Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 176
Filtrer
Plus de filtres











Gamme d'année
1.
J Environ Sci (China) ; 147: 342-358, 2025 Jan.
Article de Anglais | MEDLINE | ID: mdl-39003052

RÉSUMÉ

Secondary iron-sulfate minerals such as jarosite, which are easily formed in acid mine drainage, play an important role in controlling metal mobility. In this work, the typical iron-oxidizing bacterium Acidithiobacillus ferrooxidans ATCC 23270 was selected to synthesize jarosite in the presence of antimony ions, during which the solution behavior, synthetic product composition, and bacterial metabolism were studied. The results show that in the presence of Sb(V), Fe2+ was rapidly oxidized to Fe3+ by A. ferrooxidans and Sb(V) had no obvious effect on the biooxidation of Fe2+ under the current experimental conditions. The presence of Sb(III) inhibited bacterial growth and Fe2+ oxidation. For the group with Sb(III), products with amorphous phases were formed 72 hr later, which were mainly ferrous sulfate and pentavalent antimony oxide, and the amorphous precursor was finally transformed into a more stable crystal phase. For the group with Sb(V), the morphology and structure of jarosite were changed in comparison with those without Sb. The biomineralization process was accompanied by the removal of 94% Sb(V) to form jarosite containing the Fe-Sb-O complex. Comparative transcriptome analysis shows differential effects of Sb(III) and Sb(V) on bacterial metabolism. The expression levels of functional genes related to cell components were much more downregulated for the group with Sb(III) but much more regulated for that with Sb(V). Notably, cytochrome c and nitrogen fixation-relevant genes for the A.f_Fe2+_Sb(III) group were enhanced significantly, indicating their role in Sb(III) resistance. This study is of great value for the development of antimony pollution control and remediation technology.


Sujet(s)
Acidithiobacillus , Antimoine , Sulfates , Acidithiobacillus/métabolisme , Acidithiobacillus/effets des médicaments et des substances chimiques , Sulfates/métabolisme , Composés du fer III , Oxydoréduction , Mine , Fer/métabolisme
2.
J Environ Manage ; 367: 122012, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39094417

RÉSUMÉ

Recycling spent batteries is increasingly important for the sustainable use of Li-ion batteries (LIBs) and for countering the supply uncertainty of critical raw minerals (Li, Co, and Ni). Bioleaching, which uses microorganisms to extract valuable metals, is both economical and environmentally safe compared to other recycling methods, but its practical application is impaired by slow kinetics. Accelerating the process is a key for bioleaching spent LIBs on an industrial scale. Acidithiobacillus ferrooxidans (A. ferrooxidans), which thrives in extremely low pH conditions, has long been explored for bioleaching of spent LIBs. Metabolism of A. ferrooxidans involves the oxidation of magnetic Fe2+ and produces intracellular magnetic nanoparticles. The possibility of accelerating the leaching kinetics of A. ferrooxidans by the application of an external magnetic field is explored in this work. A weak static magnetic field is applied during the bioleaching of spent LIBs to recover Li, Ni, and Co using A. ferrooxidans. It is determined that 3 mT is the optimal field strength which allows the leaching efficiency of Li to reach 100% after only 2 days of leaching at a pulp density of 3 w/v % while without the external magnetic field, the leaching efficiency is limited to 57% even after 4 days. The leaching efficiency of Ni and Co also increases by nearly three-fold to >80% after 4 days of leaching. The proposed magnetic field-assisted bioleaching of spent LIBs using A. ferrooxidans substantially improves the leaching kinetics and thus the cost-effectiveness of the bioleaching process with minimal environmental impact, hence enabling environment-friendly recycling of raw materials that are increasingly becoming scarce. The positive effect of an external magnetic field on the metabolism of A. ferrooxidans demonstrated in this work provide a new set of tools to engineer the bioleaching process and the possibility for genetic modification of acidophile bacteria, especially targeted for magnetic enhancement.


Sujet(s)
Acidithiobacillus , Alimentations électriques , Lithium , Recyclage , Acidithiobacillus/métabolisme , Champs magnétiques
3.
Environ Res ; 261: 119687, 2024 Nov 15.
Article de Anglais | MEDLINE | ID: mdl-39068972

RÉSUMÉ

With the widespread application of anaerobic digestion technology, biogas slurry become the main source of organic amendments in practice. Comprehensive studies into the inhibitory effects of low molecular weight (LMW) organic acids, essential components in biogas slurry, on the sulfide minerals biooxidation and its bioleaching (AMD) have been lacking. In this study, acetic acid (AA) served as a representative of LMW organic acids in biogas slurry to investigate its impact on the inhibition of chalcopyrite biooxidation by Acidithiobacillus ferrooxidans (A. ferrooxidans). It was shown that AA could slow down the chalcopyrite biooxidation and inhibit the jarosite formation on the mineral surface. Compared with the control group (0 ppm AA), the sulfate increment in the leachate of the 50 ppm, 100 ppm, and 200 ppm AA-treated groups decreased by 36.4%, 66.8%, and 69.0%, respectively. AA treatment (≥50 ppm) could reduce the oxidation of ferrous ions in the leachate by one order of magnitude. At the same time, the bacterial concentration of the leachate in the 50 ppm, 100 ppm, and 200 ppm AA-treated groups decreased by 70%, 93%, and 94%, respectively. These findings provide a scientific basis for new strategies to utilize biogas slurry for mine remediation and contribute to an enhanced comprehension of organic amendments to prevent AMD in situ in mining soil remediation.


Sujet(s)
Biocarburants , Oxydoréduction , Cuivre/composition chimique , Acidithiobacillus/métabolisme , Acidithiobacillus/effets des médicaments et des substances chimiques , Acide acétique/composition chimique , Polluants chimiques de l'eau
4.
Chemosphere ; 363: 142955, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39069100

RÉSUMÉ

As one of the important microorganisms in the mining area, the role of iron-sulfur oxidizing microorganisms in antimony (element symbolized as Sb) migration and transformation in mining environments has been largely neglected for a long time. Therefore, the processes of the typical iron-sulfur oxidizing bacterium Acidithiobacillus ferrooxidans (A. ferrooxidans) and pyrite interaction coupled with the migration and transformation of Sb were investigated in this paper. The bio-oxidation process of pyrite by A. ferrooxidans not only accelerates the oxidation rate of Sb(III) to Sb(V) (62.93% of 10 mg L-1 within 4 h), but also promotes the adsorption and precipitation of Sb (32.89 % of 10 mg L-1 within 96 h), and changes in the dosage of minerals, Sb concentration, and pH value affect the conversion of Sb. The characterization results show that the interaction between A. ferrooxidans and pyrite produces a variety of reactive species, such as H2O2 and •OH, resulting in the oxidation of Sb(III). In addition, A. ferrooxidans mediates the formation of stereotyped iron-sulfur secondary minerals that can act as a major driver of Sb (especially Sb(V)) adsorption or co-precipitation. This study contributes to the further understanding of the diversified biogeochemical processes of iron-sulfur oxidizing bacteria-iron-sulfur minerals-toxic metals in mining environments and provides ideas for the development of in-situ treatment technologies for Sb.


Sujet(s)
Acidithiobacillus , Antimoine , Fer , Minéraux , Mine , Oxydoréduction , Espèces réactives de l'oxygène , Sulfures , Antimoine/métabolisme , Antimoine/composition chimique , Acidithiobacillus/métabolisme , Fer/métabolisme , Fer/composition chimique , Sulfures/métabolisme , Sulfures/composition chimique , Minéraux/métabolisme , Minéraux/composition chimique , Espèces réactives de l'oxygène/métabolisme , Adsorption , Peroxyde d'hydrogène/métabolisme
5.
Sci Rep ; 14(1): 14885, 2024 06 27.
Article de Anglais | MEDLINE | ID: mdl-38937525

RÉSUMÉ

Past and present habitability of Mars have been intensely studied in the context of the search for signals of life. Despite the harsh conditions observed today on the planet, some ancient Mars environments could have harbored specific characteristics able to mitigate several challenges for the development of microbial life. In such environments, Fe2+ minerals like siderite (already identified on Mars), and vivianite (proposed, but not confirmed) could sustain a chemolithoautotrophic community. In this study, we investigate the ability of the acidophilic iron-oxidizing chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans to use these minerals as its sole energy source. A. ferrooxidans was grown in media containing siderite or vivianite under different conditions and compared to abiotic controls. Our experiments demonstrated that this microorganism was able to grow, obtaining its energy from the oxidation of Fe2+ that came from the solubilization of these minerals under low pH. Additionally, in sealed flasks without CO2, A. ferrooxidans was able to fix carbon directly from the carbonate ion released from siderite for biomass production, indicating that it could be able to colonize subsurface environments with little or no contact with an atmosphere. These previously unexplored abilities broaden our knowledge on the variety of minerals able to sustain life. In the context of astrobiology, this expands the list of geomicrobiological processes that should be taken into account when considering the habitability of environments beyond Earth, and opens for investigation the possible biological traces left on these substrates as biosignatures.


Sujet(s)
Acidithiobacillus , Mars , Acidithiobacillus/métabolisme , Acidithiobacillus/croissance et développement , Oxydoréduction , Fer/métabolisme , Concentration en ions d'hydrogène , Composés du fer II/métabolisme , Minéraux/métabolisme , Exobiologie , Environnement extraterrestre , Carbonates , Composés du fer III
6.
J Inorg Biochem ; 256: 112539, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38593609

RÉSUMÉ

Motivated by the ambition to establish an enzyme-driven bioleaching pathway for copper extraction, properties of the Type-1 copper protein rusticyanin from Acidithiobacillus ferrooxidans (AfR) were compared with those from an ancestral form of this enzyme (N0) and an archaeal enzyme identified in Ferroplasma acidiphilum (FaR). While both N0 and FaR show redox potentials similar to that of AfR their electron transport rates were significantly slower. The lack of a correlation between the redox potentials and electron transfer rates indicates that AfR and its associated electron transfer chain evolved to specifically facilitate the efficient conversion of the energy of iron oxidation to ATP formation. In F. acidiphilum this pathway is not as efficient unless it is up-regulated by an as of yet unknown mechanism. In addition, while the electrochemical properties of AfR were consistent with previous data, previously unreported behavior was found leading to a form that is associated with a partially unfolded form of the protein. The cyclic voltammetry (CV) response of AfR immobilized onto an electrode showed limited stability, which may be connected to the presence of the partially unfolded state of this protein. Insights gained in this study may thus inform the engineering of optimized rusticyanin variants for bioleaching processes as well as enzyme-catalyzed solubilization of copper-containing ores such as chalcopyrite.


Sujet(s)
Azurine , Modèles moléculaires , Cinétique , Électrochimie , Azurine/composition chimique , Azurine/génétique , Azurine/métabolisme , Actinobacteria/composition chimique , Thermoplasmales/composition chimique , Spectroscopie de résonance de spin électronique , Structure tertiaire des protéines , Fer/métabolisme , Oxydoréduction , Biotechnologie , Stabilité protéique , Séquence conservée/génétique
7.
J Environ Manage ; 358: 120904, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38643624

RÉSUMÉ

This study focused on the economic feasibility of two potential industrial-scale bioleaching technologies for metal recovery from specific metallurgical by-products, mainly basic oxygen steelmaking dust (BOS-D) and goethite. The investigation compared two bioleaching scaling technology configurations, including an aerated bioreactor and an aerated and stirred bioreactor across different scenarios. Results indicated that bioleaching using Acidithiobacillus ferrooxidans proved financially viable for copper extraction from goethite, particularly when 5% and 10% pulp densities were used in the aerated bioreactor, and when 10% pulp density was used in the aerated and stirred bioreactor. Notably, a net present value (NPV) of $1,275,499k and an internal rate of return (IRR) of 65% for Cu recovery from goethite were achieved over 20-years after project started using the aerated and stirred bioreactor plant with a capital expenditure (CAPEX) of $119,816,550 and an operational expenditure (OPEX) of $5,896,580/year. It is expected that plant will start to make profit after one year of operation. Aerated and stirred bioreactor plant appeared more reliable alternative compared to the aerated bioreactor plant as the plant consists of 12 reactors which can allow better management and operation in small volume with multiple reactors. Despite the limitations, this techno-economic assessment emphasized the significance of selective metal recovery and plant design, and underscored the major expenses associated with the process.


Sujet(s)
Acidithiobacillus , Bioréacteurs , Métallurgie , Acidithiobacillus/métabolisme , Cuivre , Minéraux , Composés du fer
8.
J Hazard Mater ; 470: 134193, 2024 May 15.
Article de Anglais | MEDLINE | ID: mdl-38569341

RÉSUMÉ

Arsenopyrite and pyrite often coexist in metal deposits and tailings, thus simultaneous bioleaching of both sulfides has economic (as well as environmental) significance. Important targets in bio-oxidation operations are high solubilization rates and minimized accumulation of Fe(III)/As-bearing secondary products. This study investigated the role of pyrite bioleaching in the enhancement of arsenopyrite dissolution. At a pyrite to arsenopyrite mass ratio of 1:1, 93.6% of As and 93.0% of Fe were solubilized. The results show that pyrite bio-oxidation can promote arsenopyrite dissolution, enhance S0 bio-oxidation, and inhibit the formation of jarosites, tooeleite, and amorphous ferric arsenate. The dry weight of the pyrite & arsenopyrite residue was reduced by 95.1% after bioleaching, compared to the initial load, while only 5% weight loss was observed when pyrite was absent. A biofilm was formed on the arsenopyrite surface in the presence of pyrite, while a dense passivation layer was observed in the absence of pyrite. As(III) (as As2O3) was a dominant As species in the pyrite & arsenopyrite residue. Novel and detailed findings are presented on arsenopyrite bio-dissolution in the presence of pyrite, and the presented approach could contribute to the development of novel cost-effective extractive bioprocesses. ENVIRONMENTAL IMPLICATION: The oxidation of arsenopyrite presents significant environmental hazards, as it can contribute to acid mine drainage generation and arsenic mobilization from sulfidic mine wastes. Bioleaching is a proven cost-effective and environmentally friendly extractive technology, which has been applied for decades in metal recovery from minerals or tailings. In this work, efficient extraction of arsenic from arsenopyrite bioleaching was presented through coupling the process with bio-oxidation of pyrite, resulting in lowered accumulation of hazardous and metastable Fe(III)/As-bearing secondary phases. The results could help improve current biomining operations and/or contribute to the development of novel cost-effective bioprocesses for metal extraction.


Sujet(s)
Composés de l'arsenic , Composés du fer , Fer , Minéraux , Sulfures , Sulfures/composition chimique , Fer/composition chimique , Composés de l'arsenic/composition chimique , Cinétique , Minéraux/composition chimique , Composés du fer/composition chimique , Oxydoréduction , Solubilité , Arsenic/composition chimique , Biofilms , Acidithiobacillus/métabolisme
9.
Sci Total Environ ; 927: 172162, 2024 Jun 01.
Article de Anglais | MEDLINE | ID: mdl-38569954

RÉSUMÉ

Acid mine drainage (AMD) induced by pyrite oxidation is a notorious and serious environmental problem, but the management of AMD in an economical and environmentally friendly way remains challenging. Here, lignin, a natural polymer and abundant waste, was employed as both a bactericide and passivator to prevent AMD formation. The addition of lignin to a mimic AMD formation system inoculated with Acidithiobacillus ferrooxidans at a lignin-to-pyrite weight ratio of 2.5: 10 reduced the combined abiotic and biotic oxidation of pyrite by 68.4 % (based on released SO42-). Morphological characterization of Acidithiobacillus ferrooxidans revealed that lignin could act on the cell surface and impair the cell integrity, disrupting its normal growth and preventing biotic oxidation of pyrite accordingly. Moreover, lignin can be used alone as a passivator to form a coating on the pyrite surface, reducing abiotic oxidation by 71.7 % (based on released SO42-). Through multiple technique analysis, it was proposed that the functional groups on lignin may coordinate with iron ions on pyrite, promoting its deposition on the surface. In addition, the inherent antioxidant activity of lignin may also be actively involved in the abatement of pyrite oxidation via the reduction of iron. Overall, this study offered a "treating waste with waste" strategy for preventing AMD formation at the source and opened a new avenue for the management of AMD.


Sujet(s)
Acidithiobacillus , Lignine , Mine , Acidithiobacillus/métabolisme , Fer , Sulfures , Oxydoréduction
10.
Sci Total Environ ; 927: 171919, 2024 Jun 01.
Article de Anglais | MEDLINE | ID: mdl-38554963

RÉSUMÉ

The catalytic role of Acidithiobacillus ferrooxidans (A. ferrooxidans) in iron biooxidation is pivotal in the formation of Acid Mine Drainage (AMD), which poses a significant threat to the environment. To control AMD generation, treatments with low-molecular-weight organic acids are being studied, yet their exact mechanisms are unclear. In this study, AMD materials, organic acids, and molecular methods were employed to gain a deeper understanding of the inhibitory effects of low-molecular-weight organic acids on the biooxidation of iron by A. ferrooxidans. The inhibition experiments of A. ferrooxidans on the oxidation of Fe2+ showed that to attain a 90 % inhibition efficacy within 72 h, the minimum concentrations required for formic acid, acetic acid, propionic acid, and lactic acid are 0.5, 6, 4, and 10 mmol/L, respectively. Bacterial imaging illustrated the detrimental effects of these organic acids on the cell envelope structure. This includes severe damage to the outer membrane, particularly from formic and acetic acids, which also caused cell wall damage. Coupled with alterations in the types and quantities of protein, carbohydrate, and nucleic acid content in extracellular polymeric substances (EPS), indicate the mechanisms underlying these inhibitory treatments. Transcriptomic analysis revealed interference of these organic acids with crucial metabolic pathways, particularly those related to energy metabolism. These findings establish a comprehensive theoretical basis for understanding the inhibition of A. ferrooxidans' biooxidation by low-molecular-weight organic acids, offering a novel opportunity to effectively mitigate the generation of AMD at its source.


Sujet(s)
Acidithiobacillus , Fer , Oxydoréduction , Propionates , Acidithiobacillus/métabolisme , Acidithiobacillus/effets des médicaments et des substances chimiques , Fer/métabolisme , Mine , Formiates/métabolisme , Acide acétique/métabolisme
11.
Microorganisms ; 12(3)2024 Mar 15.
Article de Anglais | MEDLINE | ID: mdl-38543641

RÉSUMÉ

Acidophiles are capable of surviving in extreme environments with low pH. Acidithiobacillus ferrooxidans is a typical acidophilic bacterium that has been extensively studied when grown chemoautotrophically, i.e., when it derives energy from oxidation of Fe2+ or reduced inorganic sulfur compounds (RISCs). Although it is also known to grow with electrons supplied by solid electrodes serving as the sole source of energy, the understanding of its electroautotrophic growth is still limited. This study aimed to compare the growth characteristics of A. ferrooxidans under electroautotrophic (ea) and chemoautotrophic (ca) conditions, with an attempt to elucidate the possible mechanism(s) of extracellular electron flow into the cells. Jarosite was identified by Raman spectroscopy, and it accumulated when A. ferrooxidans used Fe2+ as the electron donor, but negligible mineral deposition occurred during electroautotrophic growth. Scanning electron microscopy (SEM) showed that A. ferrooxidans possesses more pili and extracellular polymeric substances (EPSs) under electroautotrophic conditions. A total of 493 differentially expressed genes (DEGs) were identified, with 297 genes being down-regulated and 196 genes being up-regulated in ea versus ca conditions. The genes known to be essential for chemoautotrophic growth showed a decreased expression in the electroautotrophic condition; meanwhile, there was an increased expression of genes related to direct electron transfer across the cell's outer/inner membranes and transmembrane proteins such as pilin and porin. Joint analysis of DEGs and differentially expressed metabolites (DEMs) showed that galactose metabolism is enhanced during electroautotrophic growth, inducing A. ferrooxidans to produce more EPSs, which aids the cells in adhering to the solid electrode during their growth. These results suggested that electroautotrophy and chemoautotrophy of A. ferrooxidans have different extracellular electron uptake (EEU) pathways, and a model of EEU during electroautotrophic growth is proposed. The use of extracellular electrons as the sole energy source triggers A. ferrooxidans to adopt metabolic and subsequently phenotypic modifications.

12.
Water Res ; 252: 121221, 2024 Mar 15.
Article de Anglais | MEDLINE | ID: mdl-38324985

RÉSUMÉ

This study proposes a novel method by forming biogenic K-jarosite coatings on pyrite surfaces driven by Acidithiobacillus ferrooxidans (A. ferrooxidans) to reduce heavy metal release and prevent acid mine drainage (AMD) production. Different thicknesses of K-jarosite coatings (0.7 to 1.1 µm) were able to form on pyrite surfaces in the presence of A. ferrooxidans, which positively correlated with the initial addition of Fe2+ and K+ concentrations. The inhibiting effect of K-jarosite coatings on pyrite oxidation was studied by electrochemical measurements, chemical oxidation tests, and bio-oxidation tests. The experimental results showed that the best passivation performance was achieved when 20 mM Fe2+ and 6.7 mM K+ were initially introduced with a bacterial concentration of 4 × 108 cells·mL-1, reducing chemical and biological oxidation by 70 % and 98 %, respectively (based on the concentration of total iron dissolved into the solution by pyrite oxidation). Similarly, bio-oxidation tests of two mine waste samples also showed sound inhibition effects, which offers a preliminary demonstration of the potential applicability of this method to actual waste rock. This study presents a new perspective on passivating the oxidation of metal sulfide tailings or waste and preventing AMD.


Sujet(s)
Acidithiobacillus , Fer , Sulfates , Composés du fer III , Sulfures , Oxydoréduction
13.
J Biotechnol ; 383: 64-72, 2024 Mar 10.
Article de Anglais | MEDLINE | ID: mdl-38311245

RÉSUMÉ

Variations in water availability represent a foremost stress factor affecting the growth and survival of microorganisms. Acidophilic bioleaching bacteria are industrially applied for releasing metals from mineral sulphides, and they are considered extremely tolerant to oxidative conditions prevailing in acidic bioleaching environments. Such processes usually are performed in heaps and thus these microorganisms are also exposed to intermittent desiccations or high osmolarity periods that reduce the water availability. However, the tolerance to water stress and the molecular basis of adaptation to it are still largely unknown. The aim of this work was to determine the cellular response to desiccation stress and establish its relationship to oxidative stress response in the acidophilic iron-oxidizing bacteria Acidithiobacillus ferrooxidans ATCC 23270 and Leptospirillum ferriphilum DSM 14647. Results showed that the exposure of cell cultures to desiccation (0-120 min) led to a significant reduction in cell growth, and to an increase in content in reactive oxygen species in both bacteria. However, Leptospirillum ferriphilum turned out to be more tolerant than Acidithiobacillus ferrooxidans. In addition, the pre-treatment of the cell cultures with compatible solutes (trehalose and ectoine), and antioxidants (glutathione and cobalamin) restored all stress parameters to levels exhibited by the control cultures. To evaluate the role of the osmotic and redox homeostasis mechanisms in coping with desiccation stress, the relative expression of a set of selected genes was approached by RT-qPCR experiments in cells exposed to desiccation for 30 min. Results showed a generalized upregulation of genes that code for mechanosensitive channels, and enzymes related to the biosynthesis of compatible solutes and oxidative stress response in both bacteria. These data suggest that acidophiles show variable tolerance to desiccation and allow to establish that water stress can trigger oxidative stress, and thus anti-oxidative protection capability can be a relevant mechanism when cells are challenged by desiccation or other anhydrobiosis states.


Sujet(s)
Acidithiobacillus , Déshydratation , Fer , Humains , Dessiccation , Stress oxydatif , Bactéries
14.
Environ Sci Technol ; 57(48): 19902-19911, 2023 Dec 05.
Article de Anglais | MEDLINE | ID: mdl-37983372

RÉSUMÉ

As global demands for rare-earth elements (REEs) continue to grow, the biological recovery of REEs has been explored as a promising strategy, driven by potential economic and environmental benefits. It is known that calcium-binding domains, including helix-loop-helix EF hands and repeats-in-toxin (RTX) domains, can bind lanthanide ions due to their similar ionic radii and coordination preference to calcium. Recently, the lanmodulin protein from Methylorubrum extorquens was reported, which has evolved a high affinity for lanthanide ions over calcium. Acidithiobacillus ferrooxidans is a chemolithoautotrophic acidophile, which has been explored for use in bioleaching for metal recovery. In this report, A. ferrooxidans was engineered for the recombinant intracellular expression of lanmodulin. In addition, an RTX domain from the adenylate cyclase protein of Bordetella pertussis, which has previously been shown to bind Tb3+, was expressed periplasmically via fusion with the endogenous rusticyanin protein. The binding of lanthanides (Tb3+, Pr3+, Nd3+, and La3+) was improved by up to 4-fold for cells expressing lanmodulin and 13-fold for cells expressing the RTX domains in both pure and mixed metal solutions. Interestingly, the presence of lanthanides in the growth media enhanced protein expression, likely by influencing protein stability. Both engineered cell lines exhibited higher recoveries and selectivities for four tested lanthanides (Tb3+, Pr3+, Nd3+, and La3+) over non-REEs (Fe2+ and Co2+) in a synthetic magnet leachate, demonstrating the potential of these new strains for future REE reclamation and recycling applications.


Sujet(s)
Acidithiobacillus , Lanthanides , Terres rares , Calcium/métabolisme , Acidithiobacillus/génétique , Acidithiobacillus/composition chimique , Acidithiobacillus/métabolisme , Lanthanides/métabolisme , Ions/métabolisme
15.
Microbiol Spectr ; 11(6): e0172923, 2023 Dec 12.
Article de Anglais | MEDLINE | ID: mdl-37800960

RÉSUMÉ

IMPORTANCE: As the most important non-magnetotactic magnetosome-producing bacteria, Acidithiobacillus ferrooxidans only requires very mild conditions to produce Fe3O4 nanoparticles, thus conferring greater flexibility and potential application in biomagnetic nanoparticle production. However, the available information cannot explain the mechanism of Fe3O4 nanoparticle formation in A. ferrooxidans. In this study, we applied phenomic and transcriptomic analyses to reveal this mechanism. We found that different treatment condition factors notably affect the phenomic data of Fe3O4 nanoparticle in A. ferrooxidans. Using transcriptomic analyses, the gene network controlling/regulating Fe3O4 nanoparticle biogenesis in A. ferrooxidans was proposed, excavating the candidate hub genes for Fe3O4 nanoparticle formation in A. ferrooxidans. Based on this information, a sequential model for Fe3O4 nanoparticle synthesis in A. ferrooxidans was hypothesized. It lays the groundwork for further clarifying the feature of Fe3O4 nanoparticle synthesis.


Sujet(s)
Magnétosomes , Nanoparticules , Phénomique , Magnétosomes/génétique , Analyse de profil d'expression de gènes
16.
Chemosphere ; 343: 140244, 2023 Dec.
Article de Anglais | MEDLINE | ID: mdl-37758076

RÉSUMÉ

In this study, the potential of bioleaching to extract valuable metals from industrial by-products, specifically basic oxygen steelmaking dust (BOS-D) and goethite was investigated. These materials are typically discarded due to their high zinc content and lack of efficient regeneration processes. By using Acidithiobacillus ferrooxidans, successful bioleaching of various metals, including heavy metals, critical metals, and rare earth elements was achieved. The Taguchi orthogonal array design was used to optimise the bioleaching process, considering four variables at three different levels. After 14 days, the highest metal extraction for the BOS-D (11.2 mg Zn/g, 3.2 mg Mn/g, 1.6 mg Al/g, 0.0013 mg Y/g, and 0.0026 mg Ce/g) was achieved at 1% solid concentration, 1% energy source concentration, 1% inoculum concentration, and pH 1.5. For goethite, the optimal conditions were 1% solid concentration, 4% energy source concentration, 10% inoculum concentration, and pH 2 resulting in a extraction of 26.6 mg Zn/g, 2.1 mg/g Mn, 1.8 mg Al/g, 0.01 mg Co/g, 0.0022 mg Y/g. These findings are significant, as they demonstrate the potential to extract valuable metals from previously discarded industrial by-products. The extraction of such metals can have substantial economic and environmental implications, while simultaneously reducing waste in the metallurgical industry. Furthermore, the preservation of initial concentration of iron in both BOS-D and goethite residues represents a significant step towards implementing more sustainable industrial practices.

17.
Front Microbiol ; 14: 1190962, 2023.
Article de Anglais | MEDLINE | ID: mdl-37533830

RÉSUMÉ

Uranium (U) contamination of the environment causes high risk to health, demanding for effective and sustainable remediation. Bioremediation via microbial reduction of soluble U(VI) is generating high fractions (>50%) of insoluble non-crystalline U(IV) which, however, might be remobilized by sulfur-oxidizing bacteria. In this study, the efficacy of Acidithiobacillus (At.) ferrooxidans and Thiobacillus (T.) denitrificans to mobilize non-crystalline U(IV) and associated U isotope fractionation were investigated. At. ferrooxidans mobilized between 74 and 91% U after 1 week, and U mobilization was observed for both, living and inactive cells. Contrary to previous observations, no mobilization by T. denitrificans could be observed. Uranium mobilization by At. ferrooxidans did not cause U isotope fractionation suggesting that U isotope ratio determination is unsuitable as a direct proxy for bacterial U remobilization. The similar mobilization capability of active and inactive At. ferrooxidans cells suggests that the mobilization is based on the reaction with the cell biomass. This study raises doubts about the long-term sustainability of in-situ bioremediation measures at U-contaminated sites, especially with regard to non-crystalline U(IV) being the main component of U bioremediation.

18.
Sci Total Environ ; 894: 164945, 2023 Oct 10.
Article de Anglais | MEDLINE | ID: mdl-37336403

RÉSUMÉ

To thoroughly investigate the formation mechanism of acid mine drainage (AMD) from coal mine spoil, this study conducted microbial shake flask experiments on gangue possessing inorganic and organic sulfur to predict the future generation of AMD. The results revealed that microbial-mediated sulfur oxidation effectively lowered the pH of leachate and increased metal ion and sulfate concentrations. The oxidation of pyrite sulfur and thiophene sulfur contributed to 70 % and 30 % of the total acid production, respectively, highlighting the importance of both processes in coal mine acidification. The abundance and diversity of the microbial community increased, with "new" iron and sulfur oxidizing bacterial species during acidification, with "new" iron and sulfur oxidizing bacterial species, such as Sulfobacillus sp. and Acidibacillus sp., emerging and constituting approximately one-third of the bacterial population. These bacteria survived desiccation and proliferated faster than A. ferrooxidans YQ-N3 when conditions favored growth.


Sujet(s)
Charbon , Microbiote , Soufre , Mine , Bactéries , Fer , Acides , Oxydoréduction
19.
Microb Genom ; 9(6)2023 06.
Article de Anglais | MEDLINE | ID: mdl-37285209

RÉSUMÉ

Acidithiobacillus ferrooxidans serves as a model chemolithoautotrophic organism in extremely acidic environments, which has attracted much attention due to its unique metabolism and strong adaptability. However, little was known about the divergences along the evolutionary process based on whole genomes. Herein, we isolated six strains of A. ferrooxidans from mining areas in China and Zambia, and used comparative genomics to investigate the intra-species divergences. The results indicated that A. ferrooxidans diverged into three groups from a common ancestor, and the pan-genome is 'open'. The ancestral reconstruction of A. ferrooxidans indicated that genome sizes experienced a trend of increase in the very earliest days before a decreasing tendency during the evolutionary process, suggesting that both gene gain and gene loss played crucial roles in A. ferrooxidans genome flexibility. Meanwhile, 23 single-copy orthologous groups (OGs) were under positive selection. The differences of rusticyanin (Rus) sequences (the key protein in the iron oxidation pathway) and type IV secretion system (T4SS) composition in the A. ferrooxidans were both related to their group divergences, which contributed to their intraspecific diversity. This study improved our understanding of the divergent evolution and environmental adaptation of A. ferrooxidans at the genome level in extreme conditions, which provided theoretical support for the survival mechanism of living creatures at the extreme.


Sujet(s)
Acidithiobacillus , Acidithiobacillus/génétique , Acidithiobacillus/métabolisme , Génomique/méthodes , Fer/métabolisme , Adaptation physiologique/génétique
20.
Heliyon ; 9(5): e15788, 2023 May.
Article de Anglais | MEDLINE | ID: mdl-37180931

RÉSUMÉ

Recycling of valuable metals from spent lithium-ion batteries (LIBs) is of paramount importance for the sustainable development of consumer electronics and electric vehicles. This study comparatively investigated two eco-friendly leaching methods for recovering Li, Ni, Co, and Mn from waste NCM523 (LiNi0.5Co0.2Mn0.3O2) cathode materials in spent LIBs, i.e., chemical leaching by a green organic solvent, levulinic acid (LA) and bioleaching by an enriched microbial consortium. In chemical leaching, mathematical models predicting leaching efficiency from liquid-to-solid ratio (L/S; L/kg), temperature (°C), and duration (h) were established and validated. Results revealed that LA of 6.86 M was able to achieve complete leaching of all target metals in the absence of reductants at the optimal conditions (10 L/kg, 90 °C, and 48 h) identified by the models. The evaluation of direct one- and two-step and indirect bioleaching indicated that the latter was more feasible for metal extraction from waste NCM523. L/S was found to impact the indirect bioleaching most significantly among the three operating variables. Pretreatment of waste NCM523 by washing with 1 vol% methanesulfonic acid significantly improved indirect bioleaching. The side-by-side comparison of these two leaching approaches on the same cathode active material (CAM) thus provided the technical details for further comparison with respect to cost and environmental impact.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE