Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 115
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Adv Sci (Weinh) ; : e2403935, 2024 Jul 30.
Article de Anglais | MEDLINE | ID: mdl-39076079

RÉSUMÉ

Chemodynamic therapy (CDT) is a novel tumor treatment method by using hydroxyl radicals (•OH) to kill cancer cells. However, its therapeutic effects are strictly confined by the short lifespan of •OH and reduced •OH generation speed. Herein, an effective CDT is achieved by both improving •OH lifetime and long-lasting generating •OH through intraparticle electron transfer within heterogeneous nanoparticles (NPs). These heterogeneous NPs are composed of evenly distributed Cu and Fe3O4 (CFO NPs) with large interaction interfaces, and electrons tend to transfer from Cu to Fe3O4 for the appearance of ≡Cu2+ and increase in ≡Fe2+. The generated ≡Cu2+ can interact with GSH, which prolongs the lifespan of •OH, produces ≡Cu+ for higher speed •OH generation with H2O2, and induces cell ferroptosis for tumor therapy. The improved ≡Fe2+ can also improve the •OH release under H2O2 until Cu is depleted. As a result, a sustainable •OH generation is achieved to promote cell apoptosis for effective tumor therapy. Since H2O2 and GSH are only overexpressed at tumor, and CFO NPs can degrade in the tumor microenvironment, these NPs are with high biosafety and can be metabolized by urine. This work provides a novel biomaterial for effective cancer CDT through intraparticle electron transfer.

2.
J Hazard Mater ; 477: 135208, 2024 Sep 15.
Article de Anglais | MEDLINE | ID: mdl-39067295

RÉSUMÉ

This study explores novel approaches to enhance photocatalysis efficiency by introducing a photonic crystal (PC)-enhanced, multi-layered sub-bandgap photocatalytic reactor. The design aims to effectively utilize sub-bandgap photons that might otherwise go unused. The device consists of three types of layers: (1) two polymeric triplet-triplet annihilation upconversion (TTA-UC) layers converting low-energy green photons (λEx = 532 nm, 2.33 eV) to high-energy blue photons (λEm = 425 nm, 2.92 eV), (2) a platinum-decorated WO3 layer (Eg = 2.8 eV) serving as a visible-light photocatalyst, and (3) a PC layer optimizing both TTA-UC and photocatalysis. The integration of the PC layer resulted in a 1.9-fold increase in UC emission and a 7.9-fold enhancement in hydroxyl radical (•OH) generation, achieved under low-intensity sub-bandgap irradiation (17.6 mW cm-2). Consequently, the combined layered structure of TTA/Pt-WO3/TTA/PC achieved a remarkable 38.8-fold improvement in •OH production, leading to outstanding degradation capability for various organic pollutants (e.g., 4-chlorophenol, bisphenol A, and methylene blue). This multi-layered sub-bandgap photocatalytic structure, which uniquely combines TTA-UC and PC layers, offers valuable insights into designing efficient photocatalytic systems for future solar-driven environmental remediation.

3.
J Colloid Interface Sci ; 677(Pt A): 189-197, 2024 Jun 07.
Article de Anglais | MEDLINE | ID: mdl-38871628

RÉSUMÉ

The utilization of a cost-free sacrificial agent is a novel approach to significantly enhance the efficiency of photocatalytic hydrogen (H2) production by water splitting. Wastewater contains various organic pollutants, which have the potential to be used as hole sacrificial agents to promote H2 production. Our studies on different pollutants reveals that not all pollutants can effectively promote H2 production. However, when using the same pollutants, not all photocatalysts achieved a higher H2 evolution rate than pure water. Only when the primary oxidizing active species of the photocatalyst are •OH radicals, which are generated by photogenerated holes, and when the pollutants are easily attacked and degraded by •OH radicals, can the production of H2 be effectively promoted. It is noteworthy that the porous brookite TiO2 photocatalyst exhibits a significantly higher H2 evolution rate in Reactive Red X-3B and Congo Red, reaching as high as 26.46 mmol⋅g-1⋅h-1 and 32.85 mmol⋅g-1 ⋅h-1, respectively, which is 2-3 times greater than that observed in pure water and is 10 times greater than most reported studies. The great significance of this work lies in the potential for efficient H2 production through the utilization of wastewater.

4.
Environ Sci Technol ; 58(27): 12147-12154, 2024 Jul 09.
Article de Anglais | MEDLINE | ID: mdl-38934559

RÉSUMÉ

Increasing worldwide contamination with organic chemical compounds is a paramount environmental challenge facing humanity. Once they enter nature, pollutants undergo transformative processes that critically shape their environmental impacts and associated risks. This research unveils previously overlooked yet widespread pathways for the transformations of organic pollutants triggered by water vapor condensation, leading to spontaneous oxidation and hydrolysis of organic pollutants. These transformations exhibit variability through either sequential or parallel hydrolysis and oxidation, contingent upon the functional groups within the organic pollutants. For instance, acetylsalicylic acid on the goethite surface underwent sequential hydrolysis and oxidation that first hydrolyzed to salicylic acid followed by hydroxylation oxidation of the benzene moiety driven by the hydroxyl radical (•OH). In contrast, chloramphenicol underwent parallel oxidation and hydrolysis, forming hydroxylated chloramphenicol and 2-amino-1-(4-nitrophenyl)-1,3-propanediol, respectively. The spontaneous oxidation and hydrolysis occurred consistently on three naturally abundant iron minerals with the key factors being •OH production capacity and surface binding strength. Given the widespread presence of iron minerals on Earth's surface, these spontaneous transformation paths could play a role in the fate and risks of organic pollutants of health concerns.


Sujet(s)
Fer , Oxydoréduction , Hydrolyse , Fer/composition chimique , Minéraux/composition chimique , Vapeur , Composés chimiques organiques/composition chimique , Radical hydroxyle/composition chimique
5.
Exploration (Beijing) ; 4(2): 20230054, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-38855614

RÉSUMÉ

Traditional tumour-dynamic therapy still inevitably faces the critical challenge of limited reactive oxygen species (ROS)-generating efficiency due to tumour hypoxia, extreme pH condition for Fenton reaction, and unsustainable mono-catalytic reaction. To fight against these issues, we skilfully develop a tumour-microenvironment-driven yolk-shell nanoreactor to realize the high-efficiency persistent dynamic therapy via cascade-responsive dual cycling amplification of •SO4 -/•OH radicals. The nanoreactor with an ultrahigh payload of free radical initiator is designed by encapsulating the Na2S2O8 nanocrystals into hollow tetra-sulphide-introduced mesoporous silica (HTSMS) and afterward enclosed by epigallocatechin gallate (EG)-Fe(II) cross-linking. Within the tumour microenvironment, the intracellular glutathione (GSH) can trigger the tetra-sulphide cleavage of nanoreactors to explosively release Na+/S2O8 2 - /Fe2+ and EG. Then a sequence of cascade reactions will be activated to efficiently generate •SO4 - (Fe2+-catalyzed S2O8 2 - oxidation), proton (•SO4 --catalyzed H2O decomposition), and •OH (proton-intensified Fenton oxidation). Synchronously, the oxidation-generated Fe3+ will be in turn recovered into Fe2+ by excessive EG to circularly amplify •SO4 -/•OH radicals. The nanoreactors can also disrupt the intracellular osmolarity homeostasis by Na+ overload and weaken the ROS-scavenging systems by GSH exhaustion to further amplify oxidative stress. Our yolk-shell nanoreactors can efficiently eradicate tumours via multiple oxidative stress amplification, which will provide a perspective to explore dynamic therapy.

6.
Environ Sci Technol ; 58(23): 10175-10184, 2024 Jun 11.
Article de Anglais | MEDLINE | ID: mdl-38771930

RÉSUMÉ

The interplay between sulfur and iron holds significant importance in their atmospheric cycle, yet a complete understanding of their coupling mechanism remains elusive. This investigation delves comprehensively into the evolution of reactive oxygen species (ROS) during the interfacial reactions involving sulfur dioxide (SO2) and iron oxides under varying relative humidity conditions. Notably, the direct activation of water by iron oxide was observed to generate a surface hydroxyl radical (•OH). In comparison, the aging of SO2 was found to markedly augment the production of •OH radicals on the surface of α-Fe2O3 under humid conditions. This augmentation was ascribed to the generation of superoxide radicals (•O2-) stemming from the activation of O2 through the Fe(II)/Fe(III) cycle and its combination with the H+ ion to produce hydrogen peroxide (H2O2) on the acidic surface. Moreover, the identification of moderate relative humidity as a pivotal factor in sustaining the surface acidity of iron oxide during SO2 aging underscores its crucial role in the coupling of iron dissolution, ROS production, and SO2 oxidation. Consequently, the interfacial reactions between SO2 and iron oxides under humid conditions are elucidated as atmospheric processes that enhance oxidation capacity rather than deplete ROS. These revelations offer novel insights into the mechanisms underlying •OH radical generation and oxidative potential within atmospheric interfacial chemistry.


Sujet(s)
Espèces réactives de l'oxygène , Dioxyde de soufre , Dioxyde de soufre/composition chimique , Composés du fer III/composition chimique , Radical hydroxyle/composition chimique , Oxydoréduction , Peroxyde d'hydrogène/composition chimique , Humidité
7.
Sci Total Environ ; 932: 173042, 2024 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-38723975

RÉSUMÉ

The electro-Fenton with in situ generated 1O2 and •OH is a promising method for the degradation of micropollutants. However, its application is hindered by the lack of catalysts that can efficiently generate 1O2 and •OH from electrochemical oxygen reduction. Herein, N-doped stacked carbon nanosheets supported Fe single atoms (Fe-NSC) with FeN4 sites were designed for simultaneous generation of 1O2 and •OH to enhance electro-Fenton degradation. Due to the synergistic effect of 1O2 and •OH, a variety of contaminants (phenol, 2,4-dichlorophenol, sulfamethoxazole, atrazine and bisphenol A) were efficiently degraded with high kinetic constants of 0.037-0.071 min-1 by the electro-Fenton with Fe-NSC as cathode (-0.6 V vs Ag/AgCl, pH 6). Moreover, the superior performance for electro-Fenton degradation was well maintained in a wide pH range from 3 to 10 even with interference of various inorganic salt ions. It was found that FeN4 sites with pyridinic N coordination were responsible for its good performance for electro-Fenton degradation. Its 1O2 yield was higher than •OH yield, and the contribution of 1O2 was more significant than •OH for pollutant degradation.

8.
BMC Genomics ; 25(1): 470, 2024 May 14.
Article de Anglais | MEDLINE | ID: mdl-38745141

RÉSUMÉ

BACKGROUND: The absence of heterozygosity (AOH) is a kind of genomic change characterized by a long contiguous region of homozygous alleles in a chromosome, which may cause human genetic disorders. However, no method of low-pass whole genome sequencing (LP-WGS) has been reported for the detection of AOH in a low-pass setting of less than onefold. We developed a method, termed CNVseq-AOH, for predicting the absence of heterozygosity using LP-WGS with ultra-low sequencing data, which overcomes the sparse nature of typical LP-WGS data by combing population-based haplotype information, adjustable sliding windows, and recurrent neural network (RNN). We tested the feasibility of CNVseq-AOH for the detection of AOH in 409 cases (11 AOH regions for model training and 863 AOH regions for validation) from the 1000 Genomes Project (1KGP). AOH detection using CNVseq-AOH was also performed on 6 clinical cases with previously ascertained AOHs by whole exome sequencing (WES). RESULTS: Using SNP-based microarray results as reference (AOHs detected by CNVseq-AOH with at least a 50% overlap with the AOHs detected by chromosomal microarray analysis), 409 samples (863 AOH regions) in the 1KGP were used for concordant analysis. For 784 AOHs on autosomes and 79 AOHs on the X chromosome, CNVseq-AOH can predict AOHs with a concordant rate of 96.23% and 59.49% respectively based on the analysis of 0.1-fold LP-WGS data, which is far lower than the current standard in the field. Using 0.1-fold LP-WGS data, CNVseq-AOH revealed 5 additional AOHs (larger than 10 Mb in size) in the 409 samples. We further analyzed AOHs larger than 10 Mb, which is recommended for reporting the possibility of UPD. For the 291 AOH regions larger than 10 Mb, CNVseq-AOH can predict AOHs with a concordant rate of 99.66% with only 0.1-fold LP-WGS data. In the 6 clinical cases, CNVseq-AOH revealed all 15 known AOH regions. CONCLUSIONS: Here we reported a method for analyzing LP-WGS data to accurately identify regions of AOH, which possesses great potential to improve genetic testing of AOH.


Sujet(s)
Perte d'hétérozygotie , , Séquençage du génome entier , Humains , Séquençage du génome entier/méthodes , Polymorphisme de nucléotide simple , Génome humain
9.
Chemosphere ; 356: 141856, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38582171

RÉSUMÉ

Mechanistic investigations of an environmentally friendly and easy-to-implement oxidation method in the remediation of contaminated anoxic waters, i.e. groundwater, through the sole use of oxygen for the oxygen-induced oxidation of pollutants were the focus of this work. This was achieved by the addition of O2 under anoxic conditions in the presence of ferrous iron which initiated the ferrous oxidation and the simultaneous formation of reactive •OH radicals. The involvement of inorganic ligands such as carbonates in the activation of oxygen as part of the oxidation of Fe2+ in water was investigated, too. The formation of •OH radicals, was confirmed in two different, indirect approaches by a fluorescence-based method involving coumarin as •OH scavenger and by the determination of the oxidation products of different aromatic VOCs. In the latter case, the oxidation products of several typical aromatic groundwater contaminants such as BTEX (benzene, toluene, ethylbenzene, xylenes), indane and ibuprofen, were determined. The influence of other ligands in the absence of bicarbonate and the effect of pH were also addressed. The possibility of activation of O2 in carbonate-rich water i.e. groundwater, may also potentially contribute to oxidation of groundwater contaminants and support other primary remediation techniques.


Sujet(s)
Carbonates , Assainissement et restauration de l'environnement , Nappe phréatique , Fer , Oxydoréduction , Oxygène , Polluants chimiques de l'eau , Oxygène/composition chimique , Polluants chimiques de l'eau/composition chimique , Polluants chimiques de l'eau/analyse , Fer/composition chimique , Nappe phréatique/composition chimique , Assainissement et restauration de l'environnement/méthodes , Carbonates/composition chimique , Composés organiques volatils/composition chimique , Radical hydroxyle/composition chimique
10.
Water Res ; 256: 121621, 2024 Jun 01.
Article de Anglais | MEDLINE | ID: mdl-38642536

RÉSUMÉ

Peracetic acid (PAA) has emerged as a new effective oxidant for various contaminants degradation through advanced oxidation process (AOP). In this study, sulfidated nano zero-valent iron-copper (S-nZVIC) with low Cu doping and sulfidation was synthesized for PAA activation, resulting in more efficient degradation of sulfamethoxazole (SMX, 20 µM) and other contaminants using a low dose of catalyst (0.05 g/L) and oxidant (100 µM). The characterization results suggested that S-nZVIC presented a more uniform size and distribution with fewer metal oxides, as the agglomeration and oxidation were inhibited. More significantly, doped Cu0 and sulfidation significantly enhanced the generation and contribution of •OH but decreased that of R-O• in S-nZVIC/PAA/SMX system compared with that of nZVIC and S-nZVI, accounting for the relatively high degradation efficiency of 97.7% in S-nZVIC/PAA/SMX system compared with 85.7% and 78.9% in nZVIC/PAA/SMX and S-nZVI/PAA/SMX system, respectively. The mechanisms underlying these changes were that (i) doped Cu° could promote the regeneration of Fe(Ⅱ) for strengthened PAA activation through mediating Fe(Ⅱ)/Fe(Ⅲ) cycle by Cu(Ⅰ)/Cu(Ⅱ) cycle; (ii) S species might consume part of R-O•, resulting in a decreased contribution of R-O• in SMX degradation; (iii) sulfidation increased the electrical conductivity, thus facilitating the electron transfer from S-nZVIC to PAA. Consequently, the dominant reactive oxygen species transited from R-O• to •OH to degrade SMX more efficiently. The degradation pathways, intermediate products and toxicity were further analyzed through density functional theory (DFT) calculations, liquid chromatography-mass spectrometry (LC-MS) and T.E.S.T software analysis, which proved the environmental friendliness of this process. In addition, S-nZVIC exhibited high stability, recyclability and degradation efficiency over a wide pH range (3.0∼9.0). This work provides a new insight into the rational design and modification of nano zero-valent metals for efficient wastewater treatment through adjusting the dominant reactive oxygen species (ROS) into the more active free radicals.


Sujet(s)
Cuivre , Fer , Fer/composition chimique , Cuivre/composition chimique , Acide peracétique/composition chimique , Oxydoréduction , Polluants chimiques de l'eau/composition chimique , Catalyse
11.
J Hazard Mater ; 471: 134320, 2024 Jun 05.
Article de Anglais | MEDLINE | ID: mdl-38640663

RÉSUMÉ

Liquid crystal monomers (LCMs) are a group of emerging pollutants that pose potential environmental risks because of their ubiquitous occurrence and toxicity. Understanding their environmental transformation is essential for assessing the ecological risk. In this study, we investigated the photochemical transformation kinetics, mechanism, and photo-induced toxicity of three phenylbenzoate LCMs in water. Their apparent photolytic rate constants were within (0.023 - 0.058) min-1, and the half-lives were < 30.0 min, showing lower persistence in water. Dissolved organic matter significantly inhibited their photolysis because of light-shielding effect and quenching of excited triplet states of LCMs. Their photolysis mainly occurred through excited triplet states, and the reactive oxygen species (i.e., ⋅OH, 1O2 and ⋅O2-) contributed to their degradation. The main photolysis pathways were ester bond cleavage, ⋅OH substitution/addition, and defluorination. Experiments and computational simulation revealed that some ·OH addition/substitution products have similar toxicity with LCMs. Additionally, the ∙OH reaction rate constants (kOH) of LCMs were determined to be > 1 × 109 M-1 s-1, evidence for their high reactivity toward ⋅OH. We have further developed reliable methods to estimate kOH of other phenylbenzoate-like LCMs with quantum chemical calculations. These results are useful for understanding the transformation and fate of LCMs in aquatic environments.

12.
J Hazard Mater ; 470: 134138, 2024 May 15.
Article de Anglais | MEDLINE | ID: mdl-38574657

RÉSUMÉ

Electro-Fenton membranes (EFMs) can synchronously realize organic micropollutants destruction and fouling mitigation in a single filtration process with the assistance of hydroxyl radicals (•OH). Herein, a nanoarray-structured EFM (NS-EFM) was designed by assembling Fenton reactive CoFe-LDH nanowires using a low-temperature hydrothermal method. Combined with a defect-engineering strategy, the oxygen vacancies (OVac) in the CoFe-LDH nanoarrays were tailored by manipulating the stoichiometry of cations to optimize the Fenton reactivity of NS-EFMs. The optimized NS-EFM demonstrated exceptional sulfamethoxazole (SMX) removal (99.4%) and fast degradation kinetics (0.0846 min-1), but lower energy consumption (0.22 kWh m-3 per log removal of SMX). In-depth mechanism analysis revealed that the intrinsic electronic properties of OVac endowed NS-EFM with enhanced reactivity and charge transferability at metallic active sites of CoFe-LDH, thereby intensifying •OH generation. Besides, the nanoarray-structured NS-EFM built a confined microreactor space, leading to expedited •OH microflow to SMX. Meanwhile, the hydrophilic nature of CoFe-LDH nanoarrays synergistically contributed to the high flux recovery (95.0%) and minimal irreversible membrane fouling (5.0%), effectively alleviating membrane fouling within pores and on surfaces. This study offers insights into the potential of defect engineering as a foundational strategy in the design of EFMs, significantly advancing the treatment of organic pollutants and control of membrane fouling.

13.
Small ; 20(26): e2310224, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38321843

RÉSUMÉ

Regulating the asymmetric active center of a single-atom catalyst to optimize the binding energy is critical but challenging to improve the overall efficiency of the electrocatalysts. Herein, an effective strategy is developed by introducing an axial hydroxyl (OH) group to the Fe─N4 center, simultaneously assisting with the further construction of asymmetric configurations by replacing one N atom with one S atom, forming FeN3S1─OH configuration. This novel structure can optimize the electronic structure and d-band center shift to reduce the reaction energy barrier, thereby promoting oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) catalytic activities. The optimal catalyst, FeSA-S/N-C (FeN3S1─OH anchored on hollow porous carbon) displays remarkable ORR performance with a half-wave potential of 0.92, 0.78, and 0.64 V versus RHE in 0.1 m KOH, 0.5 m H2SO4, and 0.1 m PBS, respectively. The rechargeable liquid Zn-air batteries (LZABs) equipped with FeSA-S/N-C display a higher power density of 128.35 mW cm-2, long-term operational stability of over 500 h, and outstanding reversibility. More importantly, the corresponding flexible solid-state ZABs (FSZABs@FeSA-S/N-C) display negligible voltage changes at different bending angles during the charging and discharging processes. This work provides a new perspective for the design and optimization of asymmetric configuration for single-atom catalysts applied to the area of energy conversion and storage.

14.
Pest Manag Sci ; 80(6): 2937-2949, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38297826

RÉSUMÉ

BACKGROUND: Garlic leaf spot (GLS) caused by Alternaria alternata is one of the main diseases in the garlic production areas, and its management heavily relies on dicarboximide fungicides. However, the efficacy of dicarboximides against the GLS disease has decreased year on year. RESULTS: In the present study, 10 of 148 A. alternata strains separated from Jiangsu Province were moderately resistant (MR) to a dicarboximide fungicide procymidone (ProMR). Positive cross-resistance was observed between Pro and iprodione (Ipro) or fludioxonil (Fld), but not between Pro and fluazinam or azoxystrobin. Mutations at AaOS1, but not Aafhk1, were confirmed to confer the Pro resistance by constructing replacement mutants, whereas mutations at both AaOS1 and Aafhk1 decreased the gene expression level of AapksI, as well as the ability to produce mycotoxin AOH (polyketide-derived alternariol) and virulence. Additionally, more genes (AaOS1 and Aafhk1) harboring the mutations experienced a larger biological fitness penalty. CONCLUSION: To our knowledge, this is the first report on Pro resistance selected in garlic fields, and mutations at AaOS1 of A. alternata causing a decreased ability to produce the mycotoxin AOH. © 2024 Society of Chemical Industry.


Sujet(s)
Alternaria , Protéines fongiques , Fongicides industriels , Mycotoxines , Alternaria/génétique , Alternaria/effets des médicaments et des substances chimiques , Alternaria/métabolisme , Fongicides industriels/pharmacologie , Mycotoxines/métabolisme , Virulence , Protéines fongiques/génétique , Protéines fongiques/métabolisme , Résistance des champignons aux médicaments/génétique , Maladies des plantes/microbiologie , Ail
15.
J Fluoresc ; 2024 Jan 08.
Article de Anglais | MEDLINE | ID: mdl-38190011

RÉSUMÉ

In this work, Cassia tora (C. tora) have been used as a template to synthesize green fluorescent C. tora molybdenum nanoclusters (C. tora-MoNCs) through a green chemistry approach. These C. tora-MoNCs showed a quantum yield (QY) of 7.72% and exhibited a significant emission peak at 498 nm when excited at 380 nm. The as-prepared C. tora-MoNCs had an average size of 3.48 ± 0.80 nm and showed different surface functionality. The as-synthesized C. tora-MoNCs were successfully identified the hydroxyl radical (•OH) via a fluorescence quenching mechanism. Also, fluorescence lifetime and Stern-Volmer proved that after the addition of •OH radicals it was quenched the fluorescence intensity via a static quenching mechanism. The limit of detection is 9.13 nM, and this approach was successfully utilized for sensing •OH radicals in water samples with a good recovery rate.

16.
Environ Sci Technol ; 58(6): 2808-2816, 2024 Feb 13.
Article de Anglais | MEDLINE | ID: mdl-38227742

RÉSUMÉ

Hydroxyl radical (•OH) is a powerful oxidant abundantly found in nature and plays a central role in numerous environmental processes. On-site detection of •OH is highly desirable for real-time assessments of •OH-centered processes and yet is restrained by a lack of an analysis system suitable for field applications. Here, we report the development of a flow-injection chemiluminescence analysis (FIA-CL) system for the continuous field detection of •OH. The system is based on the reaction of •OH with phthalhydrazide to generate 5-hydroxy-2,3-dihydro-1,4-phthalazinedione, which emits chemiluminescence (CL) when oxidatively activated by H2O2 and Cu3+. The FIA-CL system was successfully validated using the Fenton reaction as a standard •OH source. Unlike traditional absorbance- or fluorescence-based methods, CL detection could minimize interference from an environmental medium (e.g., organic matter), therefore attaining highly sensitive •OH detection (limits of detection and quantification = 0.035 and 0.12 nM, respectively). The broad applications of FIA-CL were illustrated for on-site 24 h detection of •OH produced from photochemical processes in lake water and air, where the temporal variations on •OH productions (1.0-12.2 nM in water and 1.5-37.1 × 107 cm-3 in air) agreed well with sunlight photon flux. Further, the FIA-CL system enabled field 24 h field analysis of •OH productions from the oxidation of reduced substances triggered by tidal fluctuations in coastal soils. The superior analytical capability of the FIA-CL system opens new opportunities for monitoring •OH dynamics under field conditions.


Sujet(s)
Radical hydroxyle , Luminescence , Radical hydroxyle/analyse , Radical hydroxyle/composition chimique , Peroxyde d'hydrogène , Oxydoréduction , Eau
17.
Adv Mater ; 36(3): e2306758, 2024 Jan.
Article de Anglais | MEDLINE | ID: mdl-37865887

RÉSUMÉ

Ring-opening of phenol in wastewater is the pivotal step in photocatalytic degradation. The highly selective generation of catalytical active species (•OH) to facilitate this process presents a significant scientific challenge. Therefore, a novel approach for designing photocatalysts with single-atom containment in metal-covalent organic frameworks (M-COFs) is proposed. The selection of imine-linked COFs containing abundant N and O-chelate sites provides a solid foundation for anchoring metal atom. These dispersed metal atom possess rapid accumulation and transfer capabilities for photogenerated electrons, while the periodic π-conjugated structure in 2D-COFs establishes an effective platform. Additionally, the Lewis acid properties of imine bonds in COFs can enhance the adsorption capacity toward gases with Lewis base properties, such as O2 and N2 . It is demonstrated that the Pd2+ @Tp-TAPT, designed based on this concept, exhibits efficient oxygen adsorption and follows the reaction pathway of O2 →•O2 - →H2 O2 →•OH with high selectivity, thereby achieving completely degradation of refractory phenol through photocatalysis within 10 min. It is anticipated that the selective generation of catalytic active species via advanced material design concepts will serve as a significant reference for achieving precise material catalysis in the future.

18.
Chemosphere ; 349: 140839, 2024 Feb.
Article de Anglais | MEDLINE | ID: mdl-38040265

RÉSUMÉ

The elimination of microplastics (MPs) has become an urgent issue due to their large quantities and imperfect treatment technologies. In this work, polyethylene (PE), which is ubiquitous in the environment, was selected to study its removal by ozone-based treatment. Catalysts including α-MnO2 and α-FeOOH were synthesized for catalytic ozonation to improve efficiency. The study focused on simulating the conversion of CO2 in the off-gas via the detection of inorganic carbon produced. The morphology and structure of the remaining PE MPs were characterized using scanning electron microscope and Fourier-transform infrared spectroscopy-attenuated total reflection. Our results confirmed that fragmentation and oxidation occurred in the remaining PE MPs, which enhanced the adsorption capacity of ofloxacin (OF). Besides, the 20 mM α-FeOOH could better improve the mineralization efficiency by 3.27 folds with more production of •OH (1.09*10-12 M). Moreover, possible products identified by liquid chromatography-time-of-flight mass spectrometer confirmed the decomposition of main chains of MPs into low-molecular-weight organic compounds with functional groups such as C-OH, C-O-C, and CO. The finding that photoaged PE MPs could be efficiently mineralized under the attack of O3/•OH provides a solid foundation for the removal of natural MPs in the environment.


Sujet(s)
Ozone , Polluants chimiques de l'eau , Microplastiques , Matières plastiques , Polyéthylène , Oxydes , Ozone/composition chimique , Composés du manganèse , Polluants chimiques de l'eau/analyse
19.
Environ Res ; 244: 117837, 2024 Mar 01.
Article de Anglais | MEDLINE | ID: mdl-38065381

RÉSUMÉ

This study investigated the removal performance of ofloxacin (OFL) by a novel electro-Fenton enhanced microfiltration membrane. The membranes used in this study consisted of metal-organic framework derived porous carbon, carbon nanotubes and Fe2+, which were able to produce hydroxyl radicals (•OH) in-situ via reducing O2 to hydrogen peroxide. Herein, membrane filtration with bias not only concentrated the pollutants to the level that could be efficiently treated by electro-Fenton but also confined/retained the toxic intermediates within the membrane to ensure a prolonged contact time with the oxidants. After validated by experiments, the applied bias of -1.0 V, pH of 3 and electrolyte concentration of 0.1 M were the relatively optimum conditions for OFL degradation. Under these conditions, the average OFL removal rate could be reach 75% with merely 5% membrane flux loss after 4 cycles operation by filtrating 1 mg/L OFL. Via decarboxylation reaction, piperazinyl ring opening, dealkylation and ipso substitution reaction, etc., OFL could be gradually and efficiently degraded to intermediate products and even to CO2 by •OH. Moreover, the oxidation reaction was preferred to following first-order reaction kinetics. This research verified a possibility for antibiotic removal by electro-enhanced microfiltration membrane.


Sujet(s)
Nanotubes de carbone , Polluants chimiques de l'eau , Ofloxacine , Porosité , Antibactériens , Oxydants , Peroxyde d'hydrogène , Oxydoréduction
20.
Food Res Int ; 174(Pt 1): 113561, 2023 12.
Article de Anglais | MEDLINE | ID: mdl-37986438

RÉSUMÉ

Collagen peptides play an important role in the increasing use of collagen peptides as dietary supplements in food and beverages and as bioactive ingredients in cosmetics, healthcare, and pharmaceuticals. Collagenase enzymatically cleaves gelatin to produce collagen polypeptides. However, the enzymatic activity of collagenase is very low (25900 U) and does not allow for adequate enzymatic digestion. Therefore, proteases are used to assist in enzymatic digestion. Porcine gelatin, bovine gelatin, and fish protein gum were enzymatically digested, and the content of collagen peptides in the enzymatically digested lyophilized powder was identified by high-performance liquid chromatography and mass spectrometry, and then the content of the desired collagen peptides was increased by isolation and purification, and the result of the determination was that the content of collagen peptides was the highest after enzymatic digestion and isolation and purification with the use of porcine gelatin as the raw material, and the content of the collagen peptides was about 45.47%. ß-nicotinamide mononucleotide (NMN) was mixed with the prepared samples to determine its antioxidant properties and ability to promote the growth of human dermal fibroblasts. The results showed that the antioxidant capacity was enhanced with the increase of collagen polypeptide content, and NMN could promote the scavenging of DPPH• and •OH free radicals by collagen polypeptides. The ability to promote the growth of human dermal fibroblasts was enhanced with the increase of collagen polypeptide content. This paper aimed to prepare a high content of collagen polypeptides from three raw materials, porcine gelatin, bovine gelatin, and fish protein gum, and further to determine the biological activities.


Sujet(s)
Antioxydants , Gélatine , Animaux , Bovins , Humains , Gélatine/composition chimique , Antioxydants/pharmacologie , Antioxydants/composition chimique , Peptides/pharmacologie , Peptides/composition chimique , Collagène/composition chimique , Collagenases , Protéines de poisson/composition chimique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE