Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 317
Filtrer
1.
Front Chem ; 12: 1389694, 2024.
Article de Anglais | MEDLINE | ID: mdl-39148666

RÉSUMÉ

The continuous preparation scheme EPO-Poly-indol-nido-carborane (E-P-INDOLCAB), L100-55-Poly-indol-nido-carborane (L-P-INDOLCAB), RS-Poly-indol-nido-carborane (S-P-INDOLCAB), and RL-Poly-indol-nido-carborane (R-P-INDOLCAB) were used to prepare the four types of acrylic resin-coated nido-carborane indole fluorescent polymers. After testing their spectral properties and the fluorescence stability curve trend at various acidic pH values (3.4 and 5.5, respectively), L-P-INDOLCAB and S-P-INDOLCAB were determined to be the best polymers. The stable states of the two polymers and the dispersion of the nanoparticles on the system's surface during Atomic Force Microscope (AFM) test are shown by the zeta potentials of -23 and -42 mV. The dispersion of nanoparticles on the system's surface and the stable condition of the two polymers were examined using zeta potential and atomic force microscopy (AFM). Transmission electron microscopy (TEM) can also confirm these findings, showing that the acrylic resin securely encases the interior to form an eyeball. Both polymers' biocompatibility with HELA cells was enhanced in cell imaging, closely enclosing the target cells. The two complexes displayed strong inhibitory effects on PC-3 and HeLa cells when the concentration was 20 ug/mL, as validated by subsequent cell proliferation toxicity studies.

2.
Odontology ; 2024 Jul 24.
Article de Anglais | MEDLINE | ID: mdl-39046588

RÉSUMÉ

To evaluate the microstructural characterization, mechanical properties and antimicrobial activity of acrylic resins incorporated with different concentrations of reduced graphene oxide (rGO). Specimens were made of self-cured and heat-cured acrylic resins for the control group and concentrations of 0.5%, 1%, and 3%. The microstructural characterization was evaluated by scanning electron microscopy (SEM) and energy-dispersive X-ray (EDS). For mechanical testing, flexural strength, and Knoop hardness tests were performed. Microbiological evaluations were performed by colony forming units (CFU) analysis, tetrazolium salt reduction (XTT), and SEM images. The modified acrylic resins showed increased mechanical properties at low concentrations (p < 0.05) and with reduced S. mutans (p < 0.05). Reduced graphene oxide interfered with the mechanical performance and microbiological properties of acrylic resins depending on the concentration of rGO, and type of polymerization and microorganism evaluated. The incorporation of graphene compounds into acrylic resins is an alternative to improve the antimicrobial efficacy and performance of the material.

3.
BMC Oral Health ; 24(1): 775, 2024 Jul 10.
Article de Anglais | MEDLINE | ID: mdl-38987748

RÉSUMÉ

Acrylic resins are widely used as the main components in removable orthodontic appliances. However, poor oral hygiene and maintenance of orthodontic appliances provide a suitable environment for the growth of pathogenic microorganisms. In this study, strontium-modified phosphate-based glass (Sr-PBG) was added to orthodontic acrylic resin at 0% (control), 3.75%, 7.5%, and 15% by weight to evaluate the surface and physicochemical properties of the novel material and its in vitro antifungal effect against Candida albicans (C. albicans). Surface microhardness and contact angle did not vary between the control and 3.75% Sr-PBG groups (p > 0.05), and the flexural strength was lower in the experimental groups than in the control group (p < 0.05), but no difference was found with Sr-PBG content (p > 0.05). All experimental groups showed an antifungal effect at 24 and 48 h compared to that in the control group (p < 0.05). This study demonstrated that 3.75% Sr-PBG exhibits antifungal effects against C. albicans along with suitable physicochemical properties, which may help to minimize the risk of adverse effects associated with harmful microbial living on removable orthodontic appliances and promote the use of various materials.


Sujet(s)
Résines acryliques , Antifongiques , Candida albicans , Verre , Test de matériaux , Phosphates , Strontium , Propriétés de surface , Candida albicans/effets des médicaments et des substances chimiques , Résines acryliques/composition chimique , Strontium/pharmacologie , Strontium/composition chimique , Antifongiques/pharmacologie , Verre/composition chimique , Phosphates/pharmacologie , Polymérisation , Dureté , Résistance à la flexion , Humains , Techniques in vitro
4.
Heliyon ; 10(11): e32029, 2024 Jun 15.
Article de Anglais | MEDLINE | ID: mdl-38868038

RÉSUMÉ

This study aimed to incorporate ß-AgVO3 and rGO into self-curing (SC) and heat-curing (HC) acrylic resins and to evaluate their physicochemical, mechanical, and antimicrobial properties while correlating them with the characterized material structure. Acrylic resin samples were prepared at 0 % (control), 0.5 %, 1 %, and 3 % for both nanoparticles. The microstructural characterization was assessed by scanning electron microscopy (SEM) (n = 1) and energy dispersive X-ray spectroscopy (EDS) (n = 1). The physicochemical and mechanical tests included flexural strength (n = 10), Knoop hardness (n = 10), roughness (n = 10), wettability (n = 10), sorption (n = 10), solubility (n = 10), porosity (n = 10), and color evaluation (n = 10). The microbiological evaluation was performed by counting colony-forming units (CFU/mL) and cell viability (n = 8). The results showed that the ß-AgVO3 samples showed lower counts of Candida albicans, Pseudomonas aeruginosa, and Streptococcus mutans due to their promising physicochemical properties. The mechanical properties were maintained with the addition of ß-AgVO3. The rGO samples showed higher counts of microorganisms due to the increase in physicochemical properties. It can be concluded that the incorporation of ß-AgVO3 into acrylic resins could be an alternative to improve the antimicrobial efficacy and performance of the material.

5.
J Prosthodont ; 2024 Jun 10.
Article de Anglais | MEDLINE | ID: mdl-38855812

RÉSUMÉ

PURPOSE: To clinically evaluate the surface roughness and wear resistance of prefabricated and CAD-CAM milled acrylic resin teeth for complete dentures. MATERIALS AND METHODS: In a cross-over study design, 10 completely edentulous patients were randomly included in this study and given two complete dentures. The first complete denture was made using prefabricated teeth, while the second was constructed using CAD-CAM milled teeth. Following insertion (T0), 3 months (T3), and 6 months (T6), the complete dentures were scanned. Utilizing 3D surface super-imposition techniques, the vertical (2D wear), and volumetric (3D wear) material loss were measured. The hardness of the teeth was evaluated at the time of denture insertion (T0) and then after 6 months (T6) of denture insertion by digital Vickers hardness tester. Statistical analysis was done using SPSS software. Paired groups were compared by paired t-test. Also, a repeated measure test was used. The significant difference was considered if p ≤ 0.05. RESULTS: The time of denture function was linearly correlated with the wear of the prefabricated and CAD-CAM milled denture tooth. Prefabricated acrylic teeth had significantly more vertical and volumetric wear after 3 and 6 months, compared to CAD-CAM milled denture teeth where p-values were 0.01, 0.009, 0.003, and 0.024, respectively. Additionally, CAD-CAM milled teeth displayed significantly higher hardness values than prefabricated teeth both before and after 6 months of use where p-values were 0.001. After 6 months, all studied teeth showed a decrease in their hardness. CONCLUSIONS: In terms of wear resistance and surface hardness, CAD-CAM milled acrylic resin teeth were superior to prefabricated acrylic resin artificial teeth once the complete denture functions.

6.
Biosens Bioelectron ; 258: 116376, 2024 Aug 15.
Article de Anglais | MEDLINE | ID: mdl-38739999

RÉSUMÉ

The capacitive immunosensor, known for its label-free simplicity, has great potential for point-of-care diagnostics. However, the interaction between insulation and recognition layers on the sensing electrode greatly affects its performance. This study introduces a pioneering dual-layer strategy, implementing a novel combination of acrylic resin (AR) and nitrocellulose (NC) coatings on screen-printed carbon electrodes (SPCEs). This innovative approach not only enhances the dielectric properties of the capacitive sensor but also streamlines the immobilization of recognizing elements. Particularly noteworthy is the superior reliability and insulation offered by the AR coating, surpassing the limitations of traditional self-assembled monolayer (SAM) modifications. This dual-layer methodology establishes a robust foundation for constructing capacitive sensors optimized specifically for liquid medium-based biosensing applications. The NC coating in this study represents a breakthrough in effectively immobilizing BSA, unraveling the capacitive response intricately linked to the quantity of adsorbed recognizing elements. The results underscore the prowess of the proposed immunosensor, showcasing a meticulously defined linear calibration curve for anti-BSA (ranging from 0 to 25 µg/ml). Additionally, specific interactions with anti-HAS and anti-TNF-α further validate the versatility and efficacy of the developed immunosensor. This work presents a streamlined and highly efficient protocol for developing label-free immunosensors for antibody determination and introduces a paradigm shift by utilizing readily available electrodes and sensing systems. The findings are poised to catalyze a significant acceleration in the advancement of biosensor technology, opening new avenues for innovative applications in point-of-care diagnostics.


Sujet(s)
Résines acryliques , Techniques de biocapteur , Carbone , Collodion , Électrodes , Sérumalbumine bovine , Techniques de biocapteur/instrumentation , Carbone/composition chimique , Résines acryliques/composition chimique , Dosage immunologique/instrumentation , Dosage immunologique/méthodes , Collodion/composition chimique , Sérumalbumine bovine/composition chimique , Humains , Capacité électrique , Limite de détection , Techniques électrochimiques/méthodes , Anticorps immobilisés/composition chimique , Animaux
7.
Polymers (Basel) ; 16(7)2024 Apr 03.
Article de Anglais | MEDLINE | ID: mdl-38611235

RÉSUMÉ

The general requirement of replacing petroleum-derived plastics with renewable resources is particularly challenging for new technologies such as the additive manufacturing of photocurable resins. In this work, the influence of mono- and bifunctional reactive diluents on the printability and performance of resins based on acrylated epoxidized soybean oil (AESO) was explored. Polyethylene glycol di(meth)acrylates of different molecular weights were selected as diluents based on the viscosity and mechanical properties of their binary mixtures with AESO. Ternary mixtures containing 60% AESO, polyethylene glycol diacrylate (PEGDA) and polyethyleneglycol dimethacrylate (PEG200DMA) further improved the mechanical properties, water resistance and printability of the resin. Specifically, the terpolymer AESO/PEG575/PEG200DMA 60/20/20 (wt.%) improved the modulus (16% increase), tensile strength (63% increase) and %deformation at the break (21% increase), with respect to pure AESO. The enhancement of the printability provided by the reactive diluents was proven by Jacobs working curves and the improved accuracy of printed patterns. The proposed formulation, with a biorenewable carbon content of 67%, can be used as the matrix of innovative resins with unrestricted applicability in the electronics and biomedical fields. However, much effort must be done to increase the array of bio-based raw materials.

8.
J Pharm Bioallied Sci ; 16(Suppl 1): S427-S430, 2024 Feb.
Article de Anglais | MEDLINE | ID: mdl-38595483

RÉSUMÉ

Background: Surface roughness and hardness are key factors that influence the clinical performance and durability of denture teeth. Understanding variations in these properties among different denture teeth materials can assist in selecting the most suitable materials for optimal patient outcomes. This study aimed to investigate the surface roughness and hardness of four commonly used denture teeth materials: acrylic resin, composite resin, porcelain, and nanohybrid composite. Materials and Methods: Ten specimens were prepared for each denture teeth material, resulting in a total of 40 specimens. Surface roughness was assessed using a profilometer, and measurements were recorded in micrometers (µm). Hardness was determined using a Vickers hardness tester, and results were expressed as Vickers hardness numbers (VHN). The surface roughness and hardness data were analyzed using appropriate statistical tests (e.g., analysis of variance), with significance set at P < 0.05. Results: The results revealed significant differences in both surface roughness and hardness among the different denture teeth materials (P < 0.05). Acrylic resin exhibited the highest surface roughness (mean ± standard deviation: 3.45 ± 0.78 µm) and the lowest hardness (mean ± standard deviation: 45.6 ± 2.3 VHN). Composite resin demonstrated intermediate values of surface roughness (mean ± standard deviation: 1.87 ± 0.54 µm) and hardness (mean ± standard deviation: 65.2 ± 3.9 VHN). Porcelain demonstrated the smoothest surface (mean ± standard deviation: 0.94 ± 0.28 µm) and the highest hardness (mean ± standard deviation: 78.5 ± 4.1 VHN). Nanohybrid composite displayed surface roughness and hardness values similar to composite resin. Conclusion: This study demonstrated significant variations in surface roughness and hardness among the different denture teeth materials evaluated. Acrylic resin exhibited the roughest surface and lowest hardness, while porcelain demonstrated the smoothest surface and highest hardness. Composite resin and nanohybrid composite exhibited intermediate values. These findings provide valuable insights for prosthodontic practitioners in selecting denture teeth materials based on specific clinical requirements, aiming to achieve optimal aesthetics, reduced plaque accumulation, and improved wear resistance.

9.
J Pharm Bioallied Sci ; 16(Suppl 1): S681-S683, 2024 Feb.
Article de Anglais | MEDLINE | ID: mdl-38595564

RÉSUMÉ

Background: Recent advancements in three-dimensional (3D) printing have introduced novel materials for removable partial dentures (RPD) base fabrication, promising improved mechanical properties, and biocompatibility. Materials and Methods: In this study, three different RPD base materials were evaluated: conventional heat-cured acrylic resin (Control), biocompatible 3D-printed resin (Test Group A), and a novel nanocomposite 3D-printed resin (Test Group B). A total of 30 standardized RPD base specimens (n = 10 per group) were fabricated according to established protocols. Microstructural analysis was performed using scanning electron microscopy (SEM), and the mechanical properties, including flexural strength and modulus, were determined using a universal testing machine. Results: Microstructural analysis revealed distinct differences among the materials. SEM images showed a well-defined and homogeneous microstructure in Test Group B, while Test Group A exhibited fewer voids compared to the Control group. Mechanical testing results indicated that Test Group B had the highest flexural strength (120 ± 5 MPa), followed by Test Group A (90 ± 4 MPa), and the Control group (75 ± 3 MPa). Similarly, Test Group B demonstrated the highest flexural modulus (3.5 ± 0.2 GPa), followed by Test Group A (2.8 ± 0.1 GPa), and the Control group (2.1 ± 0.1 GPa). Conclusion: These findings suggest that 3D-printed RPD base materials, particularly nanocomposite resins, hold promise for improving the overall quality and durability of removable partial dentures.

10.
Cureus ; 16(3): e55804, 2024 Mar.
Article de Anglais | MEDLINE | ID: mdl-38586635

RÉSUMÉ

STATEMENT OF PROBLEM: New-generation denture base materials are used successfully in denture fabrication; however, the effect of saliva pH change on the color stability of materials is unknown. PURPOSE: The purpose of this in vitro study is to evaluate the color stability of new-generation denture base materials after immersion in artificial saliva with different pH values (3,7,14). MATERIAL AND METHODS: Disc-shaped samples (Ø 10 mm x 2 mm) were prepared from three different denture base materials (1 pre-polymerized polymethylmethacrylate [PMMA], 1 graphene-reinforced PMMA, and heat-cure polymethyl methacrylate resin) (n=10). After polishing, color coordinates were measured using a PCE-CSM 5 colorimeter programmed in the CIE system (L* a* b*). The samples were kept in artificial saliva at different pH values and 37°C for 21 days. At the end of 21 days, color coordinates were measured again. The suitability of the measurements for a normal distribution was examined with the Kolmogro-Smirnov test. Whether color measurements obtained at different pH levels differed according to groups was examined with the Kruskal-Wallis test. The correlation between the CIEDE2000 and CIELab color difference formulas was examined by correlation analysis. RESULTS: The highest color difference occurred in heat-cure samples at pH 3 (p<0.001). The color difference at different pH values was least observed in pre-polymerized PMMA samples. Significant color differences occurred in the graphene-reinforced pre-polymerized PMMA group at pH 7 (p<0.001). CONCLUSIONS: It was observed that color differences occurred in all groups. Dentures made of new-generation CAD/CAM PMMA, which are less exposed to color differences, can be recommended for elderly patients with systemic diseases who are frequently exposed to pH changes in the oral cavity. CLINICAL IMPLICATIONS: Color differences on denture surfaces over time negatively affect aesthetics. Since pH changes cause changes on the prosthesis surface, it may be recommended for these patients to fabricate dentures from new-generation CAD/CAM PMMA resins, which are less deformable.

11.
BMC Oral Health ; 24(1): 303, 2024 Mar 04.
Article de Anglais | MEDLINE | ID: mdl-38439020

RÉSUMÉ

BACKGROUND: The present systematic review and meta-analysis investigated the available evidence about the adherence of Candida Albicans to the digitally-fabricated acrylic resins (both milled and 3D-printed) compared to the conventional heat-polymerized acrylic resins. METHODS: This study followed the guidelines of the Preferred Reporting Items for Systematic Review and Meta-analyses (PRISMA). A comprehensive search of online databases/search tools (Web of Science, Scopus, PubMed, Ovid, and Google Scholar) was conducted for all relevant studies published up until May 29, 2023. Only in-vitro studies comparing the adherence of Candida albicans to the digital and conventional acrylic resins were included. The quantitative analyses were performed using RevMan v5.3 software. RESULTS: Fourteen studies were included, 11 of which were meta-analyzed based on Colony Forming Unit (CFU) and Optical Density (OD) outcome measures. The pooled data revealed significantly lower candida colonization on the milled digitally-fabricated compared to the heat-polymerized conventionally-fabricated acrylic resin materials (MD = - 0.36; 95%CI = - 0.69, - 0.03; P = 0.03 and MD = - 0.04; 95%CI = - 0.06, - 0.01; P = 0.0008; as measured by CFU and OD respectively). However, no differences were found in the adhesion of Candida albicans between the 3D-printed digitally-fabricated compared to the heat-polymerized conventionally-fabricated acrylic resin materials (CFU: P = 0.11, and OD: P = 0.20). CONCLUSION: The available evidence suggests that candida is less likely to adhere to the milled digitally-fabricated acrylic resins compared to the conventional ones.


Sujet(s)
Résines acryliques , Candida albicans , Candida albicans/physiologie , Bases de données factuelles
12.
J Oral Sci ; 66(2): 120-124, 2024 Apr 16.
Article de Anglais | MEDLINE | ID: mdl-38494704

RÉSUMÉ

PURPOSE: To evaluate the flexural properties of repaired poly(methylmethacrylate) (PMMA) denture base materials for computer-aided design/computer-aided manufacturing (CAD-CAM) and to compare them with heat-activated polymerized PMMA. METHODS: A total of 288 specimens (65 × 10 × 2.5 mm) were prepared using both CAD-CAM and conventional blocks and repaired using autopolymerizing and visible-light polymerizing (VLC) materials. Microwave energy, water storage and hydroflask polymerization were applied as additional post-polymerization cycles after the repair process. The flexural strength (FS) of the specimens was evaluated using the three-point bending test. Data were evaluated statistically using 2-way ANOVA followed by Bonferroni's correction to determine the significance of differences between the groups (P ≤ 0.05). RESULTS: The FS of the denture base materials for CAD-CAM was significantly higher than that for the heat-activated group (P ≤ 0.05). The FS was significantly highest when microwave energy was used for the post-polymerization cycle. The FS values for all groups repaired with VLC resin were significantly lower than for the autopolymerization group (P ≤ 0.05). CONCLUSION: The flexural properties of denture base materials for CAD-CAM repaired using autopolymerizing acrylic resins can recover by 50-70%. Additional post-polymerization cycles for autopolymerizing repair resin can be suggested to improve the clinical service properties of repaired dentures.


Sujet(s)
Matériaux dentaires , Résistance à la flexion , Poly(méthacrylate de méthyle) , Bases d'appareil de prothèse dentaire , Test de matériaux , Résines acryliques , Conception assistée par ordinateur , Réparation d'appareil de prothèse dentaire , Propriétés de surface
13.
Polymers (Basel) ; 16(3)2024 Feb 02.
Article de Anglais | MEDLINE | ID: mdl-38337311

RÉSUMÉ

The main goal of this work was an improvement in the mechanical and electrical properties of acrylic resin-based nanocomposites filled with chemically modified carbon nanotubes. For this purpose, the surface functionalization of multi-walled carbon nanotubes (MWCNTs) was carried out by means of aryl groups grafting via the diazotization reaction with selected aniline derivatives, and then nanocomposites based on ELIUM® resin were fabricated. FT-IR analysis confirmed the effectiveness of the carried-out chemical surface modification of MWCNTs as new bands on FT-IR spectra appeared in the measurements. TEM observations showed that carbon nanotube fragmentation did not occur during the modifications. According to the results from Raman spectroscopy, the least defective carbon nanotube structure was obtained for aniline modification. Transmission light microscopy analysis showed that the neat MWCNTs agglomerate strongly, while the proposed modifications improved their dispersion significantly. Viscosity tests confirmed, that as the nanofiller concentration increases, the viscosity of the mixture increases. The mixture with the highest dispersion of nanoparticles exhibited the most viscous behaviour. Finally, an enhancement in impact resistance and electrical conductivity was obtained for nanocomposites containing modified MWCNTs.

14.
Clin Exp Dent Res ; 10(1): e828, 2024 02.
Article de Anglais | MEDLINE | ID: mdl-38345482

RÉSUMÉ

BACKGROUND: The second rule of the 4Rs concept (Reduce, Reuse, Recycle, and Recover) was applied in this study using recycled acrylic resin to improve the hardness and study the effect of aging on the hardness of heat cured denture base resins. METHOD: Forty heat-cured acrylic resin samples were prepared and divided into control and modified groups. The hardness was tested using a type D durometer hardness tester for evaluating the effect of the thermal aging process on the hardness in the control and modified groups. The samples were either subjected to thermal aging (the specimens thermo-cycled 10 cycles per day between 55°C and 5°C with a 30-s dwell time) or were not. RESULTS: The mean difference in hardness between specimens with and without aging in the modified group increased with increasing concentrations of incorporated recycled acrylic resin. Independent samples t test revealed that the hardness values of modified groups with aging were significantly higher than in those without aging (p ≤ 0.05). ANOVA revealed that the modified group revealed a significant increase in hardness than that of the control group (p ≤ 0.05). CONCLUSIONS: Recycling and reuse of acrylic resins improved the hardness of denture base resins. The aging period significantly affected the hardness values of the control and modified groups.


Sujet(s)
Résines acryliques , Température élevée , Dureté , Bases d'appareil de prothèse dentaire , Test de matériaux
15.
Polymers (Basel) ; 16(4)2024 Feb 09.
Article de Anglais | MEDLINE | ID: mdl-38399864

RÉSUMÉ

Additive manufacturing (AM), also known as three-dimensional printing (3DP), has been widely applied to various fields and industries, including automotive, healthcare, and rapid prototyping. This study evaluates the effects of 3DP on textile properties. The usability of a textile and its durability are determined by its strength, washability, colorfastness to light, and abrasion resistance, among other traits, which may be impacted by the application of 3DP on the fabric's surface. This study examines the application of photosensitive acrylic resin on two fabric substrates: 100% cotton and 100% polyester white woven fabrics made of yarns with staple fibers. A simple alphanumeric text was translated into braille and the braille dots were 3D printed onto both fabrics. The color of the printed photosensitive acrylic resin was black, and it was an equal mixture of VeroCyanV, VeroYellowV, and VeroMagentaV. The 3D-printed design was the same on both fabrics and was composed of braille dots with a domed top. Both of the 3DP fabrics passed the colorfastness to washing test with no transfer or color change, but 3D prints on both fabrics showed significant color change during the colorfastness to light test. The tensile strength tests indicated an overall reduction in strength and elongation when the fabrics had 3DP on their surface. An abrasion resistance test revealed that the resin had a stronger adhesion to the cotton than to the polyester, but both resins were removed from the fabric with the abrader. These findings suggest that while 3DP on textiles offers unique possibilities for customization and design, mechanical properties and color stability trade-offs need to be considered. Further evaluation of textiles and 3D prints of textiles and their performance in areas such as colorfastness and durability are warranted to harness the full potential of this technology in the fashion and textile industry.

16.
BMC Oral Health ; 24(1): 151, 2024 Jan 31.
Article de Anglais | MEDLINE | ID: mdl-38297290

RÉSUMÉ

BACKGROUND: Poly-methyl methacrylate (PMMA) is a type of polymer mostly used to make denture bases. Self-cured acrylic resin (PMMA) can be used to repair a fractured acrylic denture base; however, even after repair, this area remains vulnerable. Carbon nanotubes (CNTs) could be used as a filler for polymer reinforcement. Furthermore, silver nanoparticles are efficient agents for the prevention of dental biofilm and improving their mechanical properties. The doping of CNTs with silver nanoparticles may lead to a synergistic interaction that is predicted to enhance the mechanical characteristics of the fillers. OBJECTIVES: The aim of the study was to assess the influnce of manual incorporation of 0.5% weight percent (%wt.) of silver doped carbon nanotubes (Ag-doped CNTs) into commercial self-cured PMMA on its flexural strength, impact strength, and surface microhardness. METHODS: In this investigation, a total of 60 specimens comprised of acrylic resin were employed. They are divided into two main groups: (a) the control group, which was made by using liquid monomer and commercial self-cured PMMA powder; and (b) the modified group, prepared by hand mixing the purchased silver-doped CNTs powder (0.5% wt.) to self-cured PMMA powder (99.5%wt.), and then the blended powder was incorporated into the liquid monomer. Flexural strength, flexural modulus, impact strength, and surface microhardness were evaluated. Independent sample t-tests were used to statistically analyze the data and compare the mean values of flexural strength, flexural modulus, impact strength, and surface microhardness (p-value ≤ 0.05). RESULTS: The flexural strength of the modified groups with Ag-doped CNTs (132.4 MPa) was significantly greater than that of the unmodified (control) groups (63.2 MPa). Moreover, the flexural modulus of the modified groups with Ag-doped CNTs (3.067 GPa) was significantly greater than that of the control groups (1.47 GPa). Furthermore, the impact strength of the modified groups with Ag-doped CNTs (11.2 kJ/mm2) was significantly greater than that of the control groups (2.3 kJ/mm2). Furthermore, the microhardness of the modified groups with Ag-doped CNTs (29.7 VHN) was significantly greater than that of the control groups (16.4 VHN), (p-value = 0.0001). CONCLUSION: The incorporation of 0.5% wt. silver doped CNTs fillers to the self-cured acrylic resin enhanced its flexural strength, flexural modulus, impact strength, and surface microhardness.


Sujet(s)
Nanoparticules métalliques , Nanotubes de carbone , Humains , Résines acryliques , Poly(méthacrylate de méthyle) , Résistance à la flexion , Argent , Poudres , Test de matériaux , Bases d'appareil de prothèse dentaire , Polymères , Propriétés de surface
17.
J Prosthodont ; 33(4): 340-347, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-37203989

RÉSUMÉ

PURPOSE: The aim of this in vitro study was to assess the effects of using different cements and titanium copings designs on the retention of implant-supported fixed dental prostheses (IFDPs) using a pull-out test. MATERIALS AND METHODS: Fifty zirconia (ZirCAD; Ivoclar Vivadent) and 20 prepolymerized denture acrylic resin (AvaDent) rectangular (36 mm × 12 mm × 8 mm) specimens were milled to mimic the lower left segmental portion of the All-on-Four IFDPs. Cylindrical titanium copings (Variobase; Straumann) (V) were used in 2 prepolymerized denture acrylic resin groups (n = 10) while conical titanium copings (Straumann) (C) were used as a control group for zirconia with 4 groups using cylindrical titanium copings. Before cementation, the outer surfaces of all titanium copings and the intaglio bonding surface of prosthetic specimens were airborne-particle abraded. All specimens were cemented following the manufacturer's recommendations and instructions according to the experimental design. After artificial aging (5000 cycles of 5°C 55°C, dwelling time 20 s; 150 N, 1.5 Hz in a 37°C water bath), all specimens were subjected to retention force testing using a pull-out test using a universal testing machine and a custom fixture with a crosshead speed 5 mm/min. Modes of failure were classified as Type 1, 2, or 3. Retention force values were analyzed by the t-test for the prepolymerized denture acrylic resin specimen groups, and 1-way ANOVA and the Tukey test for the zirconia groups at α = 0.05. RESULTS: Mean and standard deviation retention force values varied from 101.1 ± 67.1 to 509.0 ± 65.2 N for the prepolymerized denture acrylic resin specimen groups. The zirconia groups ranged from 572.8 ± 274.7 to 1416.1 ± 258.0 N. There is no statistically significant difference in retention force values between V and C specimens cementing to zirconia with Panavia SA cement (Kuraray Noritake) (p = 0.587). The retention forces and failure modes were influenced by the cement used (p < 0.05). Modes of failure were predominantly Type 2 (mixed failure) and Type 1 (adhesive fracture from prosthetic materials) except for the quick-set resin group (Type 3, adhesive failure from coping). CONCLUSIONS: When bonding IFDPs onto titanium copings, quick-set resin provided significantly higher retention force for prepolymerized denture acrylic resin prostheses. Conical and cylindrical titanium copings performed similarly when cemented to zirconia with Panavia SA cement under the same protocol. The stability of the bonded interface and retention forces between zirconia prostheses and titanium copings varied from the cement used.


Sujet(s)
Silicates d'aluminium , Implants dentaires , Titane , Ciments dentaires , Céments résine , Zirconium , Ciment ionomère au verre , Résines acryliques , Adaptation psychologique , Test de matériaux , Analyse du stress dentaire , Rétention de prothèse dentaire , Propriétés de surface
18.
Cureus ; 15(11): e48189, 2023 Nov.
Article de Anglais | MEDLINE | ID: mdl-38054115

RÉSUMÉ

Background One of the frequent aesthetic issues patients confront is the loss of colour and lifeless appearance of the dentures of the base materials of their dentures after regular use. This leads to a lack of motivation to use the denture regularly. Due to the drawbacks of conventional PMMA, polyether ether ketone (PEEK) and newer polymethyl methacrylate (PMMA)-based materials have now started being used in cast partial denture frameworks due to their superior physical and biological properties. The lack of long-lasting colour is one of the main reasons for the repeat of dental prostheses. Hence, the need for the study is to help clinicians decide which would be the most suitable denture base material to be used based on colour stability. Aim To assess and compare the colour stability of PEEK, polyan, and biodentaplast denture base materials (DBMs) upon staining with distilled water, tea, coffee, and turmeric solutions after one day, seven days, and 30 days. Methods A total of 20 cuboidal specimens were constructed and immersed in distilled water, tea, coffee, and turmeric (five specimens of each material in each solution, a total of 60 specimens): Group 1: PEEK, Group 2: polyan, Group 3: biodentaplast. All specimens were subjected to colour measurements before exposure to beverage solutions, after 24 hours, on the seventh day and 30th day with a colour reflectance spectrophotometer with computer software. A one-way ANOVA test followed by post hoc Tukey's honestly significant difference (HSD) was performed for comparison of colour stability between the DBMs, revealing a significant difference between PEEK and polyan and PEEK and biodentaplast. Polyan showed the highest delta E values, followed by biodentaplast and PEEK. A two-way ANOVA test, followed by Tukey's HSD post hoc, was done to compare the staining ability of various staining solutions. Turmeric had the highest delta E values, followed by coffee, tea, and distilled water. Data were assessed using Statistical Product and Service Solutions (SPSS, version 23) (IBM SPSS Statistics for Windows, Armonk, NY) software. Results The highest mean delta E value at T1 was seen in biodentaplast immersed in turmeric (12.3900+/-0.442), and the least value at T1 was obtained for PEEK immersed in distilled water (0.4460+/-0.036). The highest mean delta E value at T2 was seen in polyan immersed in turmeric (13.0160+/-0.28962), and the least value at T2 was obtained for PEEK immersed in distilled water (0.5860+/-0.051). At T3, the highest mean delta E value was seen in polyan immersed in turmeric (16.8600+/-0.49845), and the least value at T3 was obtained for PEEK immersed in distilled water (0.700+/-0.037). Conclusion PEEK had the highest colour stability when compared with polyan and biodentaplast.

19.
Antibiotics (Basel) ; 12(11)2023 Nov 17.
Article de Anglais | MEDLINE | ID: mdl-37998832

RÉSUMÉ

To assess the effect of hygiene protocols and time on the physical-mechanical properties and colony-forming units (CFU) of Candida albicans, Staphylococcus aureus, and Streptococcus mutans on 3D-printed denture resins (SmartPrint and Yller) with extrinsic pigmentation compared to conventional resin (CR). The protocols were evaluated: brushing (B), brushing and immersion in water (W), 0.25% sodium hypochlorite (SH), and 0.15% triclosan (T), simulating 0, 1, 3, and 5 years. The data were analyzed by ANOVA with repeated measurements, ANOVA (Three-way) and Tukey's post-test, generalized linear model with Bonferroni adjustment, and ANOVA (Two-way) and Tukey's post-test (α = 0.05). The protocols influenced color (p = 0.036) and Knoop hardness (p < 0.001). Surface roughness was influenced by protocols/resin (p < 0.001) and time/resin (p = 0.001), and flexural strength by time/protocols (p = 0.014). C. albicans showed interactions with all factors (p = 0.033). Staphylococcus aureus was affected by protocols (p < 0.001). Streptococcus mutans exhibited no count for SH and T (p < 0.001). Yller resin showed more color changes. The 3D-printed resins displayed lower microhardness, increased roughness, and decreased flexural strength compared to CR with all protocols in a simulated period of 5 years. The indication of printed resins should be restricted to less than 3 years.

20.
BMC Oral Health ; 23(1): 844, 2023 11 08.
Article de Anglais | MEDLINE | ID: mdl-37940890

RÉSUMÉ

BACKGROUND: This study aimed to determine the relative positioning accuracy of multiple implants utilizing four distinct types of splinting materials. METHODS: The purpose of this in-vitro study was to compare the precision of four splinting materials in an open tray impression technique in multiple implant situations. Based on the material used for splinting, four groups were made (n = 40)- Group A: Conventional Method, Group B: Prefabricated Pattern Resin Framework, Group C: Prefabricated Metal Framework, Group D: Light Cured Pattern Resin, these groups were compared with the master model. A heat-cured clear acrylic resin and a master model were constructed. A pilot milling machine drill was used to drill four parallel holes in the anterior and premolar regions, which were later labeled as A, B, C, and D positions from right to left. Then, sequential drilling was carried out, and four 3.75­mm diameter and 13-mm long ADIN implant analogs with internal hex were placed in the acrylic model using a surveyor for proper orientation. The impression posts were then manually screwed to the implant analogs using an open tray, and they were secured to the implants using 10 mm flat head guide pins with a 15 N.cm torque. 10 Open tray polyether impressions were made, and casts were poured. Each splinting method's distortion values were measured using a coordinate measuring machine capable of recordings in the X-, Y-, and Z-axes. Comparison of mean distances for X1, X2, and X3 was made using the Kruskal-Wallis test, and Pairwise comparison was done using Post Hoc Tukey's Test. RESULTS: The differences between the groups were significant when assessing the distances X1, X2, and X3 (p < 0.05). The comparison of deviations between the groups revealed a statistically significant difference (p < 0.05) for the deviation distance X3 but not for the deviation distances X1 and X2. For distance Y1, the difference between the groups was statistically significant (p0.05), but it was not significant for distances Y2 and Y3. A statistically significant difference was seen in the comparison between the groups (p < 0.05) for the deviation distances Y1, Y2, and Y3. The results were statistically significant for the distance Z1 comparisons, namely, control vs. Group A (p = 0.012), control vs. Group B (p = 0.049), control vs. Group C (p = 0.048), and control vs. Group D (p = 0.021), and for distance Z3 comparison for control vs. Group A (p = 0.033). The results were statistically insignificant for the distance Z2 comparisons (p > 0.05). CONCLUSIONS: All splinting materials produced master casts with measurements in close proximity to the reference model. However, prefabricated pattern resin bars splinting showed the highest accuracy among the studied techniques. The most recent splinting techniques using prefabricated metal framework and light-cure pattern resin showed similar accuracy.


Sujet(s)
Implants dentaires , Humains , Technique de prise d'empreinte , Matériaux empreinte dentaire , Modèles dentaires , Résines acryliques
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE