-treated stem lettuce, as well as the slower microbial propagation. Further investigation revealed that exogenous GABA application declined malondialdehyde content, electrolyte leakage and the enzyme activities of membrane metabolism, and the expression levels of related genes were also downregulated. In addition, GABA treatment scavenged ROS and strengthened the enzyme activities of ROS metabolism, as well as the expression levels of corresponding genes. Taken together, these findings implied that the repressed enzymatic browning and microbial propagation in GABA-treated stem lettuce were due to the inhibition of ROS accumulation, enhancement of membrane stability and increased resistance to oxidation.

4.
Lett Appl Microbiol ; 77(7)2024 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-38977897

RÉSUMÉ

Sleeplessness (insomnia) is a potential symptom of depression. A probiotic NVP1704 alleviates depression-like behavior and neuroinflammation in mice. Therefore, to understand whether NVP1704 could be effective against sleeplessness in vivo, we exposed immobilization stress (IS) in mice, then orally administered NVP1704 for 5 days, and assayed depression/anxiety-like behavior in the open field, elevated plus maze, and tail suspension tests, sleeping latency time, and sleep duration, euthanized then by exposure to CO2, and analyzed their related biomarkers. Oral administration of NVP1704 decreased IS-induced depression/anxiety-like behavior and sleeping latency time and increased IS-suppressed sleeping duration. NVP1704 increased IS-suppressed expression of γ-aminobutyric acid (GABA), GABAA receptor α1 (GABAARα1) and α2 subunits (GABAARα2), serotonin, 5-HT receptors (5-HT1AR and 5-HT1BR), and melatonin receptors (MT1R and MT2R) in the prefrontal cortex and thalamus. NVP1704 also increased the IS-suppressed GABAARα1-positive cell population in the prefrontal cortex and decreased IS-induced corticosterone, TNF-α, and IL-6 expression and the NF-κB+Iba1+ cell population in the brain and myeloperoxidase, TNF-α, and IL-6 expression and the NF-κB+CD11c+ cell population in the colon. Based on these findings, NVP1704 may alleviate depression/anxiety/sleeplessness-like behaviors through the upregulation of serotonergic and GABAergic systems and downregulation of NF-κB activation.


Sujet(s)
Dépression , Facteur de transcription NF-kappa B , Probiotiques , Animaux , Souris , Probiotiques/administration et posologie , Probiotiques/pharmacologie , Facteur de transcription NF-kappa B/métabolisme , Dépression/étiologie , Dépression/traitement médicamenteux , Dépression/métabolisme , Mâle , Sérotonine/métabolisme , Acide gamma-amino-butyrique/métabolisme , Stress psychologique/traitement médicamenteux , Régulation négative , Régulation positive , Récepteurs sérotoninergiques/métabolisme , Récepteurs sérotoninergiques/génétique
5.
Neuroimage Clin ; 43: 103641, 2024 Jul 14.
Article de Anglais | MEDLINE | ID: mdl-39032208

RÉSUMÉ

OBJECTIVE: The pathogenesis of depression in patients with Parkinson's disease (PD) is poorly understood. Therefore, this study aimed to explore the changes in γ-aminobutyric acid (GABA) and glutamate plus glutamine (Glx) levels in patients with PD with or without depression determined using MEscher-GArwood Point Resolved Spectroscopy (MEGA-PRESS). MATERIALS AND METHODS: A total of 83 patients with primary PD and 24 healthy controls were included. Patients with PD were categorized into depressed PD (DPD, n = 19) and nondepressed PD (NDPD, n = 64) based on the 17-item Hamilton Depression Rating Scale. All participants underwent T1-weighted imaging and MEGA-PRESS sequence to acquire GABA+ and Glx values. The MEGA-PRESS sequence was conducted using 18.48 mL voxels in the left thalamus and medial frontal cortex. The GABA+, Glx, and creatine values were quantified using Gannet 3.1 software. RESULTS: The GABA+ and Glx values were not significantly disparate between patients with PD and controls in the thalamus and medial frontal cortex. However, the levels of N-acetyl aspartate/creatine and choline/creatine in the left thalamus were significantly lower in patients with PD than in controls (P = .031, P = .009). The GABA+/Water and GABA+/Creatine in the medial frontal cortex were higher in DPD than in NDPD (P = .001, P = .004). The effects of depression on Glx or other metabolite levels were not evident, and no significant difference in metabolite values was noted in the left thalamus among all groups (P > .05). CONCLUSIONS: GABA+ levels increased in the medial frontal cortex in DPD, which may be more closely related to depressive pathology. Thus, alterations in GABAergic function in special brain structures may be related to the clinical manifestations of PD symptoms, and hence mediating this function might help in treating depression in PD.

6.
Heliyon ; 10(13): e33823, 2024 Jul 15.
Article de Anglais | MEDLINE | ID: mdl-39044985

RÉSUMÉ

Lactiplantibacillus plantarum SPS109, an isolated strain of lactic acid bacteria (LAB) from fermented foods, showed remarkable potential as a probiotic with dual capabilities in γ-aminobutyric acid (GABA) production and cholesterol reduction. This study employs genomic and comparative analyses to search into the strain's genetic profile, safety features, and probiotic attributes. The safety assessment reveals the absence of virulence factors and antimicrobial resistance genes, while the genome uncovers bacteriocin-related elements, including sactipeptides and a cluster for putative plantaricins, strengthening its ability to combat diverse pathogens. Pangenome analysis revealed unique bacteriocin-related genes, specifically lcnD and bcrA, distinguishing SPS109 from four other L. plantarum strains producing GABA. In addition, genomic study emphasizes SPS109 strain distinctive features, two GABA-related genes responsible for GABA production and a bile tolerance gene (cbh) crucial for cholesterol reduction. Additionally, the analysis highlights several genes of potential probiotic properties, including stress tolerance, vitamin production, and antioxidant activity. In summary, L. plantarum SPS109 emerges as a promising probiotic candidate with versatile applications in the food and beverage industries, supported by its unique genomic features and safety profile.

7.
J Neurophysiol ; 2024 Jul 03.
Article de Anglais | MEDLINE | ID: mdl-38958282

RÉSUMÉ

Neuromodulation in the retina is crucial for effective processing of retinal signal at different levels of illuminance. Intrinsically photosensitive retinal ganglion cells (ipRGCs), the neurons that drive non-image forming visual functions, express a variety of neuromodulatory receptors that tune intrinsic excitability as well as synaptic inputs. Past research has examined actions of neuromodulators on light responsiveness of ipRGCs, but less is known about how neuromodulation affects synaptic currents in ipRGCs. To better understand how neuromodulators affect synaptic processing in ipRGC, we examine actions of opioid and dopamine agonists have on inhibitory synaptic currents in ipRGCs. Although µ-opioid receptor (MOR) activation had no effect on γ-aminobutyric acid (GABA) currents, dopamine (via the D1R) amplified GABAergic currents in a subset of ipRGCs. Furthermore, this D1R-mediated facilitation of the GABA conductance in ipRGCs was mediated by a cAMP/PKA-dependent mechanism. Taken together, these findings reinforce the idea that dopamine's modulatory role in retinal adaptation affects both non-image forming as well as image forming visual functions.

8.
J Sci Food Agric ; 2024 Jul 09.
Article de Anglais | MEDLINE | ID: mdl-38979987

RÉSUMÉ

BACKGROUND: This study investigated the effects of γ-aminobutyric acid (GABA) combined with ultrasonic stress germination (AUG) treatment on the phenolic content and antioxidant activity of highland barley (HB). Key variables, including germination times (ranging from 0 to 96 h), ultrasonic power (200-500 W), and GABA concentration (5-20 mmol/L), were optimized using response surface methodology (RSM) to enhance the enrichment of phenolic compounds. Furthermore, the study assessed the content, composition, and antioxidant activities of phenolic compounds in HB under various treatment conditions such as germination alone (G), ultrasonic stress germination (UG), and AUG treatment. RESULTS: The study identified optimal conditions for the phenolic enrichment of HB, which included a germination time of 60 h, an ultrasound power of 300 W, and a GABA concentration of 15 mmol L-1. Under these conditions, the total phenolic content (TPC) in HB was measured at 7.73 milligrams of gallic acid equivalents per gram dry weight (mg GAE/g DW), representing a 34.96% enhancement compared to untreated HB. Notably, all treatment modalities - G, UG, and AUG - significantly increased the phenolic content and antioxidant activity in HB, with the AUG treatment proving to be the most effective. CONCLUSION: These obtained results suggest that AUG treatment is a promising processing method for enriching phenolic compounds and improving antioxidant activity in HB. Subsequently, the AUG-treated HB can be used to develop phenolic-rich germinated functional foods to further broaden the application of HB. © 2024 Society of Chemical Industry.

9.
Sci Rep ; 14(1): 14520, 2024 06 24.
Article de Anglais | MEDLINE | ID: mdl-38914640

RÉSUMÉ

Rose flowers (Rosa hybrida L.) are highly perishable and have a limited vase life. This study evaluated the effects of preharvest foliar applications of γ-aminobutyric acid (GABA) and calcium chloride (CaCl2), individually and combined, on antioxidant responses and vase life of cut Jumilia rose flowers. Treatments included foliar sprays of GABA at 0, 20, 40, and 60 mM and CaCl2 at 0, 0.75%, and 1.5%, applied in a factorial design within a completely randomized setup before harvest. Results showed GABA and CaCl2 interaction (especially, 60 mM GABA and 1.5% CaCl2) significantly increased enzymatic antioxidants including superoxide dismutase, catalase, and peroxidase, as well as non-enzymatic antioxidants such as flavonoids, carotenoids, phenolics, and antioxidant activity in petals compared to control. SOD activity in roses, treated with CaCl2 (1.5%) and GABA (60 mM), peaked at 7.86 units. mg-1 protein min-1, showing a nearly 2.93-fold increase over the control (2.68 units. mg-1 protein min-1). A parallel trend was observed for CAT activity. These treatments also reduced petal malondialdehyde content and polyphenol oxidase activity. Protein content and vase life duration increased in all treatments. Plants treated with a combination of GABA (20 mM) and CaCl2 (0.75%), GABA (60 mM) and CaCl2 (1.5%), or GABA (40 mM) individually exhibited the longest vase life duration. The co-application of GABA and CaCl2 improved the antioxidant activity and postharvest quality of cut roses by reducing PPO activity and MDA contents, increasing protein content and prolonging vase life. This treatment is a potential postharvest strategy to improve antioxidant capacity and delay senescence in cut roses.


Sujet(s)
Antioxydants , Chlorure de calcium , Fleurs , Rosa , Acide gamma-amino-butyrique , Fleurs/effets des médicaments et des substances chimiques , Chlorure de calcium/pharmacologie , Antioxydants/métabolisme , Acide gamma-amino-butyrique/métabolisme , Rosa/métabolisme , Rosa/effets des médicaments et des substances chimiques , Superoxide dismutase/métabolisme , Catalase/métabolisme , Malonaldéhyde/métabolisme , Feuilles de plante/métabolisme , Feuilles de plante/effets des médicaments et des substances chimiques
10.
Foods ; 13(12)2024 Jun 17.
Article de Anglais | MEDLINE | ID: mdl-38928841

RÉSUMÉ

Given the link between excessive salt consumption and hypertension, reducing salt levels in bread, an important staple food in Japan, is essential. γ-Aminobutyric acid (GABA) has a salty taste-enhancing effect in vivo, and its production is influenced by the type of spice extract in vitro. However, the effects of spices on GABA levels, total free amino acid composition, and taste quality in whole-wheat bread remain unclear. Therefore, this study aimed to investigate whether the addition of spice extracts, which do not affect bread flavor and taste, can increase the GABA level in low-salt whole-wheat bread and whether free amino acid content affects the taste quality of bread using an automatic home bread maker. Through free amino acid composition analysis and sensory testing, we evaluated the influence of six spice extracts on the composition of free amino acids, including GABA, in whole-wheat bread. We found that cumin and anise extracts were effective in increasing the GABA level to approximately twice that in whole-wheat bread. Moreover, both the preference and saltiness of the bread were favorable, indicating that these extracts are useful for reducing the salt content of whole-wheat bread. This study provides a theoretical basis for guiding industrial production.

11.
Antioxidants (Basel) ; 13(6)2024 May 25.
Article de Anglais | MEDLINE | ID: mdl-38929086

RÉSUMÉ

Gamma-aminobutyric acid (GABA) is a non-protein amino acid that is found in the brain and central nervous system of animals as an inhibitory neurotransmitter. It has been shown to have a variety of physiological functions, including stress reduction and immune enhancement. This study investigated the effects of dietary supplementation with GABA on growth, serum biochemistry, innate immunity, and disease resistance in juvenile olive flounders (Paralichthys olivaceus) challenged with Edwardsiella tarda under high-stocking density. A control diet and three experimental diets were prepared, with 150 mg/kg (GABA150), 200 mg/kg (GABA200), and 250 mg/kg (GABA250) of GABA added to each diet, respectively. Each experimental diet was fed to olive flounders in triplicate with an initial weight of 12.75 g ± 0.3 g in 40 L tanks at two stocking densities: normal density (20 fish/tank) and high density (40 fish/tank). After 8 weeks of the feeding trial, growth, feed utilization, whole-body proximate compositions, blood analyses, and non-specific immune responses were measured, and challenge tests were performed. There were no significant differences in the weight gain (WG) and specific growth rate (SGR) among fish fed the GABA-supplemented diets at the two stocking densities. However, the normal-density groups showed significantly higher WG and SGR than the high-density groups (p < 0.05). There was no significant difference in feed efficiency and protein efficiency ratio among all groups. Moreover, there was no significant difference in the whole-body proximate composition analysis (p > 0.05). There were no significant differences in cortisol levels in fish fed the GABA at both densities, but the high-density group showed a significantly higher cortisol than the low-density group. Blood GABA significantly increased in a dose-dependent manner regardless of the density groups (p < 0.05). Superoxide dismutase activity showed significantly higher levels than the control group, but there was no significant effect of the stocking densities in fish fed the GABA diets (p < 0.05). Myeloperoxidase activities in fish fed the GABA200 and GABA250 diets showed significantly higher levels at both of the stocking densities (p < 0.05). Lysozyme activity was significantly higher in the GABA150 group than in the CON, GABA200, and GABA250 groups (p < 0.05). After 15 days of challenge tests with Edwardsiella tarda, the cumulative survival rates of the GABA150, GABA200, and GABA250 groups were significantly higher than that of the CON group (p < 0.05). The results suggested that the optimal dietary GABA level for juvenile olive flounder culture is 150 mg/kg, regardless of rearing density, to enhance growth, immunity, and disease resistance.

12.
Biosci Rep ; 44(6)2024 Jun 26.
Article de Anglais | MEDLINE | ID: mdl-38828664

RÉSUMÉ

Increasing cadmium (Cd) pollution has negative effects on quinoa growth and production. Gamma-aminobutyric acid (GABA) confers plants with stress resistance to heavy metals; however, the mechanism remains unclear. We explored the effects of exogenous GABA on the physiological characteristics, antioxidant capacity, and Cd accumulation of quinoa seedlings under Cd stress using hydroponic experiments. Partial least-squares regression was used to identify key physical and chemical indices of seedlings affecting Cd accumulation. Compared with those of the CK group, exposure to 10 and 25 µmol·L-1 Cd significantly reduced the photosynthetic pigment contents, photosynthesis, and biomass accumulation of quinoa seedlings; resulted in shorter and thicker roots; decreased the length of the lateral roots; decreased the activities of superoxide dismutase (SOD) and peroxide (POD); and increased H2O2 and malondialdehyde (MDA) contents. Exogenous GABA reduced the Cd content in the stem/leaves and roots of quinoa seedlings under Cd stress by 13.22-21.63% and 7.92-28.32%, decreased Cd accumulation by 5.37-6.71% and 1.91-4.09%, decreased the H2O2 content by 38.21-47.46% and 45.81-55.73%, and decreased the MDA content by 37.65-48.12% and 29.87-32.51%, respectively. GABA addition increased the SOD and POD activities in the roots by 2.78-5.61% and 13.81-18.33%, respectively, under Cd stress. Thus, exogenous GABA can reduce the content and accumulation of Cd in quinoa seedlings by improving the photosynthetic characteristics and antioxidant enzyme activity and reducing the degree of lipid peroxidation in the cell membrane to alleviate the toxic effect of Cd stress on seedling growth.


Sujet(s)
Antioxydants , Cadmium , Chenopodium quinoa , Peroxyde d'hydrogène , Plant , Acide gamma-amino-butyrique , Plant/effets des médicaments et des substances chimiques , Plant/métabolisme , Plant/croissance et développement , Cadmium/métabolisme , Cadmium/toxicité , Chenopodium quinoa/métabolisme , Chenopodium quinoa/effets des médicaments et des substances chimiques , Chenopodium quinoa/croissance et développement , Acide gamma-amino-butyrique/métabolisme , Antioxydants/métabolisme , Peroxyde d'hydrogène/métabolisme , Racines de plante/métabolisme , Racines de plante/croissance et développement , Racines de plante/effets des médicaments et des substances chimiques , Malonaldéhyde/métabolisme , Stress physiologique/effets des médicaments et des substances chimiques , Superoxide dismutase/métabolisme , Photosynthèse/effets des médicaments et des substances chimiques , Stress oxydatif/effets des médicaments et des substances chimiques
13.
J Agric Food Chem ; 72(25): 14216-14228, 2024 Jun 26.
Article de Anglais | MEDLINE | ID: mdl-38860925

RÉSUMÉ

Two-component systems (TCSs) sensing and responding to various stimuli outside and inside cells are valuable resources for developing biosensors with synthetic biology applications. However, the use of TCS-based biosensors suffers from a limited effector spectrum, hypersensitivity, low dynamic range, and unwanted signal crosstalk. Here, we developed a tailor-made Escherichia coli whole-cell γ-aminobutyric acid (GABA) biosensor by engineering a chimeric GABA chemoreceptor PctC and TCS. By testing different TCSs, the chimeric PctC/PhoQ showed the response to GABA. Chimera-directed evolution and introduction of the insulated chimeric pair PctC/PhoQ*PhoP* produced biosensors with up to 3.50-fold dynamic range and good orthogonality. To further enhance the dynamic range and lower the basal leakage, three strategies, engineering of PhoP DNA binding sites, fine-tuning reporter expression by optimizing transcription/translation components, and a tobacco etch virus protease-controlled protein degradation, were integrated. This chimeric biosensor displayed a low basal leakage, a large dynamic range (15.8-fold), and a high threshold level (22.7 g L-1). Finally, the optimized biosensor was successfully applied in the high-throughput microdroplet screening of GABA-overproducing Corynebacterium glutamicum, demonstrating its desired properties for extracellular signal biosensing.


Sujet(s)
Techniques de biocapteur , Protéines Escherichia coli , Escherichia coli , Acide gamma-amino-butyrique , Techniques de biocapteur/méthodes , Techniques de biocapteur/instrumentation , Acide gamma-amino-butyrique/métabolisme , Escherichia coli/génétique , Escherichia coli/métabolisme , Protéines Escherichia coli/génétique , Protéines Escherichia coli/métabolisme
14.
Int J Biol Macromol ; 270(Pt 2): 132517, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38777008

RÉSUMÉ

The rapid activation of phosphatidylinositol-specific phospholipase C (PI-PLC) occurs early after the stimulation of biotic and abiotic stress in plants, which directly associated with the calcium channel-induced calcium ion (Ca2+) influx. Exogenous calcium chloride (CaCl2) mediates the calcium signaling transduction to promote the γ-aminobutyric acid accumulation and nutritional quality in shredded carrots whereas the generation mechanism remains uncertain. Therefore, the involvement of PI-PLC-associated phospholipid metabolism was investigated in present study. Our result revealed that CaCl2 treatment promoted the expression and activity of PI-PLC and increased the inositol 1,4,5-trisphosphate and hexakisphosphate content in shredded carrots. The transcripts of multi-glutamate receptor-like channels (DcGLRs), the glutamate and γ-aminobutyric acid (GABA) content, and Ca2+ influx were induced by CaCl2 treatment in shredded carrots during storage. However, PI-PLC inhibitor (U73122) treatment inhibited the activation of PI-PLC, the increase of many DcGLRs family genes expression levels, and Ca2+ influx. Moreover, the identification of DcPI-PLC4/6 and DcGLRs proteins, along with the analysis of characteristic domains such as PLCXc, PLCYc, C2 domain, transmembranous regions, and ligand binding domain, suggests their involvement in phospholipid catalysis and calcium transport in carrots. Furthermore, DcPI-PLC4/6 overexpression in tobacco leaves induced the Ca2+ influx by activating the expressions of NtGLRs and the accumulation of glutamate and GABA. These findings collectively indicate that CaCl2 treatment-induced PI-PLC activation influences DcGLRs expression levels to mediate cytosolic Ca2+ influx, thus, highlighting the "PI-PLC-GLRs-Ca2+" pathway in calcium signaling generation and GABA biosynthesis in shredded carrots.


Sujet(s)
Chlorure de calcium , Calcium , Daucus carota , Phospholipides , Calcium/métabolisme , Daucus carota/métabolisme , Daucus carota/effets des médicaments et des substances chimiques , Chlorure de calcium/pharmacologie , Phospholipides/métabolisme , Phosphoinositide Phospholipase C/métabolisme , Régulation de l'expression des gènes végétaux/effets des médicaments et des substances chimiques , Protéines végétales/métabolisme , Protéines végétales/génétique
15.
Microorganisms ; 12(5)2024 Apr 27.
Article de Anglais | MEDLINE | ID: mdl-38792710

RÉSUMÉ

This study investigated the main microbial groups characterizing the interior surface of oak barrels from different years (1890, 1895, 1920, 1975, 2008) used in the production of vino cotto. The yeasts were characterized for the following properties: γ-aminobutyric acid (GABA) production, antioxidant activity, air-liquid interfacial biofilm formation, and anthocyanin adsorption capacity. Community-level physiological profile analysis revealed that the microbial communities inside the barrels used the tested carbon sources in different manners. The following yeast species were identified: Millerozyma farinosa, Zygosaccharomyces bisporus, Wickerhamiella versatilis, Zygosaccharomyces bailii, Starmerella lactis-condensi, and Zygosaccharomyces rouxii. All the strains were able to produce GABA, and S. lactis-condensi, Z. bisporus and Z. rouxii were the highest producers (more than 600 mg/L). The Z. rouxii and Z. bailii strains showed the highest antioxidant activity. Only seven strains out of ten M. farinosa formed air-liquid interfacial biofilm. None of the M. farinosa strains adsorbed anthocyanins on their cell wall. The other strains adsorbed anthocyanins in a strain-dependent way, and the highest adsorption was observed for the W. versatilis strains. The yeasts isolated in this study could be used to increase the functional properties and the quality of fermented foods and beverages.

16.
Front Nutr ; 11: 1404743, 2024.
Article de Anglais | MEDLINE | ID: mdl-38784135

RÉSUMÉ

Objective: γ-aminobutyric acid (GABA) is a neurotransmitter inhibitor that has beneficial effects on various health conditions such as hypertension, cognitive dysfunction, and anxiety. In this study, we investigated a novel yogurt naturally enriched with GABA using a Levilactobacillus brevis strain isolated in our laboratory; the specific optimum yogurt production conditions for this strain were determined. Methods: We isolated an L. brevis strain and used it to produce yogurt naturally enriched with GABA. We explored the optimal conditions to enhance GABA yield, including fermentation temperature, inoculation amount, L-monosodium glutamate (L-MSG) concentration, fermentation time, and sucrose content. We also performed mixed fermentation with Streptococcus thermophilus and evaluated the quality of the yogurt. Results: Following optimization (43°C, 8% inoculation amount, 1.5 g/L L-MSG, and 8% sucrose for 40 h of fermentation), the GABA yield of the yogurt increased by 2.2 times, reaching 75.3 mg/100 g. Mixed fermentation with S. thermophilus demonstrated favorable results, achieving a GABA yield akin to that found in some commercially available functional foods. Moreover, the viable microbe count in the GABA-enriched yogurt exceeded 1 × 108 cfu/mL, which is higher than that of commercial standards. The yogurt also exhibited a suitable water-holding capacity, viscosity, 3-week storage time, and favorable sensory test results. Conclusion: This study highlights the potential of naturally enriched GABA yogurt as a competitive commercial yogurt with beneficial health effects.

17.
Bioprocess Biosyst Eng ; 47(6): 957-969, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38717593

RÉSUMÉ

γ-Aminobutyric acid (GABA) is a crucial neurotransmitter with wide application prospects. In this study, we focused on a GABA-producing strain from a traditional Chinese fermented beverage system. Among the six isolates, Lactobacillus hilgardii GZ2 exhibited the greatest ability to produce GABA in the traditional Chinese fermented beverage system. To increase GABA production, we optimized carbon sources, nitrogen sources, temperature, pH, and monosodium glutamate and glucose concentrations and conducted fed-batch fermentation. The best carbon and nitrogen sources for GABA production and cell growth were glucose, yeast extract and tryptone. Gradual increases in GABA were observed as the glucose and monosodium glutamate concentrations increased from 10 g/L to 50 g/L. During fed-batch fermentation, lactic acid was used to maintain the pH at 5.56, and after feeding with 0.03 g/mL glucose and 0.4 g/mL sodium glutamate for 72 h, the GABA yield reached 239 g/L. This novel high-GABA-producing strain holds great potential for the industrial production of GABA, as well as the development of health-promoting functional foods and medical fields.


Sujet(s)
Lactobacillus , Acide gamma-amino-butyrique , Boissons , Fermentation , Acide gamma-amino-butyrique/biosynthèse , Acide gamma-amino-butyrique/métabolisme , Glucose/métabolisme , Concentration en ions d'hydrogène , Lactobacillus/métabolisme , Lactobacillus/croissance et développement , Glutamate de sodium/métabolisme
18.
Foods ; 13(10)2024 May 14.
Article de Anglais | MEDLINE | ID: mdl-38790826

RÉSUMÉ

Fresh-cut potatoes (Solanum tuberosum L.) are susceptible to browning and microbial contamination during storage. In this study, the effects of trans-2-hexenal (E2H), ascorbic acid (VC), dimethyl dicarbonate (DMDC), and the combined treatment of E2H, VC, and DMDC on quality deterioration in fresh-cut potatoes were investigated. The response surface methodology (RSM) demonstrated that E2H, VC, and DMDC concentrations of 0.010%, 0.65%, and 240 mg/L, respectively, were the optimum conditions for fresh-cut potato preservation. Further analysis showed that the combined treatment of E2H, VC, and DMDC was the most effective method of reducing quality deterioration in potatoes compared to the control and individual treatments. Furthermore, the combined treatment of E2H, VC, and DMDC could decrease the accumulation of reactive oxygen species (ROS) via improving antioxidant enzyme activities. Meanwhile, energy-metabolism-related enzyme activities and glutamate decarboxylase (GAD) activity were enhanced, while γ-aminobutyric acid transaminase (GABA-T) activity was reduced via the combined treatment of E2H, VC, and DMDC, which contributed to maintaining high energy levels and GABA content in potatoes. These findings suggested that the combined treatment of E2H, VC, and DMDC could protect membrane integrity through enhancing antioxidant capacity, energy levels, and GABA content to maintain quality in fresh-cut potatoes.

19.
Article de Anglais | MEDLINE | ID: mdl-38743109

RÉSUMÉ

RATIONALE: Clinical and preclinical studies have demonstrated that estradiol withdrawal after delivery is one of important factors involved in the pathogenesis of postpartum depression (PPD). The infralimbic cortex (IL) is related to anxiety and mood disorders. Whether IL neurons mediate PPD is still unclear. OBJECTIVES: This study was to observe the antidepressant effect and expression of BDNF and ß-catenin in IL by allopregnanolone (ALLO) treatment or the selective activation or inhibition of IL neurons using a chemogenetic approach in a pseudopregnancy model of PPD. METHODS: Administration of estradiol combined with progesterone and the abrupt withdrawal of estradiol simulated the pregnancy and early postpartum periods to induce depression in ovariectomized rats. The relative expression levels of ß-catenin and BDNF were observed by western blotting. RESULTS: Immobility time was significantly increased in the forced swim test and open-arm movement was reduced in the elevated plus maze test in the estradiol-withdrawn rats. After ALLO treatment, the immobility time were lower and open-arm traveling times higher than those of the estradiol-withdrawn rats. Meanwhile, the expression level of BDNF or ß-catenin in the IL was reduced significantly in estradiol-withdrawn rats, which was prevented by treatment with ALLO. The hM3Dq chemogenetic activation of pyramidal neurons in the IL reversed the immobility and open-arm travel time trends in the estradiol-withdrawal rat model, but chemogenetic inhibition of IL neurons failed to affect this. Upregulated BDNF and ß-catenin expression and increased c-Fos in the basolateral amygdala were found following IL neuron excitation in model rats. CONCLUSIONS: Our results demonstrated that pseudopregnancy and estradiol withdrawal produced depressive-like behavior and anxiety. ALLO treatment or specific excitement of IL pyramidal neurons relieved abnormal behaviors and upregulated BDNF and ß-catenin expression in the IL in the PPD model, suggesting that hypofunction of IL neurons may be involved in the pathogenesis of PPD.

20.
Front Pharmacol ; 15: 1390294, 2024.
Article de Anglais | MEDLINE | ID: mdl-38720773

RÉSUMÉ

Introduction: Ganoderma lucidum (G. lucidum, Lingzhi) has long been listed as a premium tonic that can be used to improve restlessness, insomnia, and forgetfulness. We previously reported that a rat model of sporadic Alzheimer's disease (sAD) that was induced by an intracerebroventricular injection of streptozotocin (ICV-STZ) showed significant learning and cognitive deficits and sleep disturbances. Treatment with a G. lucidum spore extract with the sporoderm removed (RGLS) prevented learning and memory impairments in sAD model rats. Method: The present study was conducted to further elucidate the preventive action of RGLS on sleep disturbances in sAD rats by EEG analysis, immunofluorescence staining, HPLC-MS/MS and Western blot. Results: Treatment with 720 mg/kg RGLS for 14 days significantly improved the reduction of total sleep time, rapid eye movement (REM) sleep time, and non-REM sleep time in sAD rats. The novelty recognition experiment further confirmed that RGLS prevented cognitive impairments in sAD rats. We also found that RGLS inhibited the nuclear factor-κB (NF-κB)/Nod-like receptor family pyrin domain-containing 3 (NLRP3) inflammatory pathway in the medial prefrontal cortex (mPFC) in sAD rats and ameliorated the lower activity of γ-aminobutyric acid (GABA)-ergic neurons in the parabrachial nucleus (PBN). Discussion: These results suggest that inhibiting the neuroinflammatory response in the mPFC may be a mechanism by which RGLS improves cognitive impairment. Additionally, improvements in PBN-GABAergic activity and the suppression of neuroinflammation in the mPFC in sAD rats might be a critical pathway to explain the preventive effects of RGLS on sleep disturbances in sAD.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE