RÉSUMÉ
CONTEXT: Ammonium Tutton salts have been widely studied in recent years due to their thermostructural properties, which make them promising compounds for application in thermochemical energy storage devices. In this work, a detailed experimental study of the Tutton salt with the formula (NH4)2Zn(SO4)2(H2O)6 is carried out. Its structural, vibrational, and thermal properties are analyzed and discussed. Powder X-ray diffraction (PXRD) studies confirm that the compound crystallizes in a structure of a Tutton salt, with monoclinic symmetry and P21/a space group. The Hirshfeld surface analysis results indicate that the main contacts stabilizing the material crystal lattice are H···O/O···H, H···H, and O···O. In addition, a typical behavior of an insulating material is confirmed based on the electronic bandgap calculated from the band structure and experimental absorption coefficient. The Raman and infrared spectra calculated using DFT are in a good agreement with the respective experimental spectroscopic results. Thermal analysis in the range from 300 to 773 K reveals one exothermic and several endothermic events that are investigated using PXRD measurements as a function of temperature. With increasing temperature, two new structural phases are identified, one of which is resolved using the Le Bail method. Our findings suggest that the salt (NH4)2Zn(SO4)2(H2O)6 is a promising thermochemical material suitable for the development of heat storage systems, due to its low dehydration temperature (≈ 330 K), high enthalpy of dehydration (122.43 kJ/mol of H2O), and hydration after 24 h. METHODS: Computational studies using Hirshfeld surfaces and void analysis are conducted to identify and quantify the intermolecular contacts occurring in the crystal structure. Furthermore, geometry optimization calculations are performed based on density functional theory (DFT) using the PBE functional and norm-conserving pseudopotentials implemented in the Cambridge Serial Total Energy Package (CASTEP). The primitive unit cell optimization was conducted using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. The electronic properties of band structure and density of states, and vibrational modes of the optimized crystal lattice are calculated and analyzed.
RÉSUMÉ
4-(2-furyl)-3-buten-2-one (FAc) is obtained by aldol condensation of furfural and acetone and has been used in hydrodeoxygenation reactions to obtain fuel products using noble metal catalysts. The hydrogenation of FAc in the aqueous phase using metallic- and Re oxide-supported catalysts on graphite was studied, within a temperature range of 200-240 °C, in a batch reactor over a 6 h reaction period. The catalysts were characterized using N2 adsorption-desorption, TPR-H2, TPD-NH3, XRD, and XPS analyses. Catalytic reactions revealed that metallic rhenium and rhenium oxide-supported catalysts are active for the hydrogenation and Piancatelli rearrangement of FAc. Notably, metallic rhenium exhibited a fourfold higher initial rate than rhenium oxide, which was attributed to the higher dispersion of Re in the Re/G catalyst over graphite. Re/G and ReOx/G catalysts tended to rearrange and hydrogenate FAc to 2-(2-oxopropyl)cyclopenta-1-one in water.
RÉSUMÉ
Organotin compounds (OTC), mainly tributyltin (TBT), have been used since the 1970s as biocides in the composition of antifouling paints. Due to its physical-chemical characteristics, TBT has high toxicity to the marine environment affecting non-target organisms. The present study aims to develop a method of direct visual identification of TBT in antifouling paints using the cyclopalladate complex, 4- (2-thiazolylazo) resorcinol (TAR-Pd), synthesized in our laboratory. Tests were performed in blank and in the paint matrix with the following OTC: TBT-O; TBT-Cl; TPT-Cl; DBT-Cl (tributyltin oxide, tributyltin chloride, triphenyltin chloride, dibutyltin chloride), in addition to the SnCl4 and SnCl2 compounds (tin IV chloride and tin II chloride), all at a concentration of approximately 20 g/ kg of dry paint). The test was performed by applying paint samples to test bodies and scraping a few tens of milligrams of the dry paint film. The scraped paint samples were submitted to the test, showing a different staining reaction for the TBT-Cl and SnCl4 samples concerning blank and other samples (TBT-O, TPT, DBT-Cl, and SnCl2). Solution tests were performed to characterize reaction products by spectroscopy in the visible band. The method developed has potential for application in real samples, being selective for TBT-Cl and SnCl4 in an acid medium, obtaining a limit of detection, in the range of 1-10 mg/kg dry paint.
RÉSUMÉ
BACKGROUND: Ischemia-reperfusion (IR) induces increased release of extracellular vesicles in the heart and exacerbates myocardial IR injury. We have previously shown that propofol attenuates hypoxia/reoxygenation (HR)-induced injury in human umbilical vein endothelial cells (HUVECs) and that microvesicles derived from propofol-treated HUVECs inhibit oxidative stress in endothelial cells. However, the role of microvesicles derived from propofol post-treated HUVECs ((HR + P)-EMVs) in IR-injured cardiomyocytes is unclear. In this study, we aimed to investigate the role of (HR + P)-EMVs in cardiac IR injury compared to microvesicles derived from hypoxic/reoxygenated HUVECs (HR-EMVs) and to elucidate the underlying mechanisms. METHODS: Hypoxia/reoxygenation (HR) models of HUVECs and AC16 cells and a mouse cardiac IR model were established. Microvesicles from HR-injured HUVECs, DMSO post-treated HUVECs and propofol post-treated HUVECs were extracted by ultra-high speed centrifugation, respectively. The above EMVs were co-cultured with HR-injured AC16 cells or injected intracardially into IR mice. Flow cytometry and immunofluorescence were used to determine the levels of oxidative stress and apoptosis in cardiomyocytes. Apoptosis related proteins were detected by Western blot. Echocardiography for cardiac function and Evans blue-TTC staining for myocardial infarct size. Expression of lncCCT4-2 in EMVs and AC16 cells was analysed by whole transcriptome sequencing of EMVs and RT-qPCR. The molecular mechanism of inhibition of myocardial injury by (HR + P)-EMVs was elucidated by lentiviral knockdown of lncCCT4-2, plasmid overexpression or knockdown of CCT4, and actinomycin D assay. RESULTS: In vitro and in vivo experiments confirmed that HR-EMVs exacerbated oxidative stress and apoptosis in IR-injured cardiomyocytes, leading to increased infarct size and worsened cardiac function. Notably, (HR + P)-EMVs induced significantly less oxidative stress and apoptosis in IR-injured cardiomyocytes compared to HR-EMVs. Mechanistically, RNA sequencing of EMVs and RT-qPCR showed that lncCCT4-2 was significantly upregulated in (HR + P)-EMVs and cardiomyocytes co-cultured with (HR + P)-EMVs. Reduction of lncCCT4-2 in (HR + P)-EMVs enhanced oxidative stress and apoptosis in IR-injured cardiomyocytes. Furthermore, the anti-apoptotic activity of lncCCT4-2 from (HR + P)-EMVs was achieved by increasing the stability of CCT4 mRNA and promoting the expression of CCT4 protein in cardiomyocytes. CONCLUSIONS: Our study showed that (HR + P)-EMVs uptake by IR-injured cardiomyocytes upregulated lncCCT4-2 in cardiomyocytes and promoted CCT4 expression, thereby inhibiting HR-EMVs induced oxidative stress and apoptosis.
Sujet(s)
Propofol , Humains , Souris , Animaux , Propofol/pharmacologie , Hypoxie , Cellules endothéliales de la veine ombilicale humaine , Myocytes cardiaques , Stress oxydatif , Apoptose/physiologie , Chaperonine contenant TCP-1RÉSUMÉ
BACKGROUND: Ischemia-reperfusion (IR) induces increased release of extracellular vesicles in the heart and exacerbates myocardial IR injury. We have previously shown that propofol attenuates hypoxia/reoxygenation (HR)-induced injury in human umbilical vein endothelial cells (HUVECs) and that microvesicles derived from propofol-treated HUVECs inhibit oxidative stress in endothelial cells. However, the role of microvesicles derived from propofol post-treated HUVECs ((HR + P)-EMVs) in IR-injured cardiomyocytes is unclear. In this study, we aimed to investigate the role of (HR + P)-EMVs in cardiac IR injury compared to microvesicles derived from hypoxic/reoxygenated HUVECs (HR-EMVs) and to elucidate the underlying mechanisms. METHODS: Hypoxia/reoxygenation (HR) models of HUVECs and AC16 cells and a mouse cardiac IR model were established. Microvesicles from HR-injured HUVECs, DMSO post-treated HUVECs and propofol post-treated HUVECs were extracted by ultra-high speed centrifugation, respectively. The above EMVs were co-cultured with HR-injured AC16 cells or injected intracardially into IR mice. Flow cytometry and immunofluorescence were used to determine the levels of oxidative stress and apoptosis in cardiomyocytes. Apoptosis related proteins were detected by Western blot. Echocardiography for cardiac function and Evans blue-TTC staining for myocardial infarct size. Expression of lncCCT4-2 in EMVs and AC16 cells was analysed by whole transcriptome sequencing of EMVs and RT-qPCR. The molecular mechanism of inhibition of myocardial injury by (HR + P)-EMVs was elucidated by lentiviral knockdown of lncCCT4-2, plasmid overexpression or knockdown of CCT4, and actinomycin D assay. RESULTS: In vitro and in vivo experiments confirmed that HR-EMVs exacerbated oxidative stress and apoptosis in IR-injured cardiomyocytes, leading to increased infarct size and worsened cardiac function. Notably, (HR + P)-EMVs induced significantly less oxidative stress and apoptosis in IR-injured cardiomyocytes compared to HR-EMVs. Mechanistically, RNA sequencing of EMVs and RT-qPCR showed that lncCCT4-2 was significantly upregulated in (HR + P)-EMVs and cardiomyocytes co-cultured with (HR + P)-EMVs. Reduction of lncCCT4-2 in (HR + P)-EMVs enhanced oxidative stress and apoptosis in IR-injured cardiomyocytes. Furthermore, the anti-apoptotic activity of lncCCT4-2 from (HR + P)-EMVs was achieved by increasing the stability of CCT4 mRNA and promoting the expression of CCT4 protein in cardiomyocytes. CONCLUSIONS: Our study showed that (HR + P)-EMVs uptake by IR-injured cardiomyocytes upregulated lncCCT4-2 in cardiomyocytes and promoted CCT4 expression, thereby inhibiting HR-EMVs induced oxidative stress and apoptosis. Highlights Microvesicles from hypoxic/reoxygenated HUVECs (HR-EMVs) exacerbated oxidative stress and apoptosis in IR-injured cardiomyocytes. Microvesicles from propofol post-treated HUVECs ((HR + P)-EMVs) induced diminished oxidative stress and apoptosis in IR-injured cardiomyocytes compared with microvesicles from hypoxic/reoxygenated HUVECs (HR-EMVs). lncCCT4-2 was significantly highly expressed in (HR + P)-EMVs and cardiomyocytes co-cultured with (HR + P)-EMVs, and reduction of lncCCT4-2 in (HR + P)-EMVs enhanced oxidative stress and apoptosis in IR-injured cardiomyocytes. lncCCT4-2 inhibited HR-EMVs induced oxidative stress and apoptosis in HR-injured AC16 cells by increasing the stability of CCT4 mRNA and promoting the expression of CCT4 protein in AC16 cells.
Sujet(s)
Humains , Animaux , Souris , Propofol/pharmacologie , Apoptose/physiologie , Stress oxydatif , Myocytes cardiaques , Chaperonine contenant TCP-1 , Cellules endothéliales de la veine ombilicale humaine , HypoxieRÉSUMÉ
Riluzole is an anticonvulsant drug also used to treat the amyotrophic lateral sclerosis and major depressive disorder. This compound has antiglutamatergic activity and is an important multichannel blocker. However, little is known about its actions on the Kv4.2 channels, the molecular correlate of the A-type K+ current (IA) and the fast transient outward current (Itof). Here, we investigated the effects of riluzole on Kv4.2 channels transiently expressed in HEK-293 cells. Riluzole inhibited Kv4.2 channels with an IC50 of 190 ± 14 µM and the effect was voltage- and frequency-independent. The activation rate of the current (at +50 mV) was not affected by the drug, nor the voltage dependence of channel activation, but the inactivation rate was accelerated by 100 and 300 µM riluzole. When Kv4.2 channels were maintained at the closed state, riluzole incubation induced a tonic current inhibition. In addition, riluzole significantly shifted the voltage dependence of inactivation to hyperpolarized potentials without affecting the recovery from inactivation. In the presence of the drug, the closed-state inactivation was significantly accelerated, and the percentage of inactivated channels was increased. Altogether, our findings indicate that riluzole inhibits Kv4.2 channels mainly affecting the closed and closed-inactivated states.
Sujet(s)
Inhibiteurs des canaux potassiques/pharmacologie , Riluzole/pharmacologie , Canaux potassiques Shal/antagonistes et inhibiteurs , Cellules HEK293 , Humains , Ouverture et fermeture des portes des canaux ioniques , Potentiels de membrane , Canaux potassiques Shal/génétique , Canaux potassiques Shal/métabolisme , Facteurs tempsRÉSUMÉ
BACKGROUND: Although bioactive metabolites capable of causing oxidative photo-necrosis in plant tissues have been identified in fungi, little is known about this type of mechanism in bacteria. These metabolites act as photosensitizers that generate reactive oxygen species (ROS) capable of causing damage to cells. In addition, these metabolites can pass into an energetically excited state when they receive some luminous stimulus, a condition in which they interact with other molecules present in the environment, such as molecular oxygen (O2), also known as triplet oxygen (3 O2), generating ROS. RESULTS: The suspension of the bacterial culture of Pseudomonas cedrina was shown to produce foliar necrosis in papaya leaves (Carica papaya L.) only in the presence of sunlight, which is evidence of photosensitizing mechanisms that generate singlet oxygen (1 O2). From the chemical study of extracts obtained from this bacteria, 3-(4-(2-carboxipropyl) phenyl) but-2-enoic acid (1) was isolated. This compound, in the presence of light and triplet oxygen (3 O2), was able to oxidize ergosterol to its peroxide, since it acted as a photosensitizer producing 1 O2, with which it was corroborated that a photosensitization reaction occurs, mechanism by which this bacterium could prove to cause oxidative foliar photo-necrosis. CONCLUSIONS: P. cedrina was able to induce oxidative foliar photo-necrosis because of its potential ability to produce photosensitizing metabolites that generate singlet oxygen in the plants it colonizes. Based on the above, it can be proposed that some bacteria can cause oxidative foliar photo-necrosis as an important mechanism in the pathogenesis of host species.
Sujet(s)
Maladies des plantes/microbiologie , Pseudomonas/physiologie , Carica/microbiologie , Oxygène singulet/métabolisme , Pseudomonas/métabolisme , Acides , Espèces réactives de l'oxygène , Feuilles de plante/microbiologie , Photooxidation , Lumière , NécroseRÉSUMÉ
BACKGROUND: In the last three decades the species of Candida have been of great interest due to the high mortality rates that they cause in immunocompromised and hospitalized patients. These species are opportunistic pathogens and they have inhabited other environments long before colonizing human cells. Among these environments we find wastewater from mines, and water from aquifers and soils that contain high concentrations of precious metals as well as toxic and base metals. AIMS: The aim of this study was to assess whether Candida albicans and Candida glabrata are able to maintain homeostasis in the presence of zinc, copper, cobalt or silver. METHODS: To achieve the objective, each of the Candida species was exposed to every single metal individually in a salt solution. Subsequently the treated cells were lysed to evaluate the compounds formed by means of Scanning Electron Microscopy-Energy Dispersive X-ray spectroscopy (SEM-EDS). RESULTS: When analyzing the compounds that both C. albicans and C. glabrata formed in the presence of each of the metals, we found that they had synthesized silver sulfide (Ag2S), cobalt sulfate (CoSO4), zinc phosphate (Zn3(PO4)2), or copper oxide (CuO). CONCLUSIONS: Our results indicate that both C. albicans and C. glabrata have enzymatic and non-enzymatic mechanisms that allow them to achieve homeostasis in a different specific manner for each of the single metals to which they were exposed. To our knowledge, this is the first work reporting that C. albicans and C. glabrata can reduce different metals, with the subsequent formation of sulfides, sulfates, phosphates and oxides. This ability, developed over time by these Candida species, is probably a kind of biochemical mechanism in order to survive and colonize many different environments, from water or soil to humans. For this reason, C. albicans and C. glabrata make up an excellent model of study, both from a medical and biotechnical point of view.
Sujet(s)
Candida albicans/métabolisme , Candida glabrata/métabolisme , Cobalt/métabolisme , Cuivre/métabolisme , Argent/métabolisme , Zinc/métabolisme , Homéostasie , Phosphates/métabolisme , Composés de l'argent/métabolisme , Composés du zinc/métabolismeRÉSUMÉ
This study focused on investigating reactor performance, simultaneous methanogeneis and denitrifiction (SMD) process for treatment of a sulfate plus organic sulfur - rich 3,4,5-Triethoxybenzaldehyde (TMBA) manufacturing wastewater with variable COD/TSO42- (total sulfate) ratio by micro-electric field- zero-valent-iron (ZVI) UASB for 390 days. The initial COD/TSO42- was set as 1.42, 0.9 and 0.5, respectively by manually introducing sulfate. The experimental results indicated that micro-electric field- zero-valent-iron UASB was an attractive integrated option for satisfactory COD removal, nitrate reduction and a reasonable methane yield rate even at COD/TSO42- as low as 0.9. Further declining the COD/TSO42- to 0.5 can result in a moderate inhibition of SMD process. The behavior of organic S release was not inhibited over the entire experimental period. Thus, surprisingly, sulfate concentration in the effluent was always higher than that in the influent. In comparison with sludge sample at Day-1, sludge at Day-390 was characterized with high abundant Tissierella Soehngenia, Anaerolinaceae and Brevundimonas diminuta, which played critical role in promising performance in COD abatement. The relatively low abundance of sulfate reducing bacteria (SRB) such as Desulfobulbus and Desulfomicrobium can explain the lower sulfate reduction efficiency in term of high concentration of sulfate plus released from organic S-rich compounds.
Sujet(s)
Bioréacteurs/microbiologie , Techniques électrochimiques/méthodes , Fer/composition chimique , Méthane/biosynthèse , Sulfates/analyse , Eaux usées , Polluants chimiques de l'eau/analyse , Purification de l'eau/méthodes , Anaérobiose , Benzaldéhydes/composition chimique , Analyse de la demande biologique en oxygène , Dénitrification , Eaux usées/composition chimique , Eaux usées/microbiologieRÉSUMÉ
Acid mine drainage (AMD) is among the most serious threats to water and the typical alkali-based treatment costs are high. This study's main objective was the establishment of a highly efficient biological process using an upflow anaerobic sludge blanket (UASB) reactor to treat AMD based on a shorter hydraulic retention time (HRT) and lower organic matter input. The process was evaluated for a long-term operation (739 days) in terms of the influence of HRT (14-24 h), metal addition, sulfate loading rate (0.5-2.6 g SO42- l-1 d-1), and the COD/SO42- ratio (0.67-1.0) using ethanol as the only electron donor at a pH of 4.0. Neutral effluent pH was achieved throughout the time apart from operational modifications. The reduction in HRT from 24 to 16 h and an increase in the sulfate loading rate (SLR) up to 2.25 g SO42- l-1 d-1 improved the sulfate removal to (92.1 ± 1.8)% with 80% chemical oxygen demand (COD) removal. However, the sulfate reduction was less than 80% when the HRT and SLR was changed to 14 h and 2.6 g SO42- l-1 d-1, respectively. The oxidation of organic matter by sulfate reduction was greater than 50% regardless of the conditions imposed but the use of ethanol to treat AMD was more efficient when either the HRT was 16 h (1.5 g SO42- l-1 d-1) in the presence of Fe, Zn, and Cu or the HRT was 14 h (2.6 g SO42- l-1 d-1) but the COD/SO42- ratio was reduced to 0.67. The fully optimized conditions of the UASB reactor were set at an HRT of 16 h, SLR of 1.5 g SO42- l-1 d-1, and a COD/SO42- ratio of 1.0.
Sujet(s)
Acides/composition chimique , Analyse de la demande biologique en oxygène , Bioréacteurs/microbiologie , Assainissement et restauration de l'environnement/instrumentation , Assainissement et restauration de l'environnement/méthodes , Mine , Eaux d'égout/microbiologie , Sulfates/métabolisme , Dépollution biologique de l'environnement , Électrons , Concentration en ions d'hydrogène , Métaux/isolement et purification , Sulfates/isolement et purification , Facteurs tempsRÉSUMÉ
New therapeutic strategies against leishmaniasis are desirable, since the treatment against disease presents problems, such as the toxicity, high cost and/or parasite resistance. As consequence, new antileishmanial compounds are necessary to be identified, as presenting high activity against Leishmania parasites, but low toxicity in mammalian hosts. Flau-A is a naphthoquinone derivative recently showed to presents an in vitro effective action against Leishmania amazonensis and L. infantum species. In the present work, the in vivo efficacy of Flau-A, which was incorporated into a Poloxamer 407-based micelle system, was evaluated in a murine model against L. amazonensis infection. Amphotericin B (AmB) and Ambisome® were used as controls. The animals were infected and later treated with the compounds. Thirty days after the treatment, parasitological and immunological parameters were evaluated. Results showed that AmB, Ambisome®, Flau-A or Flau-A/M-treated animals presented significantly lower average lesion diameter and parasite burden in tissue and organs evaluated, when compared to the control (saline and micelle) groups. Flau-A or Flau-A/M-treated mice were those presenting the most significant reductions in the parasite burden, when compared to the others. These animals developed also a more polarized antileishmanial Th1 immune response, which was based on significantly higher levels of IFN-γ, IL-12, TNF-α, GM-CSF, and parasite-specific IgG2a isotype; associated with low levels of IL-4, IL-10, and IgG1 antibody. The absence of toxicity was found in these animals, although mice receiving AmB have showed high levels of renal and hepatic damage markers. In conclusion, results suggested that the Flau-A/M compound may be considered as a possible therapeutic target to be evaluated against human leishmaniasis.
Sujet(s)
Antiprotozoaires/usage thérapeutique , Leishmania/effets des médicaments et des substances chimiques , Leishmaniose/traitement médicamenteux , Micelles , Naphtoquinones/usage thérapeutique , Poloxamère/usage thérapeutique , Animaux , Antiprotozoaires/composition chimique , Antiprotozoaires/pharmacocinétique , Excipients/composition chimique , Excipients/pharmacocinétique , Excipients/usage thérapeutique , Femelle , Leishmania/métabolisme , Leishmaniose/métabolisme , Souris , Souris de lignée BALB C , Naphtoquinones/composition chimique , Naphtoquinones/pharmacocinétique , Poloxamère/composition chimique , Poloxamère/pharmacocinétique , Résultat thérapeutiqueRÉSUMÉ
OBJECTIVE: Scopolamine (SCO) administration to rats induces molecular features of AD and other dementias, including impaired cognition, increased oxidative stress, and imbalanced cholinergic transmission. Although mitochondrial dysfunction is involved in different types of dementias, its role in cognitive impairment induced by SCO has not been well elucidated. The aim of this work was to evaluate the in vivo effect of SCO on different brain mitochondrial parameters in rats to explore its neurotoxic mechanisms of action. METHODS: Saline (Control) or SCO (1 mg/kg) was administered intraperitoneally 30 min prior to neurobehavioral and biochemical evaluations. Novel object recognition and Y-maze paradigms were used to evaluate the impact on memory, while redox profiles in different brain regions and the acetylcholinesterase (AChE) activity of the whole brain were assessed to elucidate the amnesic mechanism of SCO. Finally, the effects of SCO on brain mitochondria were evaluated both ex vivo and in vitro, the latter to determine whether SCO could directly interfere with mitochondrial function. RESULTS: SCO administration induced memory deficit, increased oxidative stress, and increased AChE activities in the hippocampus and prefrontal cortex. Isolated brain mitochondria from rats administered with SCO were more vulnerable to mitochondrial swelling, membrane potential dissipation, H2O2 generation and calcium efflux, all likely resulting from oxidative damage. The in vitro mitochondrial assays suggest that SCO did not affect the organelle function directly. CONCLUSION: In conclusion, the present results indicate that SCO induced cognitive dysfunction and oxidative stress may involve brain mitochondrial impairment, an important target for new neuroprotective compounds against AD and other dementias.
Sujet(s)
Troubles de la mémoire/métabolisme , Mitochondries/métabolisme , Acetylcholinesterase/métabolisme , Animaux , Encéphale/métabolisme , Calcium/métabolisme , Cations divalents/métabolisme , Modèles animaux de maladie humaine , Peroxyde d'hydrogène/métabolisme , Mâle , Apprentissage du labyrinthe/physiologie , Potentiel de membrane mitochondriale/physiologie , Gonflement mitochondrial/physiologie , Stress oxydatif/physiologie , Répartition aléatoire , Rat Wistar , 35416/physiologie , ScopolamineRÉSUMÉ
RESUMO O tratamento anaeróbio de efluentes industriais ricos em sulfato e sódio pode ser limitado por vários fatores, dentre os quais a relação DQO/sulfato, a concentração de SO4 2- e a concentração de sódio. Entre os fenômenos investigados estão a competição entre bactérias redutoras de sulfato e arquéias metanogênicas por substrato, a concentração de sulfeto gerado na sulfetogênese e a inibição por cátions. Este trabalho apresentou e discutiu os resultados da operação de um reator UASB, com volume útil de 10,5 L e vazão de 16,0 L.dia-1. Utilizou-se glicose, acetato e metanol (DQO≈2.000 mg.L-1), sob razão DQO/sulfato variando de 0,20 a 6,15, concentração de sulfato de 0,3 a 10,0 g.L-1 e concentração do cátion Na+ de 0,70 g.L-1 a 5,40 g.L-1. A eficiência de remoção de DQO foi mantida acima de 80%, e a concentração de sulfato removida ficou limitada a cerca de 800 mg.L-1 durante o período experimental. A atividade metanogênica específica do lodo (AME) foi de 0,630 gCH4-DQO.gSSV-1 até carga de sulfato de 0,300 gSO4 2-.L-1 e (razão DQO/sulfato de 6,15), declinando até atingir 0,168 gCH4-DQO.gSSV-1 (queda de 70%) na última fase com 10,000 gSO4 2-.L-1 (razão DQO/[SO4 2-] de 0,24) e concentração de Na+ de 5,41±0,10 g.L-1. O aumento crescente das concentrações de sódio e sulfato, mantendo-se a concentração de matéria orgânica constante, permitiu constatar a inibição da metanogênese por sódio e sulfeto, mesmo em concentrações abaixo das consideradas inibidoras individualmente. O efeito do sódio na estrutura do grânulo foi determinante na inibição da metanogênese observada.
ABSTRACT The anaerobic treatment of industrial wastewater presenting high concentrations of sulfate and sodium may be limited by several factors, including the ratio COD / [SO4 2-], the concentration of SO4 2- and the concentration of Na+. The competition between sulfate reducing bacteria and methanogenic archaea for substrate, the concentration of sulfide generated in sulfidogenesis, and the inhibition by cations are among the main phenomena that have been investigated. This paper presented and discussed the results of a UASB reactor with a volume of 10.5 L and flowrate of 16.0 L.day-1, subjected to increasing COD/sulfate ratio whereas influent COD was kept constant. Glucose, acetate and methanol (≈2,000 COD mg.L-1) were the carbon sources, and the COD/sulfate ratio ranged from 0.20 to 6.15 for sulfate concentrations of 0.3 to 10.0 g.L-1, Na + concentrations of 0.70 g.L-1 to 5.40 g.L-1. The COD removal efficiency was maintained above 80%, and the sulfate removal was limited to 800 mg.L-1 throughout the experimental period. The specific methanogenic activity (SMA) was 0.630 gCH4-DQO.gSSV-1 for 0.300 gSO4 2-.L-1 (COD/sulfate of 6.15), decreasing to 0.168 (70% decrease) in the last phase (COD /sulfate of 0.24) at concentrations of 10.000 gSO4 2-.L-1 and of Na+ 5.41±0.10 g.L-1. The progressive increase of sulfate and sodium concentrations at constant influent COD resulted in methanogenesis inhibition by sodium and sulfide, even at concentrations bellow the inhibition limits, if individually considered. The effect of sodium in the granule structure was determinant for methanogenesis inhibition.
RÉSUMÉ
BACKGROUND Malaria persists as a major public health problem. Atovaquone is a drug that inhibits the respiratory chain of Plasmodium falciparum, but with serious limitations like known resistance, low bioavailability and high plasma protein binding. OBJECTIVES The aim of this work was to perform molecular modelling studies of 2-hydroxy-1,4-naphthoquinones analogues of atovaquone on the Qo site of P. falciparum cytochrome bc1 complex (Pfbc1) to suggest structural modifications that could improve their antimalarial activity. METHODS We have built the homology model of the cytochrome b (CYB) and Rieske iron-sulfur protein (ISP) subunits from Pfbc1 and performed the molecular docking of 41 2-hydroxy-1,4-naphthoquinones with known in vitro antimalarial activity and predicted to act on this target. FINDINGS Results suggest that large hydrophobic R2 substituents may be important for filling the deep hydrophobic Qo site pocket. Moreover, our analysis indicates that the H-donor 2-hydroxyl group may not be crucial for efficient binding and inhibition of Pfbc1 by these atovaquone analogues. The C1 carbonyl group (H-acceptor) is more frequently involved in the important hydrogen bonding interaction with His152 of the Rieske ISP subunit. MAIN CONCLUSIONS Additional interactions involving residues such as Ile258 and residues required for efficient catalysis (e.g., Glu261) could be explored in drug design to avoid development of drug resistance by the parasite.
Sujet(s)
Plasmodium falciparum/effets des médicaments et des substances chimiques , Complexe III de la chaîne respiratoire/composition chimique , Antipaludiques/pharmacologie , Antipaludiques/composition chimique , Naphtoquinones/composition chimique , Analyse de séquence de protéineRÉSUMÉ
The venom from the scorpion Tityus serrulatus (Ts) has been extensively studied mainly because of its rich cocktail of neurotoxins. Neurotoxins are the major and the most known components based on their modulation of voltage-gated ion channels. Until now, electrophysiological studies demonstrated that the Ts venom comprises toxins that affect Nav and Kv channels. However, although many studies have been conducted in this field, many peptides from Ts venom await further studies, including Ts8 toxin. Here we report the isolation and electrophysiological study of Ts8. The toxin Ts19 Frag-II was used as negative control. Ts8 demonstrates, among 20 tested channels, to be a selective modulator of Kv4.2 channels. Based on studies investigating the involvement of Kv4.2 on controlling nociception, we further investigated the modulation of pain by Ts8. Using intraplantar injections, Ts8 induced overt nociception (licking and lifting behaviors) and decreased the mechanical nociceptive threshold (hyperalgesia). Furthermore, the hyperalgesia was prolonged when intrathecal injections were performed. Independent of the severity, most of the victims stung by Ts scorpions report an intense and persistent pain as the major manifestation. The new role of Ts8 on nociception could explain, at least partially, this phenomenon. Additionally, our study also stresses the involvement of toxins specific to Nav channels and inflammatory mediators on the Ts painful sting. This work provides useful insights for a better understanding of the prolonged and intense pain associated with Ts envenoming for the development of specific therapies.
Sujet(s)
Inhibiteurs des canaux potassiques/toxicité , Venins de scorpion/composition chimique , Canaux potassiques Shal/antagonistes et inhibiteurs , Toxines biologiques/toxicité , Séquence d'acides aminés , Animaux , Mâle , Souris , Souris de lignée C57BL , Nociception/effets des médicaments et des substances chimiques , Venins de scorpion/isolement et purification , Similitude de séquences d'acides aminés , Toxines biologiques/composition chimiqueRÉSUMÉ
The guava weevil, Conotrachelus psidii is an aggressive pest of guava (Psidium guajava L.) that causes irreparable damages inside the fruit. The volatile compounds of male and female insects were separately collected by headspace solid-phase microextraction or with dynamic headspace collection on a polymer sorbent, and comparatively analyzed by GC-MS. (1R,2S,6R)-2-Hydroxymethyl-2,6-dimethyl-3-oxabicyclo[4.2.0]octane (papayanol), and (1R,2S,6R)-2,6-dimethyl-3-oxabicyclo[4.2.0]octane-2-carbaldehyde (papayanal) were identified (ratio of 9:1, respectively) as male-specific guava weevil volatiles. Papayanal structure was confirmed by comparison of spectroscopic (EIMS) and chromatographic (retention time) data with those of the synthetic pure compound. The behavioral response of the above-mentioned compounds was studied in a Y-tube olfactometer bioassay, and their role as aggregation pheromone candidate components was suggested in this species.
Sujet(s)
Aldéhydes/isolement et purification , Composés hétérocycliques bicycliques/isolement et purification , Phéromones/isolement et purification , Psidium/parasitologie , Composés organiques volatils/isolement et purification , Charançons/effets des médicaments et des substances chimiques , Aldéhydes/pharmacologie , Animaux , Comportement animal/effets des médicaments et des substances chimiques , Comportement animal/physiologie , Dosage biologique , Composés hétérocycliques bicycliques/pharmacologie , Femelle , Fruit/parasitologie , Chromatographie gazeuse-spectrométrie de masse , Mâle , Phéromones/pharmacologie , Microextraction en phase solide , Composés organiques volatils/pharmacologie , Charançons/physiologieRÉSUMÉ
Synthesis and structural characterization of 1,4,2-oxazaphosphepines is described. The 1,4,2-oxazaphosphepines were obtained from reaction of chiral 1,3-benzoxazines with dichlorophenylphosphine or triethyl phosphite. The configuration of some of these compounds was stablished by X-ray analysis.
Sujet(s)
Phénols/composition chimique , Phénols/synthèse chimique , StéréoisomérieRÉSUMÉ
The effects of the allelochemical benzoxazolin-2-(3H)-one (BOA) were evaluated on growth, lignin content and its monomers p-hydroxyphenyl (H), guaiacyl (G) and syringyl (S) in roots, stems and leaves of soybean. BOA decreased the lengths and fresh weights of roots and stems, and the fresh weights and areas of leaves. Reductions in the growth were accompanied by enhanced lignin content in all tissues. In roots, the allelochemical increased the content of H, G and S monomers as well as the overall amount of lignin (referred to as the sum of H+G+S), but did not alter the S/G ratio. In stems and leaves, BOA increased the H, G, S and H+G+S contents while decreasing the S/G ratio. In brief, BOA-induced inhibition of soybean may be due to excessive production of monomers that increase the degree of polymerization of lignin, limit cell expansion, solidify the cell wall and restrict plant growth.
Sujet(s)
Benzoxazoles/pharmacologie , Glycine max/croissance et développement , Glycine max/métabolisme , Lignine/métabolisme , Biomasse , Feuilles de plante/effets des médicaments et des substances chimiques , Feuilles de plante/métabolisme , Racines de plante/anatomie et histologie , Racines de plante/effets des médicaments et des substances chimiques , Racines de plante/croissance et développement , Tiges de plante/effets des médicaments et des substances chimiques , Tiges de plante/métabolisme , Glycine max/effets des médicaments et des substances chimiquesRÉSUMÉ
In the early Drosophila melanogaster embryo, Dpp, a secreted molecule that belongs to the TGF-ß superfamily of growth factors, activates a set of downstream genes to subdivide the dorsal region into amnioserosa and dorsal epidermis. Here, we examined the expression pattern and transcriptional regulation of Dtg, a new target gene of Dpp signaling pathway that is required for proper amnioserosa differentiation. We showed that the expression of Dtg was controlled by Dpp and characterized a 524-bp enhancer that mediated expression in the dorsal midline, as well as, in the differentiated amnioserosa in transgenic reporter embryos. This enhancer contained a highly conserved region of 48-bp in which bioinformatic predictions and in vitro assays identified three Mad binding motifs. Mutational analysis revealed that these three motifs were necessary for proper expression of a reporter gene in transgenic embryos, suggesting that short and highly conserved genomic sequences may be indicative of functional regulatory regions in D. melanogaster genes. Dtg orthologs were not detected in basal lineages of Dipterans, which unlike D. melanogaster develop two extra-embryonic membranes, amnion and serosa, nevertheless Dtg orthologs were identified in the transcriptome of Musca domestica, in which dorsal ectoderm patterning leads to the formation of a single extra-embryonic membrane. These results suggest that Dtg was recruited as a new component of the network that controls dorsal ectoderm patterning in the lineage leading to higher Cyclorrhaphan flies, such as D. melanogaster and M. domestica.
Sujet(s)
Protéines de Drosophila/génétique , Drosophila melanogaster/génétique , Drosophila melanogaster/métabolisme , Analyse de profil d'expression de gènes , Régulation de l'expression des gènes au cours du développement , Protéines membranaires/génétique , Transduction du signal , Animaux , Séquence nucléotidique , Protéines de Drosophila/métabolisme , Drosophila melanogaster/enzymologie , Embryon non mammalien , Éléments activateurs (génétique) , Liaison aux protéines , Alignement de séquences , Spécificité d'espèceRÉSUMÉ
The mosquito Aedes aegypti is the vector agent responsible for the transmission of yellow fever and dengue fever viruses to over 80 million people in tropical and subtropical regions of the world. Exhaustive efforts have lead to a vaccine candidate with only 30% effectiveness against the dengue virus and failure to protect patients against the serotype 2. Hence, vector control remains the most viable route to dengue fever control programs. We have synthesized a class of 1,2,4-oxadiazole derivatives whose most biologically active compounds exhibit potent activity against Aedes aegypti larvae (ca. of 15 ppm) and low toxicity in mammals. Exposure to these larvicides results in larvae pigmentation in a manner correlated with the LC50 measurements. Structural comparisons of the 1,2,4-oxadiazole nucleus against known inhibitors of insect enzymes allowed the identification of 3-hydroxykynurenine transaminase as a potential target for these synthetic larvicides. Molecular docking calculations indicate that 1,2,4-oxadiazole compounds can bind to 3-hydroxykynurenine transaminase with similar conformation and binding energies as its crystallographic inhibitor 4-(2-aminophenyl)-4-oxobutanoic acid.