Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 509
Filtrer
1.
Biochem Biophys Rep ; 39: 101811, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39253056

RÉSUMÉ

The COVID-19 pandemic, caused by SARS-CoV-2, continues to pose a significant global health challenge, with acute respiratory distress syndrome (ARDS) being a major cause of mortality. Excessive cytokine release (cytokine storm) has been causally related to COVID-19-associated ARDS. While TNF-α inhibitors have shown potential in reducing inflammation, their broad effects on TNF-α signaling, including both pro- and anti-inflammatory pathways, present significant challenges and side effects in clinical use. Therefore, more precise therapeutic targets are urgently needed. ADAM17 is a key enzyme driving cytokine release, but its broad presence complicates direct inhibition. Targeting iRhom2, a regulator specific to immune cells that controls ADAM17's activity, offers a more focused and effective approach to reducing cytokine release. In this study, we hypothesized that targeted inhibition of ADAM-17/iRhom2 attenuates COVID-19-induced cytokine release in cultured lung epithelial cells. Human primary bronchial/tracheal epithelial cells challenged with COVID-19 pseudo-viral particles resulted in elevated cytokine release, which was attenuated following siRNA-mediated silencing of ADAM17 and iRhom2. Targeting ADAM-17/iRhom2 pathway may thus represent a strategy to overcome the COVID-19-associated ARDS.

2.
Eur J Pharmacol ; 983: 176964, 2024 Aug 30.
Article de Anglais | MEDLINE | ID: mdl-39218341

RÉSUMÉ

Acute kidney injury (AKI) is a severe medical condition that can lead to illness and death. A disintegrin and metalloprotease (ADAM) protein family is a potential treatment target for AKI due to its involvement in inflammation, growth, and differentiation. While ADAM10 and ADAM17 have been identified as significant contributors to inflammation, it is unclear whether they play a critical role in AKI. In this study, we induced AKI in male and female mice using lipopolysaccharide, a bacterial endotoxin that causes inflammation and oxidative stress. The role of kaempferol, which is found in many natural products and known to have antioxidant and anti-inflammatory activity in many pre-clinical studies, was investigated through ADAM10/17 enzymes in AKI. We also investigated the efficacy of a selective synthetic inhibitor named GW280264X for ADAM10/17 inhibition in AKI. Blood urea nitrogen and creatinine levels were measured in serum, while tumor necrosis factor-α, vascular adhesion molecule, interleukin (IL)-1ß, glucose regulatory protein-78, IL-10, nuclear factor κ-B, thiobarbituric acid reactive substances, total thiol, ADAM10, and ADAM17 levels were measured in kidney tissue. We also evaluated kidney tissue histologically using hematoxylin and eosin, periodic acid-schiff, and caspase-3 staining. This research demonstrates that GW280264X and kaempferol reduces inflammation and oxidative stress, as evidenced by biochemical and histopathological results in AKI through ADAM10/17 inhibition. These findings suggest that inhibiting ADAM10/17 may be a promising therapeutic approach for treating acute kidney injury.

3.
World J Clin Cases ; 12(24): 5492-5501, 2024 Aug 26.
Article de Anglais | MEDLINE | ID: mdl-39188605

RÉSUMÉ

BACKGROUND: Colorectal cancer (CRC) is one of the most frequently encountered malignant tumors in clinical settings. Proteins encoded by the testis-expressed gene 14 (TEX14) are imperative for spermatogenesis, necessitating intercellular bridges between germ cells. Anomalous expression of TEX14 has also been associated with the proliferation and differentiation of certain tumor cells. Recombinant A disintegrin and metalloprotease 17 (ADAM17) is known as a membrane-bound protease that regulates cellular activities and signal transduction by hydrolyzing various substrate proteins on the cell membrane. We hypothesize that TEX14 and ADAM17 may serve as potential biomarkers influencing the staging, invasion, and metastasis of CRC. AIM: To probe the correlation between TEX17 and ADAM17 profiles in the CRC tissues of elderly patients and their association with CRC staging, invasion, and metastasis. METHODS: We gathered data from 86 elderly patients diagnosed pathologically with CRC between April 2020 and December 2023. For each patient, one sample of cancer tissue and one sample of adjacent normal tissue were harvested. Real-time fluorescence quantitative PCR measured the mRNA profiles of TEX14 and ADAM17. Immunohistochemistry ascertained the positivity rates of TEX14 and ADAM17 expressions. Clinical pathological features of neoplasm staging, invasion, and metastasis were collected, and the association between TEX14 and ADAM17 expressions and clinical pathology was evaluated. RESULTS: The mRNA and expression profiles of TEX14 and ADAM17 were significantly elevated in CRC tissues. The positivity rates of TEX14 and ADAM17 proteins in CRC tissues were 70.93% and 77.91%, respectively. There were no significant differences in age, sex, pathological type, and tumor diameter between TEX14 and ADAM17-positive and -negative patients. Patients with higher tumor differentiation degree, deeper infiltration and TNM stages ranging from III to IV exhibited higher positivity rates of TEX14 and ADAM17. Patients with lymph node metastasis and distant metastasis showed higher positivity rates of TEX14 and ADAM17 than those without. Positive expressions of TEX14 and ADAM17 were highly correlated with tumor staging, invasion, and metastasis. CONCLUSION: TEX14 and ADAM17 profiles were significantly elevated in the CRC tissues of elderly patients, and their high expressions were associated with tumor staging, invasion, and metastasis.

4.
J Investig Med ; : 10815589241270543, 2024 Aug 28.
Article de Anglais | MEDLINE | ID: mdl-39091062

RÉSUMÉ

The A disintegrin and metalloprotease (ADAM) family is involved in many vital cellular events, from proliferation to migration, and accumulated evidence suggests its increased expression in malignant tumors. In this study, we investigated ADAM17 expression in non-small cell lung cancer (NSCLC) and its relationship with clinicopathological factors and survival. Immunohistochemical staining of ADAM expression was performed in 108 patients with NSCLC and in 54 control cases with no known malignant diagnosis. Association between ADAM17 expression, clinicopathological factors, and survival were analyzed. The Kaplan-Meier method was used for survival analysis. ADAM17 was lowly expressed in 89 (82.4%) and highly expressed in 19 (17.6%) of the patients with NSCLC. In univariate analysis, high ADAM17 expression, lymphovascular invasion, stage, and treatment response significantly affected progression-free survival (PFS) and overall survival (OS) (p < 0.05). Multivariate analysis also showed that high ADAM17 expression, lymphovascular invasion, stage, and treatment response were important prognostic factors for PFS and OS (p < 0.05). Our study revealed that high ADAM17 expression significantly associated with OS and PFS in patients with NSCLC. ADAM17 may potentially be the area of a new targeted treatment strategy in NSCLC. Thus, routine evaluation of ADAM17 expression in patients with NSCLC may be a future consideration.

5.
Sci Rep ; 14(1): 17703, 2024 07 31.
Article de Anglais | MEDLINE | ID: mdl-39085289

RÉSUMÉ

Renal interstitial fibrosis (RIF) is a prevalent consequence of chronic renal diseases, characterized by excessive extracellular matrix (ECM) deposition. A Disintegrin and Metalloprotease 17 (ADAM17), a transmembrane metalloproteinase, plays a central role in driving renal fibrosis progression by activating Notch 1 protein and the downstream TGF-ß signaling pathway. Our study investigated potential therapeutic interventions for renal fibrosis, focusing on human umbilical cord mesenchymal stem cell-derived extracellular vesicles (hucMSC-EVs). We found that hucMSC-EVs inhibit ADAM17, thereby impeding renal fibrosis progression. Analysis of hucMSC-EVs miRNA profiles revealed significant enrichment of miR-13474, which effectively targeted and inhibited ADAM17 mRNA expression, subsequently suppressing Notch1 activation, TGF-ß signaling, and collagen deposition. Overexpression of miR-13474 enhanced hucMSC-EVs' inhibitory effect on renal fibrosis, while its downregulation abolished this protective effect. Our findings highlight the efficacy of hucMSC-EVs overexpressing miR-13474 in mitigating renal fibrosis via ADAM17 targeting. These insights offer potential therapeutic strategies for managing renal fibrosis.


Sujet(s)
Protéine ADAM17 , Vésicules extracellulaires , Fibrose , Rein , Cellules souches mésenchymateuses , microARN , microARN/génétique , microARN/métabolisme , Protéine ADAM17/métabolisme , Protéine ADAM17/génétique , Humains , Vésicules extracellulaires/métabolisme , Cellules souches mésenchymateuses/métabolisme , Animaux , Rein/métabolisme , Rein/anatomopathologie , Transduction du signal , Maladies du rein/métabolisme , Maladies du rein/thérapie , Maladies du rein/anatomopathologie , Maladies du rein/génétique , Facteur de croissance transformant bêta/métabolisme , Souris
6.
Cancer Manag Res ; 16: 703-710, 2024.
Article de Anglais | MEDLINE | ID: mdl-38948682

RÉSUMÉ

Purpose: To explore the effect of DSG2 on the growth of cervical cancer cells and its possible regulatory mechanism. Methods: The expression levels and survival prognosis of DSG2 and ADAM17 in cervical squamous cell carcinoma tissues and adjacent normal tissues were analyzed by bioinformatics. CCK-8 assay, colony formation assay and Transwell assay were used to detect the effects of DSG2 on the proliferative activity, colony formation ability and migration ability of SiHa and Hela cells. The effect of DSG 2 on the level of ADAM17 transcription and translation was detected by qPCR and Western blot experiments. The interaction between DSG2 and c-MYC was detected by immunocoprecipitation. c-MYC inhibitors were used in HeLa cells overexpressing DSG2 to analyze the effects of DSG2 and c-MYC on proliferation, colony formation and migration of Hela cells, as well as the regulation of ADAM17 expression. Results: DSG2 was highly expressed in cervical squamous cell carcinoma compared with normal tissues (P<0.05), and high DSG2 expression suggested poor overall survival (P<0.05). After DSG2 knockdown, the proliferative activity, colony formation and migration ability of SiHa and Hela cells were significantly decreased (P<0.05). Compared with adjacent normal tissues, ADAM17 was highly expressed in cervical squamous cell carcinoma (P<0.05), and high ADAM17 expression suggested poor overall survival in cervical cancer patients (P<0.05). The results of immunocoprecipitation showed the interaction between DSG2 and c-MYC. Compared with DSG2 overexpression group, DSG2 overexpression combined with c-MYC inhibition group significantly decreased cell proliferation, migration and ADAM17 expression (P < 0.05). Conclusion: DSG2 is highly expressed in cervical cancer, and inhibition of DSG2 expression can reduce the proliferation and migration ability of cervical cancer cells, which may be related to the regulation of ADAM17 expression through c-MYC interaction.

7.
Nutrients ; 16(12)2024 Jun 13.
Article de Anglais | MEDLINE | ID: mdl-38931216

RÉSUMÉ

Atherosclerosis is one of the most important causes of cardiovascular diseases. A disintegrin and metalloprotease (ADAM)10 and ADAM17 have been identified as important regulators of inflammation in recent years. Our study investigated the effect of inhibiting these enzymes with selective inhibitor and propolis on atherosclerosis. In our study, C57BL/6J mice (n = 16) were used in the control and sham groups. In contrast, ApoE-/- mice (n = 48) were used in the case, water extract of propolis (WEP), ethanolic extract of propolis (EEP), GW280264X (GW-synthetic inhibitor), and solvent (DMSO and ethanol) groups. The control group was fed a control diet, and all other groups were fed a high-cholesterol diet for 16 weeks. WEP (400 mg/kg/day), EEP (200 mg/kg/day), and GW (100 µg/kg/day) were administered intraperitoneally for the last four weeks. Animals were sacrificed, and blood, liver, aortic arch, and aortic root tissues were collected. In serum, total cholesterol (TC), triglycerides (TGs), and glucose (Glu) were measured by enzymatic colorimetric method, while interleukin-1ß (IL-1ß), paraoxonase-1 (PON-1), and lipoprotein-associated phospholipase-A2 (Lp-PLA2) were measured by ELISA. Tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), myeloperoxidase (MPO), interleukin-6 (IL-6), interleukin-10 (IL-10), and interleukin-12 (IL-12) levels were measured in aortic arch by ELISA and ADAM10/17 activities were measured fluorometrically. In addition, aortic root and liver tissues were examined histopathologically and immunohistochemically (ADAM10 and sortilin primary antibody). In the WEP, EEP, and GW groups compared to the case group, TC, TG, TNF-α, IL-1ß, IL-6, IL-12, PLA2, MPO, ADAM10/17 activities, plaque burden, lipid accumulation, ADAM10, and sortilin levels decreased, while IL-10 and PON-1 levels increased (p < 0.003). Our study results show that propolis can effectively reduce atherosclerosis-related inflammation and dyslipidemia through ADAM10/17 inhibition.


Sujet(s)
Protéine ADAM10 , Amyloid precursor protein secretases , Dyslipidémies , Inflammation , Souris de lignée C57BL , Propolis , Animaux , Protéine ADAM10/métabolisme , Propolis/pharmacologie , Inflammation/prévention et contrôle , Dyslipidémies/traitement médicamenteux , Dyslipidémies/étiologie , Souris , Mâle , Amyloid precursor protein secretases/métabolisme , Athérosclérose/prévention et contrôle , Athérosclérose/étiologie , Cholestérol alimentaire/effets indésirables , Alimentation riche en graisse/effets indésirables , Protéines membranaires/métabolisme , Modèles animaux de maladie humaine
8.
Biofactors ; 2024 Jun 17.
Article de Anglais | MEDLINE | ID: mdl-38886986

RÉSUMÉ

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) binds to angiotensin-converting enzyme 2 (ACE2) on host cells, via its spike protein, and transmembrane protease, serine 2 (TMPRSS2) cleaves the spike-ACE2 complex to facilitate virus entry. As rate-limiting steps for virus entry, modulation of ACE2 and/or TMPRSS2 may decrease SARS-CoV-2 infectivity and COVID-19 severity. In silico modeling suggested the natural bioactive flavonoid quercetin can bind to ACE2 and a recent randomized clinical trial demonstrated that oral supplementation with quercetin increased COVID-19 recovery. A range of cultured human cells were assessed for co-expression of ACE2 and TMPRSS2. Immortalized Calu-3 lung cells, cultured and matured at an air-liquid interface (Calu-3-ALIs), were established as the most appropriate. Primary bronchial epithelial cells (PBECs) were obtained from healthy adult males (N = 6) and cultured under submerged conditions to corroborate the outcomes. Upon maturation or reaching 80% confluence, respectively, the Calu-3-ALIs and PBECs were treated with quercetin, and mRNA and protein expression were assessed by droplet digital PCR and ELISA, respectively. SARS-CoV-2 infectivity, and the effects of pre- and co-treatment with quercetin, was assessed by median tissue culture infectious dose assay. Quercetin dose-dependently decreased ACE2 and TMPRSS2 mRNA and protein in both Calu-3-ALIs and PBECs after 4 h, while TMPRSS2 remained suppressed in response to prolonged treatment with lower doses (twice daily for 3 days). Quercetin also acutely decreased ADAM17 mRNA, but not ACE, in Calu-3-ALIs, and this warrants further investigation. Calu-3-ALIs, but not PBECs, were successfully infected with SARS-CoV-2; however, quercetin had no antiviral effect, neither directly nor indirectly through downregulation of ACE2 and TMPRSS2. Calu-3-ALIs were reaffirmed to be an optimal cell model for research into the regulation of ACE2 and TMPRSS2, without the need for prior genetic modification, and will prove valuable in future coronavirus and respiratory infectious disease work. However, our data demonstrate that a significant decrease in the expression of ACE2 and TMPRSS2 by a promising prophylactic candidate may not translate to infection prevention.

9.
Front Microbiol ; 15: 1392782, 2024.
Article de Anglais | MEDLINE | ID: mdl-38881671

RÉSUMÉ

Introduction: The proteolytic activity of A Disintegrin and Metalloproteinase 17 (ADAM17) regulates the release of tumor necrosis factor (TNF) and TNF receptors (TNFRs) from cell surfaces. These molecules play important roles in tuberculosis (TB) shaping innate immune reactions and granuloma formation. Methods: Here, we investigated whether single nucleotide polymorphisms (SNPs) of ADAM17 influence TNF and TNFRs levels in 224 patients with active TB (ATB) and 118 healthy close contacts. Also, we looked for significant associations between SNPs of ADAM17 and ATB status. TNF, TNFR1, and TNFR2 levels were measured in plasma samples by ELISA. Four SNPs of ADAM17 (rs12692386, rs1524668, rs11684747, and rs55790676) were analyzed in DNA isolated from peripheral blood leucocytes. The association between ATB status, genotype, and cytokines was analyzed by multiple regression models. Results: Our results showed a higher frequency of rs11684747 and rs55790676 in close contacts than ATB patients. Coincidentally, heterozygous to these SNPs of ADAM17 showed higher plasma levels of TNF compared to homozygous to their respective ancestral alleles. Strikingly, the levels of TNF and TNFRs distinguished participant groups, with ATB patients displaying lower TNF and higher TNFR1/TNFR2 levels compared to their close contacts. Conclusion: These findings suggest a role for SNPs of ADAM17 in genetic susceptibility to ATB.

10.
Elife ; 132024 Jun 11.
Article de Anglais | MEDLINE | ID: mdl-38860651

RÉSUMÉ

The autoimmune disease lupus erythematosus (lupus) is characterized by photosensitivity, where even ambient ultraviolet radiation (UVR) exposure can lead to development of inflammatory skin lesions. We have previously shown that Langerhans cells (LCs) limit keratinocyte apoptosis and photosensitivity via a disintegrin and metalloprotease 17 (ADAM17)-mediated release of epidermal growth factor receptor (EGFR) ligands and that LC ADAM17 sheddase activity is reduced in lupus. Here, we sought to understand how the lupus skin environment contributes to LC ADAM17 dysfunction and, in the process, differentiate between effects on LC ADAM17 sheddase function, LC ADAM17 expression, and LC numbers. We show through transcriptomic analysis a shared IFN-rich environment in non-lesional skin across human lupus and three murine models: MRL/lpr, B6.Sle1yaa, and imiquimod (IMQ) mice. IFN-I inhibits LC ADAM17 sheddase activity in murine and human LCs, and IFNAR blockade in lupus model mice restores LC ADAM17 sheddase activity, all without consistent effects on LC ADAM17 protein expression or LC numbers. Anti-IFNAR-mediated LC ADAM17 sheddase function restoration is associated with reduced photosensitive responses that are dependent on EGFR signaling and LC ADAM17. Reactive oxygen species (ROS) is a known mediator of ADAM17 activity; we show that UVR-induced LC ROS production is reduced in lupus model mice, restored by anti-IFNAR, and is cytoplasmic in origin. Our findings suggest that IFN-I promotes photosensitivity at least in part by inhibiting UVR-induced LC ADAM17 sheddase function and raise the possibility that anifrolumab ameliorates lupus skin disease in part by restoring this function. This work provides insight into IFN-I-mediated disease mechanisms, LC regulation, and a potential mechanism of action for anifrolumab in lupus.


Sujet(s)
Protéine ADAM17 , Cellules de Langerhans , Lupus érythémateux disséminé , Peau , Protéine ADAM17/métabolisme , Protéine ADAM17/génétique , Animaux , Humains , Cellules de Langerhans/métabolisme , Souris , Peau/métabolisme , Peau/anatomopathologie , Peau/effets des radiations , Lupus érythémateux disséminé/métabolisme , Rayons ultraviolets/effets indésirables , Femelle , Modèles animaux de maladie humaine , Photodermatoses/métabolisme , Interférons/métabolisme , Souris de lignée MRL lpr
11.
Int J Mol Sci ; 25(11)2024 May 31.
Article de Anglais | MEDLINE | ID: mdl-38892263

RÉSUMÉ

The cell surface metalloprotease ADAM17 (a disintegrin and metalloprotease 17) and its binding partners iRhom2 and iRhom1 (inactive Rhomboid-like proteins 1 and 2) modulate cell-cell interactions by mediating the release of membrane proteins such as TNFα (Tumor necrosis factor α) and EGFR (Epidermal growth factor receptor) ligands from the cell surface. Most cell types express both iRhoms, though myeloid cells exclusively express iRhom2, and iRhom1 is the main iRhom in the mouse brain. Here, we report that iRhom2 is uniquely expressed in olfactory sensory neurons (OSNs), highly specialized cells expressing one olfactory receptor (OR) from a repertoire of more than a thousand OR genes in mice. iRhom2-/- mice had no evident morphological defects in the olfactory epithelium (OE), yet RNAseq analysis revealed differential expression of a small subset of ORs. Notably, while the majority of ORs remain unaffected in iRhom2-/- OE, OSNs expressing ORs that are enriched in iRhom2-/- OE showed fewer gene expression changes upon odor environmental changes than the majority of OSNs. Moreover, we discovered an inverse correlation between the expression of iRhom2 compared to OSN activity genes and that odor exposure negatively regulates iRhom2 expression. Given that ORs are specialized G-protein coupled receptors (GPCRs) and many GPCRs activate iRhom2/ADAM17, we investigated if ORs could activate iRhom2/ADAM17. Activation of an olfactory receptor that is ectopically expressed in keratinocytes (OR2AT4) by its agonist Sandalore leads to ERK1/2 phosphorylation, likely via an iRhom2/ADAM17-dependent pathway. Taken together, these findings point to a mechanism by which odor stimulation of OSNs activates iRhom2/ADAM17 catalytic activity, resulting in downstream transcriptional changes to the OR repertoire and activity genes, and driving a negative feedback loop to downregulate iRhom2 expression.


Sujet(s)
Neurorécepteurs olfactifs , Récepteurs olfactifs , Animaux , Récepteurs olfactifs/métabolisme , Récepteurs olfactifs/génétique , Souris , Neurorécepteurs olfactifs/métabolisme , Odorat/physiologie , Protéine ADAM17/métabolisme , Protéine ADAM17/génétique , Souris knockout , Protéines de transport/métabolisme , Protéines de transport/génétique , Muqueuse olfactive/métabolisme , Régulation de l'expression des gènes , Protéines membranaires/métabolisme , Protéines membranaires/génétique , Souris de lignée C57BL , Humains
12.
J Biol Chem ; 300(7): 107480, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38897568

RÉSUMÉ

Phospholipase A2 receptor 1 (PLA2R1) is a 180-kDa transmembrane protein that plays a role in inflammation and cancer and is the major autoantigen in membranous nephropathy, a rare but severe autoimmune kidney disease. A soluble form of PLA2R1 has been detected in mouse and human serum. It is likely produced by proteolytic shedding of membrane-bound PLA2R1 but the mechanism is unknown. Here, we show that human PLA2R1 is cleaved by A Disintegrin And Metalloprotease 10 (ADAM10) and ADAM17 in HEK293 cells, mouse embryonic fibroblasts, and human podocytes. By combining site-directed mutagenesis and sequencing, we determined the exact cleavage site within the extracellular juxtamembrane stalk of human PLA2R1. Orthologs and paralogs of PLA2R1 are also shed. By using pharmacological inhibitors and genetic approaches with RNA interference and knock-out cellular models, we identified a major role of ADAM10 in the constitutive shedding of PLA2R1 and a dual role of ADAM10 and ADAM17 in the stimulated shedding. We did not observe evidence for cleavage by ß- or γ-secretase, suggesting that PLA2R1 may not be a substrate for regulated intramembrane proteolysis. PLA2R1 shedding occurs constitutively and can be triggered by the calcium ionophore ionomycin, the protein kinase C activator PMA, cytokines, and lipopolysaccharides, in vitro and in vivo. Altogether, our results show that PLA2R1 is a novel substrate for ADAM10 and ADAM17, producing a soluble form that is increased in inflammatory conditions and likely exerts various functions in physiological and pathophysiological conditions including inflammation, cancer, and membranous nephropathy.


Sujet(s)
Protéine ADAM10 , Protéine ADAM17 , Amyloid precursor protein secretases , Protéines membranaires , Récepteurs à la phospholipase A2 , Protéine ADAM10/métabolisme , Protéine ADAM10/génétique , Humains , Protéine ADAM17/métabolisme , Protéine ADAM17/génétique , Amyloid precursor protein secretases/métabolisme , Amyloid precursor protein secretases/génétique , Animaux , Protéines membranaires/métabolisme , Protéines membranaires/génétique , Souris , Cellules HEK293 , Récepteurs à la phospholipase A2/métabolisme , Récepteurs à la phospholipase A2/génétique , Podocytes/métabolisme , Protéolyse , Domaines protéiques , Ionomycine/pharmacologie
13.
Front Pharmacol ; 15: 1364827, 2024.
Article de Anglais | MEDLINE | ID: mdl-38799171

RÉSUMÉ

Background: The renin-angiotensin-aldosterone system (RAAS) members, especially Ang II and aldosterone, play key roles in the pathogenesis of diabetic cardiomyopathy (DCM). Angiotensin-converting enzyme inhibitors or angiotensin-receptor blockers combined with aldosterone receptor antagonists (mineralocorticoid receptor antagonists) have substantially improved clinical outcomes in patients with DCM. However, the use of the combination has been limited due to its high risk of inducing hyperkalemia. Methods: Type 1 diabetes was induced in 8-week-old male C57BL/6J mice by intraperitoneal injection of streptozotocin at a dose of 55 mg/kg for 5 consecutive days. Adeno-associated virus 9-mediated short-hairpin RNA (shRNA) was used to knock down the expression of ADAM17 in mice hearts. Eplerenone was administered via gavage at 200 mg/kg daily for 4 weeks. Primary cardiac fibroblasts were exposed to high glucose (HG) in vitro for 24 h to examine the cardiac fibroblasts to myofibroblasts transformation (CMT). Results: Cardiac collagen deposition and CMT increased in diabetic mice, leading to cardiac fibrosis and dysfunction. In addition, ADAM17 expression and activity increased in the hearts of diabetic mice. ADAM17 inhibition and eplerenone treatment both improved diabetes-induced cardiac fibrosis, cardiac hypertrophy and cardiac dysfunction, ADAM17 deficiency combined with eplerenone further reduced the effects of cardiac fibrosis, cardiac hypertrophy and cardiac dysfunction compared with single therapy in vivo. High-glucose stimulation promotes CMT in vitro and leads to increased ADAM17 expression and activity. ADAM17 knockdown and eplerenone pretreatment can reduce the CMT of fibroblasts that is induced by high glucose levels by inhibiting TGFß1/Smad3 activation; the combination of the two can further reduce CMT compared with single therapy in vitro. Conclusion: Our findings indicated that ADAM17 knockout could improve diabetes-induced cardiac dysfunction and remodeling through the inhibition of RAAS overactivation when combined with eplerenone treatment, which reduced TGF-ß1/Smad3 pathway activation-mediated CMT. The combined intervention of ADAM17 deficiency and eplerenone therapy provided additional cardiac protection compared with a single therapy alone without disturbing potassium level. Therefore, the combination of ADAM17 inhibition and eplerenone is a potential therapeutic strategy for human DCM.

14.
Mol Cell ; 84(11): 2152-2165.e5, 2024 Jun 06.
Article de Anglais | MEDLINE | ID: mdl-38781971

RÉSUMÉ

A disintegrin and metalloprotease 17 (ADAM17) is a membrane-tethered protease that triggers multiple signaling pathways. It releases active forms of the primary inflammatory cytokine tumor necrosis factor (TNF) and cancer-implicated epidermal growth factor (EGF) family growth factors. iRhom2, a rhomboid-like, membrane-embedded pseudoprotease, is an essential cofactor of ADAM17. Here, we present cryoelectron microscopy (cryo-EM) structures of the human ADAM17/iRhom2 complex in both inactive and active states. These reveal three regulatory mechanisms. First, exploiting the rhomboid-like hallmark of TMD recognition, iRhom2 interacts with the ADAM17 TMD to promote ADAM17 trafficking and enzyme maturation. Second, a unique iRhom2 extracellular domain unexpectedly retains the cleaved ADAM17 inhibitory prodomain, safeguarding against premature activation and dysregulated proteolysis. Finally, loss of the prodomain from the complex mobilizes the ADAM17 protease domain, contributing to its ability to engage substrates. Our results reveal how a rhomboid-like pseudoprotease has been repurposed during evolution to regulate a potent membrane-tethered enzyme, ADAM17, ensuring the fidelity of inflammatory and growth factor signaling.


Sujet(s)
Protéine ADAM17 , Cryomicroscopie électronique , Transduction du signal , Protéine ADAM17/métabolisme , Protéine ADAM17/génétique , Humains , Cellules HEK293 , Protéines de transport/métabolisme , Protéines de transport/génétique , Inflammation/métabolisme , Inflammation/génétique , Protéolyse , Facteur de nécrose tumorale alpha/métabolisme , Facteur de nécrose tumorale alpha/génétique , Domaines protéiques , Liaison aux protéines , Protéines et peptides de signalisation intercellulaire/métabolisme , Protéines et peptides de signalisation intercellulaire/génétique , Facteur de croissance épidermique/métabolisme , Facteur de croissance épidermique/génétique , Protéines et peptides de signalisation intracellulaire
15.
Cell Mol Life Sci ; 81(1): 163, 2024 Apr 04.
Article de Anglais | MEDLINE | ID: mdl-38570362

RÉSUMÉ

Proteolytic release of transmembrane proteins from the cell surface, the so called ectodomain shedding, is a key process in inflammation. Inactive rhomboid 2 (iRhom2) plays a crucial role in this context, in that it guides maturation and function of the sheddase ADAM17 (a disintegrin and metalloproteinase 17) in immune cells, and, ultimately, its ability to release inflammatory mediators such as tumor necrosis factor α (TNFα). Yet, the macrophage sheddome of iRhom2/ADAM17, which is the collection of substrates that are released by the proteolytic complex, is only partly known. In this study, we applied high-resolution proteomics to murine and human iRhom2-deficient macrophages for a systematic identification of substrates, and therefore functions, of the iRhom2/ADAM17 proteolytic complex. We found that iRhom2 loss suppressed the release of a group of transmembrane proteins, including known (e.g. CSF1R) and putative novel ADAM17 substrates. In the latter group, shedding of major histocompatibility complex class I molecules (MHC-I) was consistently reduced in both murine and human macrophages when iRhom2 was ablated. Intriguingly, it emerged that in addition to its shedding, iRhom2 could also control surface expression of MHC-I by an undefined mechanism. We have demonstrated the biological significance of this process by using an in vitro model of CD8+ T-cell (CTL) activation. In this model, iRhom2 loss and consequent reduction of MHC-I expression on the cell surface of an Epstein-Barr virus (EBV)-transformed lymphoblastoid cell line dampened activation of autologous CTLs and their cell-mediated cytotoxicity. Taken together, this study uncovers a new role for iRhom2 in controlling cell surface levels of MHC-I by a dual mechanism that involves regulation of their surface expression and ectodomain shedding.


Sujet(s)
Protéines de transport , Infections à virus Epstein-Barr , Animaux , Humains , Souris , Protéine ADAM17/génétique , Protéine ADAM17/métabolisme , Protéines de transport/métabolisme , Herpèsvirus humain de type 4 , Complexe majeur d'histocompatibilité , Protéines membranaires/génétique , Protéines membranaires/métabolisme , Souris knockout
16.
Pharmacol Rep ; 76(3): 475-486, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38652364

RÉSUMÉ

The renin-angiotensin-aldosterone system (RAAS) holds a position of paramount importance as enzymatic and endocrine homeostatic regulator concerning the water-electrolyte and acid-base balance. Nevertheless, its intricacy is influenced by the presence of various complementary angiotensins and their specific receptors, thereby modifying the primary RAAS actions. Angiotensin-converting enzyme 2 (ACE2) acts as a surface receptor for SARS-CoV-2, establishing an essential connection between RAAS and COVID-19 infection. Despite the recurring exploration of the RAAS impact on the trajectory of COVID-19 along with the successful resolution of many inquiries, its complete role in the genesis of delayed consequences encompassing long COVID and cardiovascular thrombotic outcomes during the post-COVID phase as well as post-vaccination, remains not fully comprehended. Particularly noteworthy is the involvement of the RAAS in the molecular mechanisms underpinning procoagulant processes throughout COVID-19. These processes significantly contribute to the pathogenesis of organ complications as well as determine clinical outcomes and are discussed in this manuscript.


Sujet(s)
Angiotensin-converting enzyme 2 , COVID-19 , Système rénine-angiotensine , Humains , Système rénine-angiotensine/physiologie , COVID-19/physiopathologie , COVID-19/métabolisme , Angiotensin-converting enzyme 2/métabolisme , SARS-CoV-2 , Animaux
18.
Int J Mol Sci ; 25(8)2024 Apr 17.
Article de Anglais | MEDLINE | ID: mdl-38673989

RÉSUMÉ

Mertk, a type I receptor tyrosine kinase and member of the TAM family of receptors, has important functions in promoting efferocytosis and resolving inflammation under physiological conditions. In recent years, Mertk has also been linked to pathophysiological roles in cancer, whereby, in several cancer types, including solid cancers and leukemia/lymphomas. Mertk contributes to oncogenic features of proliferation and cell survival as an oncogenic tyrosine kinase. In addition, Mertk expressed on macrophages, including tumor-associated macrophages, promotes immune evasion in cancer and is suggested to act akin to a myeloid checkpoint inhibitor that skews macrophages towards inhibitory phenotypes that suppress host T-cell anti-tumor immunity. In the present study, to better understand the post-translational regulation mechanisms controlling Mertk expression in monocytes/macrophages, we used a PMA-differentiated THP-1 cell model to interrogate the regulation of Mertk expression and developed a novel Mertk reporter cell line to study the intracellular trafficking of Mertk. We show that PMA treatment potently up-regulates Mertk as well as components of the ectodomain proteolytic processing platform ADAM17, whereas PMA differentially regulates the canonical Mertk ligands Gas6 and Pros1 (Gas6 is down-regulated and Pros1 is up-regulated). Under non-stimulated homeostatic conditions, Mertk in PMA-differentiated THP1 cells shows active constitutive proteolytic cleavage by the sequential activities of ADAM17 and the Presenilin/γ-secretase complex, indicating that Mertk is cleaved homeostatically by the combined sequential action of ADAM17 and γ-secretase, after which the cleaved intracellular fragment of Mertk is degraded in a proteasome-dependent mechanism. Using chimeric Flag-Mertk-EGFP-Myc reporter receptors, we confirm that inhibitors of γ-secretase and MG132, which inhibits the 26S proteasome, stabilize the intracellular fragment of Mertk without evidence of nuclear translocation. Finally, the treatment of cells with active γ-carboxylated Gas6, but not inactive Warfarin-treated non-γ-carboxylated Gas6, regulates a distinct proteolytic itinerary-involved receptor clearance and lysosomal proteolysis. Together, these results indicate that pleotropic and complex proteolytic activities regulate Mertk ectodomain cleavage as a homeostatic negative regulatory event to safeguard against the overactivation of Mertk.


Sujet(s)
Protéine ADAM17 , Amyloid precursor protein secretases , Protéolyse , c-Mer Tyrosine kinase , Humains , c-Mer Tyrosine kinase/métabolisme , c-Mer Tyrosine kinase/génétique , Protéine ADAM17/métabolisme , Protéine ADAM17/génétique , Amyloid precursor protein secretases/métabolisme , Amyloid precursor protein secretases/génétique , Protéines et peptides de signalisation intercellulaire/métabolisme , Cellules THP-1 , Macrophages/métabolisme , Protéine S/métabolisme , Monocytes/métabolisme , 12-Myristate-13-acétate de phorbol/pharmacologie
20.
Hum Immunol ; 85(3): 110769, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38429146

RÉSUMÉ

Fortunately, ample efforts are being made to find the best strategy to improve the anti-leukemia capacity of NK cells for treating different types of cancer. Despite the favorable ADCC capacity of functional CD16 + NK cells for immunotherapy, when NK cells face leukemia cells, the CD16 receptor is cleaved during the process mediated by a disintegrin and metalloproteinase-17(ADAM17). Reduced CD16 expression on NK cells weakens their cytotoxicity against leukemia cells. In addition, the expression of the CD47 receptor is high in acute lymphoblastic leukemia (ALL) compared to normal cells and can be correlated with poor prognosis. In the present study, ADAM17 was inhibited in cord blood-derived CD16 + NK cells, and their activity against ALL cell lines was evaluated following blockage with anti-CD47 antibody. As the results showed, the CD16 expression was reduced in the NK cells co-cultured with ALL cell lines. However, the ADAM17 inhibition increased the CD16 expression on the NK cells. This enhanced the cytotoxicity of those cells as well as cytokine production was evaluated by measuring expression of CD107-a expression, and IFN-γ production. Moreover, the presence of the ADAM17 inhibitor increased the apoptosis effect of the generated NK cells in response to ALL cells. Therefore, the inhibition of ADAM17 is useful for the activity of CD16 + NK cells against cancer cells.


Sujet(s)
Protéine ADAM17 , Sang foetal , Cellules tueuses naturelles , Leucémie-lymphome lymphoblastique à précurseurs B et T , Récepteurs du fragment Fc des IgG , Humains , Cellules tueuses naturelles/immunologie , Leucémie-lymphome lymphoblastique à précurseurs B et T/immunologie , Protéine ADAM17/métabolisme , Protéine ADAM17/antagonistes et inhibiteurs , Récepteurs du fragment Fc des IgG/métabolisme , Sang foetal/cytologie , Lignée cellulaire tumorale , Cytotoxicité immunologique , Protéines liées au GPI/métabolisme , Techniques de coculture , Apoptose , Cytotoxicité à médiation cellulaire dépendante des anticorps , Interféron gamma/métabolisme , Antigènes CD47
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE