Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 453
Filtrer
1.
mBio ; : e0149224, 2024 Sep 09.
Article de Anglais | MEDLINE | ID: mdl-39248520

RÉSUMÉ

The cell wall of monoderm bacteria consists of peptidoglycan and glycopolymers in roughly equal proportions and is crucial for cellular integrity, cell shape, and bacterial vitality. Despite the immense value of Streptomyces in biotechnology and medicine as antibiotic producers, we know very little about their cell wall biogenesis, composition, and functions. Here, we have identified the LCP-LytR_C domain protein CglA (Vnz_13690) as a key glycopolymer ligase, which specifically localizes in zones of cell wall biosynthesis in S. venezuelae. Reduced amount of glycopolymers in the cglA mutant results in enlarged vegetative hyphae and failures in FtsZ-rings formation and positioning. Consequently, division septa are misplaced leading to the formation of aberrant cell compartments, misshaped spores, and reduced cell vitality. In addition, we report our discovery that c-di-AMP signaling and decoration of the cell wall with glycopolymers are physiologically linked in Streptomyces since the deletion of cglA restores growth of the S. venezuelae disA mutant at high salt. Altogether, we have identified and characterized CglA as a novel component of cell wall biogenesis in Streptomyces, which is required for cell shape maintenance and cellular vitality in filamentous, multicellular bacteria.IMPORTANCEStreptomyces are our key producers of antibitiotics and other bioactive molecules and are, therefore, of high value for medicine and biotechnology. They proliferate by apical extension and branching of hyphae and undergo complex cell differentiation from filaments to spores during their life cycle. For both, growth and sporulation, coordinated cell wall biogenesis is crucial. However, our knowledge about cell wall biosynthesis, functions, and architecture in Streptomyces and in other Actinomycetota is still very limited. Here, we identify CglA as the key enzyme needed for the attachment of glycopolymers to the cell wall of S. venezuelae. We demonstrate that defects in the cell wall glycopolymer content result in loss of cell shape in these filamentous bacteria and show that division-competent FtsZ-rings cannot assemble properly and fail to be positioned correctly. As a consequence, cell septa placement is disturbed leading to the formation of misshaped spores with reduced viability.

2.
Front Microbiol ; 15: 1441398, 2024.
Article de Anglais | MEDLINE | ID: mdl-39220037

RÉSUMÉ

Studies in model microorganisms showed that cell division is highly vulnerable to high hydrostatic pressure (HHP). Disassembly of FtsZ filaments induced by HHP results in the failure of cell division and formation of filamentous cells in E. coli. The specific characteristics of FtsZ that allow for functional cell division in the deep-sea environments, especially in obligate piezophiles that grow exclusively under HHP condition, remain enigmatic. In this study, by using a self-developed HHP in-situ fixation apparatus, we investigated the effect of HHP on FtsZ by examining the subcellular localization of GFP-tagged FtsZ in vivo and the stability of FtsZ filament in vitro. We compared the pressure tolerance of FtsZ proteins from pressure-sensitive strain Shewanella oneidensis MR-1 (FtsZSo) and obligately piezophilic strain Shewanella benthica DB21MT-2 (FtsZSb). Our findings showed that, unlike FtsZSo, HHP hardly affected the Z-ring formation of FtsZSb, and filaments composed of FtsZSb were more stable after incubation under 50 MPa. By constructing chimeric and single amino acid mutated FtsZ proteins, we identified five residues in the N-terminal GTPase domain of FtsZSb whose mutation would impair the Z-ring formation under HHP conditions. Overall, these results demonstrate that FtsZ from the obligately piezophilic strain exhibits superior pressure tolerance than its homologue from shallow water species, both in vivo and in vitro. Differences in pressure tolerance of FtsZ are largely attributed to the N-terminal GTPase domain. This represents the first in-depth study of the adaptation of microbial cytoskeleton protein FtsZ to high hydrostatic pressure, which may provide insights into understanding the complex bioprocess of cell division under extreme environments.

3.
Int J Biol Macromol ; 279(Pt 2): 135252, 2024 Aug 31.
Article de Anglais | MEDLINE | ID: mdl-39222779

RÉSUMÉ

The bacterial cell division protein FtsZ has been considered a potential therapeutic target due to its rapid treadmilling that induces cellular wall construction in bacteria. The current study discovered a novel antimicrobial compound, silibinin, a natural flavonolignan and its impact on the recombinant S. aureus FtsZ (SaFtsZ). Silibinin inhibited S. aureus Newman growth in a dose-dependent manner. The IC50 and MIC values for silibinin were 75 µM and 200 µM, respectively. It had no cytotoxicity against HEK293 cells in vitro. Silibinin also enlarged the bacterial cell morphology by ∼40 folds and showed antibiofilm property. It perturbed the S. aureus membrane potential both at IC50 conc. and at MIC conc. Further, it inhibited both the polymerization and GTPase activity of SaFtsZ. It did not inhibit tubulin assembly, a eukaryotic FtsZ homolog. A fluorescence quenching study yielded the Kd value for SaFtsZ-Silibinin interaction and binding stoichiometry 0.857 ± 0.188 µM and 1:1, respectively. Both in silico study and competition assay indicated that silibinin binds at the GTP binding site on SaFtsZ. The Ki value for the silibinin-mediated inhibition of SaFtsZ was 8.8 µM. Therefore, these findings have comprehensively shown the antimicrobial behavior of silibinin on S. aureus Newman cells targeting SaFtsZ.

4.
Front Microbiol ; 15: 1361508, 2024.
Article de Anglais | MEDLINE | ID: mdl-39104591

RÉSUMÉ

Multidrug resistant bacteria have been a global health threat currently and frontline clinical treatments for these infections are very limited. To develop potent antibacterial agents with new bactericidal mechanisms is thus needed urgently to address this critical antibiotic resistance challenge. Natural products are a treasure of small molecules with high bioactive and low toxicity. In the present study, we demonstrated that a natural compound, honokiol, showed potent antibacterial activity against a number of Gram-positive bacteria including MRSA and VRE. Moreover, honokiol in combination with clinically used ß-lactam antibiotics exhibits strong synergistic antimicrobial effects against drug-resistant S. aureus strains. Biochemical studies further reveal that honokiol may disrupt the GTPase activity, FtsZ polymerization, cell division. These biological impacts induced by honokiol may ultimately cause bacterial cell death. The in vivo antibacterial activity of honokiol against S. aureus infection was also verified with a biological model of G. mellonella larvae. The in vivo results support that honokiol is low toxic against the larvae and effectively increases the survival rate of the larvae infected with S. aureus. These findings demonstrate the potential of honokiol for further structural advancement as a new class of antibacterial agents with high potency against multidrug-resistant bacteria.

5.
Microorganisms ; 12(8)2024 Jul 23.
Article de Anglais | MEDLINE | ID: mdl-39203348

RÉSUMÉ

Mycobacterium tuberculosis (Mtb), the causative pathogen of tuberculosis, remains one of the leading causes of death from a single infectious agent. Furthermore, the growing evolution to multi-drug-resistant (MDR) strains requires de novo identification of drug targets for evaluating candidates or repurposing drugs. Hence, targeting FtsZ, an essential cell division protein, is a promising target. METHODS: Using an in silico pharmacological repositioning strategy, four FDA-based drugs that bind to the catalytic site FtsZ were selected. The Alamar Blue colorimetric assay was used to assess antimicrobial activity and the effect of drugs on Mtb growth through growth curves. Bacterial load was determined with an in vitro infection model using colony-forming units (CFU)/mL, and cytotoxicity on human monocyte-derived macrophages (MDMhs) was assessed by flow cytometry. RESULTS: Paroxetine and nebivolol exhibited antimycobacterial activity against both reference TB and MDR strains at a concentration of 25 µg/mL. Furthermore, both paroxetine and nebivolol demonstrated a significant reduction (p < 0.05) in viable bacteria compared to the untreated group in the in vitro infection model. CONCLUSIONS: Collectively, our findings demonstrate that the use of paroxetine and nebivolol is a promising strategy to help in the control of tuberculosis infection.

6.
mBio ; 15(8): e0168724, 2024 Aug 14.
Article de Anglais | MEDLINE | ID: mdl-39041810

RÉSUMÉ

The actin-like FtsA protein is essential for function of the cell division machinery, or divisome, in many bacteria including Escherichia coli. Previous in vitro studies demonstrated that purified wild-type FtsA assembles into closed mini-rings on lipid membranes, but oligomeric variants of FtsA such as FtsAR286W and FtsAG50E can bypass certain divisome defects and form arc and double-stranded (DS) oligomeric states, respectively, which may reflect conversion of an inactive to an active form of FtsA. However, it remains unproven which oligomeric forms of FtsA are responsible for assembling and activating the divisome. Here, we used an in vivo crosslinking assay for FtsA DS filaments to show that they largely depend on proper divisome assembly and are prevalent at later stages of cell division. We also used a previously reported variant that fails to assemble DS filaments, FtsAM96E R153D, to investigate the roles of FtsA oligomeric states in divisome assembly and activation. We show that FtsAM96E R153D cannot form DS filaments in vivo, fails to replace native FtsA, and confers a dominant negative phenotype, underscoring the importance of the DS filament stage for FtsA function. Surprisingly, however, activation of the divisome through the ftsL* or ftsW* superfission alleles suppressed the dominant negative phenotype and rescued the functionality of FtsAM96E R153D. Our results suggest that FtsA DS filaments are needed for divisome activation once it is assembled, but they are not essential for divisome assembly or guiding septum synthesis.IMPORTANCECell division is fundamental for cellular duplication. In simple cells like Escherichia coli bacteria, the actin homolog FtsA is essential for cell division and assembles into a variety of protein filaments at the cytoplasmic membrane. These filaments not only help tether polymers of the tubulin-like FtsZ to the membrane at early stages of cell division but also play crucial roles in recruiting other cell division proteins to a complex called the divisome. Once assembled, the E. coli divisome subsequently activates synthesis of the division septum that splits the cell in two. One recently discovered oligomeric conformation of FtsA is an antiparallel double-stranded filament. Using a combination of in vivo crosslinking and genetics, we provide evidence suggesting that these FtsA double filaments have a crucial role in activating the septum synthesis enzymes.


Sujet(s)
Division cellulaire , Protéines Escherichia coli , Escherichia coli , Protéines Escherichia coli/métabolisme , Protéines Escherichia coli/génétique , Escherichia coli/génétique , Escherichia coli/métabolisme , Multimérisation de protéines , Protéines du cycle cellulaire/métabolisme , Protéines du cycle cellulaire/génétique , Protéines du cycle cellulaire/composition chimique
7.
Int J Antimicrob Agents ; 64(4): 107278, 2024 Jul 26.
Article de Anglais | MEDLINE | ID: mdl-39069229

RÉSUMÉ

AIMS: The incidence of lung infections is increasing worldwide in individuals suffering from cystic fibrosis and chronic obstructive pulmonary disease. Mycobacterium abscessus is associated with chronic lung deterioration in these populations. The intrinsic resistance of M. abscessus to most conventional antibiotics jeopardizes treatment success rates. To date, no single drug has been developed targeting M. abscessus specifically. The objective of this study was to characterize VOMG, a pyrithione-core drug-like small molecule, as a new compound active against M. abscessus and other pathogens. METHODS: A multi-disciplinary approach including microbiological, chemical, biochemical and transcriptomics procedures was used to validate VOMG as a promising anti-M. abscessus drug candidate. RESULTS: To the authors' knowledge, this is the first study to report the in-vitro and in-vivo bactericidal activity of VOMG against M. abscessus and other pathogens. Besides being active against M. abscessus biofilm, the compound showed a favourable pharmacological (ADME-Tox) profile. Frequency of resistance studies were unable to isolate resistant mutants. VOMG inhibits cell division, particularly the FtsZ enzyme. CONCLUSIONS: VOMG is a new drug-like molecule active against M. abscessus, inhibiting cell division with broad-spectrum activity against other microbial pathogens.

8.
Article de Anglais | MEDLINE | ID: mdl-39043879

RÉSUMÉ

This research paper utilizes a fused-in-silico approach alongside bioactivity evaluation to identify active FtsZ inhibitors for drug discovery. Initially, ROC-guided machine learning was employed to obtain almost 13182 compounds from three libraries. After conducting virtual screening to assess the affinity of 2621 acquired compounds, cluster analysis and bonding model analysis led to the discovery of five hit compounds. Additionally, antibacterial activity assays and time-killing kinetics revealed that T3995 could eliminate Staphylococcus aureus ATCC6538 and Bacillus subtilis ATCC9732, with MIC values of 32 and 2 µg/mL. Further morphology and FtsZ polymerization assays indicated that T3995 could be an antimicrobial inhibitor by targeting FtsZ protein. Moreover, hemolytic toxicity evaluation demonstrated that T3995 is safe at or below 16 ug/mL concentration. Additionally, bonding model analysis explained how the compound T3995 can display antimicrobial activity by targeting the FtsZ protein. In conclusion, this study presents a promising FtsZ inhibitor that was discovered through a fused computer method and bioactivity evaluation.

9.
Mol Biol Evol ; 41(7)2024 Jul 03.
Article de Anglais | MEDLINE | ID: mdl-39004892

RÉSUMÉ

Filamentous temperature-sensitive Z (FtsZ) is a tubulin-like GTPase that is highly conserved in bacteria and plants. It polymerizes into a ring at the division site of bacteria and chloroplasts and serves as the scaffold protein of the division complex. While a single FtsZ is present in bacteria and cyanobacteria, there are two subfamilies, FtsZ1 and FtsZ2 in the green lineage, and FtsZA and FtsZB in red algae. In Arabidopsis thaliana, the C-terminal motifs of AtFtsZ1 (Z1C) and AtFtsZ2-1 (Z2C) display distinct functions in the regulation of chloroplast division. Z1C exhibits weak membrane-binding activity, whereas Z2C engages in the interaction with the membrane protein AtARC6. Here, we provide evidence revealing the distinct traits of the C-terminal motifs of FtsZ1 and FtsZ2 throughout the plant evolutionary process. In a range of plant species, the C-terminal motifs of FtsZ1 exhibit diverse membrane-binding properties critical for regulating chloroplast division. In chlorophytes, the C-terminal motifs of FtsZ1 and FtsZ2 exhibit both membrane-binding and protein interaction functions, which are similar to those of cyanobacterial FtsZ and red algal FtsZA. During the transition from algae to land plants, the functions of the C-terminal motifs of FtsZ1 and FtsZ2 exhibit differentiation. FtsZ1 lost the function of interacting with ARC6 in land plants, and the membrane-binding activity of FtsZ2 was lost in ferns. Our findings reveal the functional differentiation of the C-terminal motifs of FtsZs during plant evolution, which is critical for chloroplast division.


Sujet(s)
Protéines d'Arabidopsis , Protéines d'Arabidopsis/métabolisme , Protéines d'Arabidopsis/génétique , Motifs d'acides aminés , Arabidopsis/génétique , Arabidopsis/métabolisme , Évolution moléculaire , Chloroplastes/métabolisme , Évolution biologique
10.
Pestic Biochem Physiol ; 203: 106016, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-39084807

RÉSUMÉ

The novel bactericidal target-filamentous temperature-sensitive protein Z (FtsZ)-has drawn the attention of pharmacologists to address the emerging issues with drug/pesticide resistance caused by pathogenic bacteria. To enrich the structural diversity of FtsZ inhibitors, the antibacterial activity and structure-activity relationship (SAR) of natural sanguinarine and its analogs were investigated by using natural-products repurposing strategy. Notably, sanguinarine and chelerythrine exerted potent anti-Xanthomonas oryzae pv. oryzae (Xoo) activity, with EC50 values of 0.96 and 0.93 mg L-1, respectively, among these molecules. Furthermore, these two compounds could inhibit the GTPase activity of XooFtsZ, with IC50 values of 241.49 µM and 283.14 µM, respectively. An array of bioassays including transmission electron microscopy (TEM), fluorescence titration, and Fourier transform infrared spectroscopy (FT-IR) co-verified that sanguinarine and chelerythrine were potential XooFtsZ inhibitors that could interfere with the assembly of FtsZ filaments by inhibiting the GTPase hydrolytic ability of XooFtsZ protein. Additionally, the pot experiment suggested that chelerythrine and sanguinarine demonstrated excellent curative activity with values of 59.52% and 54.76%, respectively. Excitedly, these two natural compounds also showed outstanding druggability, validated by acceptable drug-like properties and low toxicity on rice. Overall, the results suggested that chelerythrine was a new and potential XooFtsZ inhibitor to develop new bactericide and provided important guiding values for rational drug design of FtsZ inhibitors. Notably, our findings provide a novel strategy to discover novel, promising and green bacterial compounds for the management of plant bacterial diseases.


Sujet(s)
Antibactériens , Protéines bactériennes , Benzophénanthridines , Protéines du cytosquelette , Isoquinoléines , Xanthomonas , Benzophénanthridines/pharmacologie , Benzophénanthridines/composition chimique , Antibactériens/pharmacologie , Antibactériens/composition chimique , Protéines bactériennes/antagonistes et inhibiteurs , Protéines bactériennes/métabolisme , Relation structure-activité , Isoquinoléines/pharmacologie , Isoquinoléines/composition chimique , Protéines du cytosquelette/antagonistes et inhibiteurs , Protéines du cytosquelette/métabolisme , Xanthomonas/effets des médicaments et des substances chimiques , Produits biologiques/pharmacologie , Produits biologiques/composition chimique , Tests de sensibilité microbienne
11.
Bioorg Chem ; 150: 107534, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-38896935

RÉSUMÉ

Bacterial infections and the consequent outburst of bactericide-resistance issues are fatal menace to both global health and agricultural produce. Hence, it is crucial to explore candidate bactericides with new mechanisms of action. The filamenting temperature-sensitive mutant Z (FtsZ) protein has been recognized as a new promising and effective target for new bactericide discovery. Hence, using a scaffold-hopping strategy, we designed new 7H-pyrrolo[2,3-d]pyrimidine derivatives, evaluated their antibacterial activities, and investigated their structure-activity relationships. Among them, compound B6 exhibited the optimal in vitro bioactivity (EC50 = 4.65 µg/mL) against Xanthomonas oryzae pv. oryzae (Xoo), which was superior to the references (bismerthiazol [BT], EC50 = 48.67 µg/mL; thiodiazole copper [TC], EC50 = 98.57 µg/mL]. Furthermore, the potency of compound B6 in targeting FtsZ was validated by GTPase activity assay, FtsZ self-assembly observation, fluorescence titration, Fourier-transform infrared spectroscopy (FT-IR) assay, molecular dynamics simulations, and morphological observation. The GTPase activity assay showed that the final IC50 value of compound B6 against XooFtsZ was 235.0 µM. Interestingly, the GTPase activity results indicated that the B6-XooFtsZ complex has an excellent binding constant (KA = 103.24 M-1). Overall, the antibacterial behavior suggests that B6 can interact with XooFtsZ and inhibit its GTPase activity, leading to bacterial cell elongation and even death. In addition, compound B6 showed acceptable anti-Xoo activity in vivo and low toxicity, and also demonstrated a favorable pharmacokinetic profile predicted by ADMET analysis. Our findings provide new chemotypes for the development of FtsZ inhibitors as well as insights into their underlying mechanisms of action.


Sujet(s)
Antibactériens , Protéines bactériennes , Protéines du cytosquelette , Tests de sensibilité microbienne , Pyrimidines , Xanthomonas , Pyrimidines/composition chimique , Pyrimidines/pharmacologie , Pyrimidines/synthèse chimique , Antibactériens/pharmacologie , Antibactériens/composition chimique , Antibactériens/synthèse chimique , Relation structure-activité , Xanthomonas/effets des médicaments et des substances chimiques , Protéines bactériennes/antagonistes et inhibiteurs , Protéines bactériennes/métabolisme , Structure moléculaire , Protéines du cytosquelette/antagonistes et inhibiteurs , Protéines du cytosquelette/métabolisme , Relation dose-effet des médicaments , Pyrroles/composition chimique , Pyrroles/pharmacologie , Pyrroles/synthèse chimique , Simulation de dynamique moléculaire , Simulation de docking moléculaire
12.
J Biol Chem ; 300(6): 107336, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38718863

RÉSUMÉ

FtsZ, the tubulin homolog essential for bacterial cell division, assembles as the Z-ring at the division site, and directs peptidoglycan synthesis by treadmilling. It is unclear how FtsZ achieves kinetic polarity that drives treadmilling. To obtain insights into fundamental features of FtsZ assembly dynamics independent of peptidoglycan synthesis, we carried out structural and biochemical characterization of FtsZ from the cell wall-less bacteria, Spiroplasma melliferum (SmFtsZ). Interestingly the structures of SmFtsZ, bound to GDP and GMPPNP respectively, were captured as domain swapped dimers. SmFtsZ was found to be a slower GTPase with a higher critical concentration (CC) compared to Escherichia coli FtsZ (EcFtsZ). In FtsZs, a conformational switch from R-state (close) to T-state (open) favors polymerization. We identified that Phe224, located at the interdomain cleft of SmFtsZ, is crucial for R- to T-state transition. SmFtsZF224M exhibited higher GTPase activity and lower CC, whereas the corresponding EcFtsZM225F resulted in cell division defects in E. coli. Our results demonstrate that relative rotation of the domains is a rate-limiting step of polymerization. Our structural analysis suggests that the rotation is plausibly triggered upon addition of a GTP-bound monomer to the filament through interaction of the preformed N-terminal domain (NTD). Hence, addition of monomers to the NTD-exposed end of filament is slower in comparison to the C-terminal domain (CTD) end, thus explaining kinetic polarity. In summary, the study highlights the importance of interdomain interactions and conformational changes in regulating FtsZ assembly dynamics.


Sujet(s)
Protéines bactériennes , Protéines du cytosquelette , Escherichia coli , Protéines du cytosquelette/métabolisme , Protéines du cytosquelette/composition chimique , Protéines du cytosquelette/génétique , Protéines bactériennes/métabolisme , Protéines bactériennes/composition chimique , Protéines bactériennes/génétique , Escherichia coli/métabolisme , Escherichia coli/génétique , Domaines protéiques , Multimérisation de protéines , Guanosine diphosphate/métabolisme , Guanosine diphosphate/composition chimique , dGTPases/métabolisme , dGTPases/composition chimique , Division cellulaire
13.
J Struct Biol ; 216(2): 108097, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38772448

RÉSUMÉ

Cryo-focussed ion beam (FIB)-milling is a powerful technique that opens up thick, cellular specimens to high-resolution structural analysis by electron cryotomography (cryo-ET). FIB-milled lamellae can be produced from cells on grids, or cut from thicker, high-pressure frozen specimens. However, these approaches can put geometrical constraints on the specimen that may be unhelpful, particularly when imaging structures within the cell that have a very defined orientation. For example, plunge frozen rod-shaped bacteria orient parallel to the plane of the grid, yet the Z-ring, a filamentous structure of the tubulin-like protein FtsZ and the key organiser of bacterial division, runs around the circumference of the cell such that it is perpendicular to the imaging plane. It is therefore difficult or impractical to image many complete rings with current technologies. To circumvent this problem, we have fabricated monolithic gold specimen supports with a regular array of cylindrical wells in a honeycomb geometry, which trap bacteria in a vertical orientation. These supports, which we call "honeycomb gold discs", replace standard EM grids and when combined with FIB-milling enable the production of lamellae containing cross-sections through cells. The resulting lamellae are more stable and resistant to breakage and charging than conventional lamellae. The design of the honeycomb discs can be modified according to need and so will also enable cryo-ET and cryo-EM imaging of other specimens in otherwise difficult to obtain orientations.


Sujet(s)
Cryomicroscopie électronique , Tomographie en microscopie électronique , Or , Cryomicroscopie électronique/méthodes , Or/composition chimique , Tomographie en microscopie électronique/méthodes , Escherichia coli/ultrastructure , Protéines bactériennes/composition chimique , Protéines bactériennes/métabolisme , Manipulation d'échantillons/méthodes
14.
Microbiology (Reading) ; 170(5)2024 May.
Article de Anglais | MEDLINE | ID: mdl-38787390

RÉSUMÉ

Archaeal cell biology is an emerging field expected to identify fundamental cellular processes, help resolve the deep evolutionary history of cellular life, and contribute new components and functions in biotechnology and synthetic biology. To facilitate these, we have developed plasmid vectors that allow convenient cloning and production of proteins and fusion proteins with flexible, rigid, or semi-rigid linkers in the model archaeon Haloferax volcanii. For protein subcellular localization studies using fluorescent protein (FP) tags, we created vectors incorporating a range of codon-optimized fluorescent proteins for N- or C-terminal tagging, including GFP, mNeonGreen, mCherry, YPet, mTurquoise2 and mScarlet-I. Obtaining functional fusion proteins can be challenging with proteins involved in multiple interactions, mainly due to steric interference. We demonstrated the use of the new vector system to screen for improved function in cytoskeletal protein FP fusions, and identified FtsZ1-FPs that are functional in cell division and CetZ1-FPs that are functional in motility and rod cell development. Both the type of linker and the type of FP influenced the functionality of the resulting fusions. The vector design also facilitates convenient cloning and tandem expression of two genes or fusion genes, controlled by a modified tryptophan-inducible promoter, and we demonstrated its use for dual-colour imaging of tagged proteins in H. volcanii cells. These tools should promote further development and applications of archaeal molecular and cellular biology and biotechnology.


Sujet(s)
Protéines d'archée , Clonage moléculaire , Vecteurs génétiques , Haloferax volcanii , Protéines luminescentes , Plasmides , Haloferax volcanii/génétique , Haloferax volcanii/métabolisme , Vecteurs génétiques/génétique , Vecteurs génétiques/métabolisme , Protéines luminescentes/génétique , Protéines luminescentes/métabolisme , Protéines d'archée/génétique , Protéines d'archée/métabolisme , Plasmides/génétique , Plasmides/métabolisme , Protéines de fusion recombinantes/génétique , Protéines de fusion recombinantes/métabolisme , Expression des gènes , Protéines à fluorescence verte/génétique , Protéines à fluorescence verte/métabolisme
15.
Mol Divers ; 2024 May 22.
Article de Anglais | MEDLINE | ID: mdl-38775995

RÉSUMÉ

The remarkable conservation of the FtsZ among Gram-positive and Gram-negative bacteria, a crucial GTPase in bacterial cell division, has emerged as a promising antibacterial drug target to combat antibacterial resistance. There have been several coordinated efforts to develop inhibitors against FtsZ which can also serve as potential candidates for future antibiotics. In the present study, a natural product-like library (≈50,000 compounds) was employed to conduct HTVS against Staphylococcus aureus FtsZ protein (PDB Id: 6KVP). Additionally, molecular docking was carried out in two modes, SP and XP docking, using the Schrödinger suite. The glide scores of ligands obtained by XP docking were further summarized and compared with the control ligands (ZI1- co-crystal and PC190723-a compound undergoing clinical trial). Using the Prime-MM-GBSA approach, BFE calculations were performed on the top XP-scored ligands (≈598 compounds). These hits were also evaluated for ADMET parameters using the Qikprop algorithm, SwissADME, and in silico carcinogenicity testing using Carcinopred-El. Based on the results, ligand 4-FtsZ complex was considered for the 300 ns MDS analysis to get insights into its binding modes within the catalytic pocket of FtsZ protein. The analysis revealed that the amide linkage sandwiched between the triazole and 1-oxa-8-azaspirodecan-8-ium moiety (Val203) as well as the aminoethyl group present at 1st position on the triazole moiety (Leu209, Leu200, Asp210, and Ala202) were responsible for the FtsZ inhibitory activity, owing to their crucial interactions with key amino acid residues. Further, the complex also displayed good protein-ligand stability, ultimately predicting ligand 4 as a potent lead compound for the inhibition of FtsZ. Thus, our in silico findings will serve as a framework for in-depth in-vitro and in-vivo investigations encouraging the development of FtsZ inhibitors as a new generation of antibacterial agents.

16.
Eur J Med Chem ; 270: 116347, 2024 Apr 15.
Article de Anglais | MEDLINE | ID: mdl-38552428

RÉSUMÉ

The filamentous temperature-sensitive mutant Z protein (FtsZ), a key player in bacterial cell division machinery, emerges as an attractive target to tackle the plight posed by the ever growing antibiotic resistance over the world. Therefore in this regard, agents with scaffold diversities and broad-spectrum antibacterial activity against Gram-positive and Gram-negative pathogens are highly needed. In this study, a new class of marine-derived fascaplysin derivatives has been designed and synthesized by Suzuki-Miyaura cross-coupling. Some compounds exhibited potent bactericidal activities against a panel of Gram-positive (MIC = 0.024-6.25 µg/mL) and Gram-negative (MIC = 1.56-12.5 µg/mL) bacteria including methicillin-resistant S. aureus (MRSA). They exerted their effects by dual action mechanism via disrupting the integrity of the bacterial cell membrane and targeting FtsZ protein. These compounds stimulated polymerization of FtsZ monomers and bundling of the polymers, and stabilized the resulting polymer network, thus leading to the dysfunction of FtsZ in cell division. In addition, these agents showed negligible hemolytic activity and low cytotoxicity to mammalian cells. The studies on docking and molecular dynamics simulations suggest that these inhibitors bind to the hydrophilic inter-domain cleft of FtsZ protein and the insights obtained in this study would facilitate the development of potential drugs with broad-spectrum bioactivities.


Sujet(s)
Carbolines , Indoles , Indolizine , Staphylococcus aureus résistant à la méticilline , Composés d'ammonium quaternaire , Animaux , Protéines bactériennes , Protéines du cytosquelette , Antibactériens/pharmacologie , Tests de sensibilité microbienne , Mammifères/métabolisme
17.
Adv Healthc Mater ; 13(19): e2304600, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38491859

RÉSUMÉ

The emergence of multidrug-resistant (MDR) bacteria poses a significant challenge to global health. Due to a shortage of antibiotics, alternative therapeutic strategies are urgently needed. Unfortunately, colistin, the last-resort antibiotic, has unavoidable nephrotoxicity and hepatotoxicity, and its single killing mechanism is prone to drug resistance. To address this challenge, a promising combinatorial approach that includes colistin, a membrane-disrupting antimicrobial agent, and chelerythrine (CHE), a FtsZ protein inhibitor is proposed. This approach significantly reduces antibiotic dose and development of resistance, leading to almost complete inactivation of MDR pathogens in vitro. To address solubility issues and ensure transport, the antimicrobial hydrogel system LNP-CHE-CST@hydrogel, which induced reactive oxygen species (ROS) and apoptosis-like cell death by targeting the FtsZ protein, is used. In an in vivo mouse skin infection model, the combination therapy effectively eliminated MDR bacteria within 24 h, as monitored by fluorescence tracking. The findings demonstrate a promising approach for developing multifunctional hydrogels to combat MDR bacterial infections.


Sujet(s)
Antibactériens , Protéines bactériennes , Protéines du cytosquelette , Hydrogels , Animaux , Hydrogels/composition chimique , Hydrogels/pharmacologie , Souris , Protéines du cytosquelette/métabolisme , Antibactériens/pharmacologie , Antibactériens/composition chimique , Protéines bactériennes/métabolisme , Multirésistance bactérienne aux médicaments/effets des médicaments et des substances chimiques , Tests de sensibilité microbienne , Infections bactériennes/traitement médicamenteux , Espèces réactives de l'oxygène/métabolisme , Humains
18.
Nat Prod Res ; : 1-6, 2024 Mar 22.
Article de Anglais | MEDLINE | ID: mdl-38516734

RÉSUMÉ

Pseudomonas aeruginosa is a well-known pathogen for its rapid development of multi-drug antibiotic resistance. This pathogen is responsible for numerous human diseases, particularly affecting immunocompromised and elderly patients. Hence, discovering novel therapeutics has become necessary in the fight against antimicrobial resistance. This study is focused on evaluating the potential inhibitory activity of eleven phytocompounds from Azadirachta indica against the nucleotide-binding site of the FtsZ protein of P. aeruginosa through a cheminformatics approach. FtsZ is an indispensable and highly conserved protein in prokaryotic cell division. Docking studies revealed favourable binding energies (ΔG= - 8.3 to - 5.4 kcal/mol) for all selected phytoconstituents. Finally, we selected Nimbiol (CID 11119228), as a lead compound, exhibiting a binding energy (ΔG= -7.8 kcal/mol) for the target. Based on our findings, Nimbiol shows potential as an anti-FtsZ compound, making it a promising candidate for further in vitro and in vivo investigations to assess its antimicrobial activity.

19.
Antibiotics (Basel) ; 13(3)2024 Feb 22.
Article de Anglais | MEDLINE | ID: mdl-38534644

RÉSUMÉ

The global threat of multidrug-resistant Gram-negative bacterial pathogens necessitates the development of new and effective antibiotics. FtsZ is an essential and highly conserved cytoskeletal protein that is an appealing antibacterial target for new antimicrobial therapeutics. However, the effectiveness of FtsZ inhibitors against Gram-negative species has been limited due in part to poor intracellular accumulation. To address this limitation, we have designed a FtsZ inhibitor (RUP4) that incorporates a chlorocatechol siderophore functionality that can chelate ferric iron (Fe3+) and utilizes endogenous siderophore uptake pathways to facilitate entry into Gram-negative pathogens. We show that RUP4 is active against both Klebsiella pneumoniae and Acinetobacter baumannii, with this activity being dependent on direct Fe3+ chelation and enhanced under Fe3+-limiting conditions. Genetic deletion studies in K. pneumoniae reveal that RUP4 gains entry through the FepA and CirA outer membrane transporters and the FhuBC inner membrane transporter. We also show that RUP4 exhibits bactericidal synergy against K. pneumoniae when combined with select antibiotics, with the strongest synergy observed with PBP2-targeting ß-lactams or MreB inhibitors. In the aggregate, our studies indicate that incorporation of Fe3+-chelating moieties into FtsZ inhibitors is an appealing design strategy for enhancing activity against Gram-negative pathogens of global clinical significance.

20.
J Bacteriol ; 206(3): e0042823, 2024 03 21.
Article de Anglais | MEDLINE | ID: mdl-38353530

RÉSUMÉ

In Streptomyces, multiple paralogs of SsgA-like proteins (SALPs) are involved in spore formation from aerial hyphae. However, the functions of SALPs have not yet been elucidated in other actinobacterial genera. Here, we report the primary function of an SsgB ortholog (AmSsgB) in Actinoplanes missouriensis, which develops terminal sporangia on the substrate mycelia via short sporangiophores. Importantly, AmSsgB is the sole SALP in A. missouriensis. The transcription of AmssgB was upregulated during sporangium formation, consistent with our previous findings that AmssgB is a member of the AmBldD regulon. The AmssgB null mutant (ΔAmssgB) strain formed non-globose irregular structures on the substrate mycelium. Transmission electron microscopy revealed that the irregular structures contained abnormally septate hypha-like cells, without an intrasporangial matrix. These phenotypic changes were restored by complementation with AmssgB. Additionally, analysis of the heterologous expression of seven SALP-encoding genes from Streptomyces coelicolor A3(2) (ssgA-G) in the ΔAmssgB strain revealed that only ssgB could compensate for AmSsgB deficiency. This indicated that SsgB of S. coelicolor A3(2) and AmSsgB have comparable functions in A. missouriensis. In contrast to the ΔAmssgB strain, the ftsZ-disrupted strain showed a severe growth defect and produced small sporangium-like structures that swelled to some extent. These findings indicate that AmSsgB is crucial for the early stages of sporangium formation, not for spore septum formation in the late stages. We propose that AmSsgB is involved in sporangium formation by promoting the expansion of the "presporangium" structures formed on the tips of the substrate hyphae. IMPORTANCE: SsgB has been proposed as an archetypical SsgA-like protein with an evolutionarily conserved function in the morphological development of spore-forming actinomycetes. SsgB in Streptomyces coelicolor A3(2) is involved in spore septum formation. However, it is unclear whether this is the primary function of SsgBs in actinobacteria. This study demonstrated that the SsgB ortholog (AmSsgB) in Actinoplanes missouriensis is essential for sporangium expansion, which does not seem to be related to spore septum formation. However, the heterologous expression of ssgB from S. coelicolor A3(2) restored morphological abnormalities in the ΔAmssgB mutant. We propose that the primary function of SsgB is to initiate sporulation in differentiating cells (e.g., aerial hyphae in Streptomyces and "presporangium" cells in A. missouriensis) although its molecular mechanism remains unknown.


Sujet(s)
Actinobacteria , Actinoplanes , Streptomyces coelicolor , Streptomyces , Sporanges/métabolisme , Streptomyces/génétique , Streptomyces coelicolor/génétique , Streptomyces coelicolor/métabolisme , Actinobacteria/métabolisme , Protéines bactériennes/métabolisme , Spores bactériens/génétique , Spores bactériens/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE