Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 25
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Talanta ; 279: 126539, 2024 Nov 01.
Article de Anglais | MEDLINE | ID: mdl-39033603

RÉSUMÉ

A sensitive and isotopic interference-free analysis method for Sb was developed based on hydride generation-microwave plasma torch-mass spectrometry (HG-MPT-MS). Compared to the conventional ICP-MS, MPT coupled to an ion trap mass spectrometer enabled much "softer" ionization of Sb under ambient condition, which provided multi-detection modes and various ion forms, such as Sb+, SbO+, SbO2-, SbO++H2O and so on. These ion formations can be easily regulated by tuning capillary voltage and tube lens voltage, which facilitated elimination of isotopic interference during analysis, for instance the interference of 123Te on 123Sb could be effectively excluded by optimizing parameters of capillary voltage and tube lens voltage. The potential application of HG-MPT-MS for Sb isotope ratio analysis was also demonstrated, which could be determined in different forms, e.g., 123Sb/121Sb or 123Sb16O/121Sb16O. The value of 123Sb/121Sb was determined to be 0.75110 ± 0.00038 (2σ, n > 50). In addition, the detection limit, linearity and spike recovery were also studied. Overall, HG-MPT-MS performed equally well on detection limit (0.05 µg/L) with ICP-MS or HG-AFS. The linearity (R2 = 0.998) was checked in the concentration range of 10-500 µg/L. Spike recovery were evaluated with two soil samples, and the obtained spike recovery ranged 90-100 %. In general, HG-MPT-MS was expected to be a versatile tool for study the biochemical or geochemical behaviors of Sb and other hydride forming elements under ambient condition in a much simpler and more efficient way.

2.
Food Chem ; 454: 139802, 2024 Oct 01.
Article de Anglais | MEDLINE | ID: mdl-38797098

RÉSUMÉ

Direct surface analysis in ambient conditions provides information on the position and chemical composition of an object at the time of investigation. An angled sampling probe is developed in this work for direct analysis in real time (DART) ionization high-resolution mass spectrometry. The DART ion source and the interface were modified for improved surface resolution, increased ion transfer efficiency, as well as enabling two-dimensional surface scanning. The angled probe DART-MS system was used for investigating a variety of food samples including fruit peels, ginseng root, plant leaves and sections of radish. Abundant signals and distinct chemical profiles are obtained in seconds, and spatial distribution of different molecules across the sample surfaces can be observed. In addition, the developed system can quickly identify the chemical changes when the surfaces were treated. The method is capable of directly evaluating food sample surfaces with different shapes, hardness, and conditions, without any sample pretreatments.


Sujet(s)
Fruit , Spectrométrie de masse , Spectrométrie de masse/méthodes , Fruit/composition chimique , Produits biologiques/composition chimique , Produits biologiques/analyse , Analyse d'aliment/méthodes , Raphanus/composition chimique , Panax/composition chimique , Feuilles de plante/composition chimique , Racines de plante/composition chimique
3.
Environ Sci Technol ; 2024 Feb 08.
Article de Anglais | MEDLINE | ID: mdl-38329941

RÉSUMÉ

Perfluoroalkyl substances (PFAS) are a class of persistent organic pollutants known as "forever chemicals". Currently, the hydrated electron-based advanced reduction process (ARP) holds promise for the elimination of PFAS. However, the efficiency of ARP is often challenged by an oxygen-rich environment, resulting in the consumption of hydrated electron source materials in exchange for the high PFAS decomposition efficiency. Herein, we developed a ternary system constructed by indole and isopropyl alcohol (IPA), and the addition of IPA significantly enhanced the PFOA degradation and defluorination efficiency in the presence of low-concentration indole (<0.4 mM). Meanwhile, opposite results were obtained with a higher amount of indole (>0.4 mM). Further exploring the molecular mechanism of the reaction system, the addition of IPA played two roles. On one hand, IPA built an anaerobic reaction atmosphere and improved the yield and utilization efficiency of hydrated electrons with a low concentration of indole. On the other hand, IPA suppressed the attraction between indole and PFOA, thus reducing the hydrated electron transfer efficiency, especially with more indole. In general, the indole/PFAS/IPA system significantly improved the PFAS destruction efficiency with a small amount of hydrated electron donors, which provided new insights for development of simple and efficient techniques for the treatment of PFAS-contaminated wastewater.

4.
Small ; 20(8): e2305765, 2024 Feb.
Article de Anglais | MEDLINE | ID: mdl-37821399

RÉSUMÉ

Solid proton electrolytes play a crucial role in various electrochemical energy storage and conversion devices. However, the development of fast proton conducting solid proton electrolytes at ambient conditions remains a significant challenge. In this study, a novel acidified nitrogen self-doped porous carbon material is presented that demonstrates exceptional superprotonic conduction for applications in solid-state proton battery. The material, designated as MSA@ZIF-8-C, is synthesized through the acidification of nitrogen-doped porous carbon, specifically by integrating methanesulfonic acid (MSA) into zeolitic imidazolate framework-derived nitrogen self-doped porous carbons (ZIF-8-C). This study reveals that MSA@ZIF-8-C achieves a record-high proton conductivity beyond 10-2  S cm-1 at ambient condition, along with good long-term stability, positioning it as a cutting-edge alternative solid proton electrolyte to the default aqueous H2 SO4 electrolyte in proton batteries.

5.
HardwareX ; 16: e00497, 2023 Dec.
Article de Anglais | MEDLINE | ID: mdl-38148973

RÉSUMÉ

The Modular Automated Crop Array Online System (MACARONS) is a scalable, customisable and open-sourced platform designed for plant care, monitoring, and transportation. It offers specific dosing for individual plants, automated data logging of temperature, humidity, and images, and custom behaviours programmable in Python. Monitoring and control of the system is achieved through a web-interface. The system was validated by autonomously caring for five lettuce plants over a five-week period. This was done indoors under artificial lighting and uncontrolled ambient conditions. The system is estimated to perform the tasks required 30% faster than a human operator and can handle payloads of up to 5 kg with a maximum footprint of 750 mm × 500 mm. The validated system supports 12 payloads and can be easily scaled to accommodate more. The designs are released and meets the requirements of CERN-OSH-W, which includes step-by-step graphical build instructions and can be built at a cost of GBP 2241.72 (USD 2793.82). The system aims to provide cost-effective automation to reduce labour costs and provide precise control of irrigation and nutrients. The current system is limited by the dosing time and the space-use efficiency. We provided future directions and modifications that can be made to address this.

6.
ACS Appl Mater Interfaces ; 15(36): 42697-42705, 2023 Sep 13.
Article de Anglais | MEDLINE | ID: mdl-37650768

RÉSUMÉ

Metal halide perovskite solar cells (PSCs) have recently made significant progress with power conversion efficiencies (PCEs) boosted from 3.8% to a certified one over 26.1%, partially benefiting from the high-quality perovskite film enabled by the effective one-step spin-coating route. However, an extra antisolvent step with poor controllability and producibility is often involved in such a process, and some intrinsic defects are generated inevitably, especially in ambient atmospheric conditions, thus fundamentally limiting the commercialization of PSCs. Here, we introduce 1,1'dimethyl ferrocene into methylammonium lead halide precursor, which could not only recover the defects within perovskite film but also simplify the process without the extra antisolvent step. Accordingly, a dense and uniform perovskite film with large grains has been obtained under ambient conditions, which has much lower defect density, better stability against moisture penetration, and enhanced thermal tolerance than the control one, delivering a champion PCE of 16.92%. Current work sheds light on the simplified air-processed strategy for high-quality perovskite films, which might pave the way for exploring efficient and stable PSCs toward industrial applications.

7.
J Hazard Mater ; 458: 131969, 2023 Sep 15.
Article de Anglais | MEDLINE | ID: mdl-37399727

RÉSUMÉ

Surface alkali metal ions are typically utilized as available promoters for ambient HCHO oxidation. In this study, NaCo2O4 nanodots with two different preferential crystallographic orientations are synthesized by facile attachment to SiO2 nanoflakes with varying degrees of lattice defects. A unique Na-rich environment is established through interlayer Na+ diffusion based on the small size effect. The optimized catalyst Pt/HNaCo2O4/T2 can deal with HCHO below 5 ppm in the static measurement system with a sustained release background and produces approximately 40 ppm of CO2 in 2 h. Combining the experimental analyses with density functional theory (DFT) calculations, the possible catalytic enhancing mechanism is proposed from the support promotion perspective, and the positive synergistic effect of Na-rich, oxygen vacancies and optimized facets for Pt-dominant ambient HCHO oxidation via both kinetic and thermodynamic processes is confirmed.

8.
Chemosphere ; 338: 139621, 2023 Oct.
Article de Anglais | MEDLINE | ID: mdl-37487973

RÉSUMÉ

The earth's nitrogen cycle relies on the effective conversion of nitrogen (N2) to ammonia (NH3). As a result, the research and development of catalysts that are earth-abundant, inexpensive, and highly efficient but do not need precious metals is of the utmost significance. In this investigation, we present a controlled synthesis technique to the fabrication of an iron oxide (Fe2O3) nanosheet array by annealing at temperatures ranging from 350 to 550 °C. This array will be used for the electrochemical reduction of atmospheric N2 to NH3 in electrolytes. The Fe2O3 nanosheet array that was produced as a result displays outstanding electrochemical performance as well as remarkable stability. When compared to a hydrogen electrode working under normal temperature and pressure conditions, the Fe2O3 nanosheet array produces an impressive NH3 production rate of 18.04 g per hour per mg of catalytically active material in 0.1 M KOH electrolyte, exhibiting an enhanced Faradaic efficiency (FE) of 13.5% at -0.35 V. This is accomplished by exhibiting an enhanced Faradaic efficiency (FE) of 0.1 M KOH electrolyte. The results of experiments and electrochemical studies reveal that the existence of cation defects in the Fe2O3 nanosheets plays an essential part in the enhancement of the electrocatalytic activity that takes place during nitrogen reduction reactions (NRR). This study not only contributes to the expanding family of transition-metal-based catalysts with increased electrocatalytic activity for NRR, but it also represents a substantial breakthrough in the design of catalysts that are based on transition metals, so it's a win-win. In addition, the use of Fe2O3 nanosheets as electrocatalysts has a lot of potential in algal membrane bioreactors because it makes nitrogen fixation easier, it encourages algae growth, and it makes nitrogen cycling more resource-efficient.


Sujet(s)
Ammoniac , Bioréacteurs , Études prospectives , Azote
9.
Nanomicro Lett ; 15(1): 164, 2023 Jun 29.
Article de Anglais | MEDLINE | ID: mdl-37386337

RÉSUMÉ

With the rapid rise in perovskite solar cells (PSCs) performance, it is imperative to develop scalable fabrication techniques to accelerate potential commercialization. However, the power conversion efficiencies (PCEs) of PSCs fabricated via scalable two-step sequential deposition lag far behind the state-of-the-art spin-coated ones. Herein, the additive methylammonium chloride (MACl) is introduced to modulate the crystallization and orientation of a two-step sequential doctor-bladed perovskite film in ambient conditions. MACl can significantly improve perovskite film quality and increase grain size and crystallinity, thus decreasing trap density and suppressing nonradiative recombination. Meanwhile, MACl also promotes the preferred face-up orientation of the (100) plane of perovskite film, which is more conducive to the transport and collection of carriers, thereby significantly improving the fill factor. As a result, a champion PCE of 23.14% and excellent long-term stability are achieved for PSCs based on the structure of ITO/SnO2/FA1-xMAxPb(I1-yBry)3/Spiro-OMeTAD/Ag. The superior PCEs of 21.20% and 17.54% are achieved for 1.03 cm2 PSC and 10.93 cm2 mini-module, respectively. These results represent substantial progress in large-scale two-step sequential deposition of high-performance PSCs for practical applications.

10.
Front Bioeng Biotechnol ; 11: 1169124, 2023.
Article de Anglais | MEDLINE | ID: mdl-37251573

RÉSUMÉ

The proper microenvironment is critical for the storage and transportation of embryonic stem cells (ESCs). To mimic a dynamic 3D microenvironment as it exists in vivo and consider "off-the-shelf" availability reaching the destination, we proposed an alternative approach that allows for facile storage and transportation of stem cells in the form of ESCs-dynamic hydrogel construct (CDHC) under ambient conditions. To form CDHC, mouse embryonic stem cells (mESCs) were in-situ encapsulated within a polysaccharide-based dynamic and self-biodegradable hydrogel. After storing CDHC in a sterile and hermetic environment for 3 days and then transferring to a sealed vessel with fresh medium for another 3 days, the large and compact colonies retained a 90% survival rate and pluripotency. Furthermore, after transporting and arriving at the destination, the encapsulated stem cell could be automatically released from the self-biodegradable hydrogel. After continuous cultivation of 15 generations of retrieved cells, automatically released from the CDHC, the mESCs underwent 3D encapsulation, storage, transportation, release, and continuous long-term subculture; resumed colony forming capacity and pluripotency were revealed by stem cell markers both in protein and mRNA levels. We believe that the dynamic and self-biodegradable hydrogel provides a simple, cost-effective, and valuable tool for storing and transporting "ready-to-use" CDHC under ambient conditions, facilitating "off-the-shelf" availability and widespread applications.

11.
Micromachines (Basel) ; 13(4)2022 Mar 25.
Article de Anglais | MEDLINE | ID: mdl-35457813

RÉSUMÉ

In recent decades, the research of nano-structure devices (e.g., carbon nanotube and graphene) has experienced rapid growth. These materials have supreme electronic, thermal, optical and mechanical properties and have received widespread concern in different fields. It is worth noting that gate hysteresis behavior of field effect transistors can always be found in ambient conditions, which may influence the transmission appearance. Many researchers have put forward various views on this question. Here, we summarize and discuss the mechanisms behind hysteresis, different influencing factors and improvement methods which help decrease or eliminate unevenness and asymmetry.

12.
Nanomicro Lett ; 14(1): 79, 2022 Mar 25.
Article de Anglais | MEDLINE | ID: mdl-35333995

RÉSUMÉ

Perovskite solar cells (PSCs) have attracted tremendous attention as a promising alternative candidate for clean energy generation. Many attempts have been made with various deposition techniques to scale-up manufacturing. Slot-die coating is a robust and facile deposition technique that can be applied in large-area roll-to-roll (R2R) fabrication of thin film solar cells with the advantages of high material utilization, low cost and high throughput. Herein, we demonstrate the encouraging result of PSCs prepared by slot-die coating under ambient environment using a two-step sequential process whereby PbI2:CsI is slot-die coated first followed by a subsequent slot-die coating of organic cations containing solution. A porous PbI2:CsI film can promote the rapid and complete transformation into perovskite film. The crystallinity and morphology of perovskite films are significantly improved by optimizing nitrogen blowing and controlling substrate temperature. A power conversion efficiency (PCE) of 18.13% is achieved, which is promising for PSCs fabricated by two-step fully slot-die-coated devices. Furthermore, PSCs with a 1 cm2 area yield a champion PCE of 15.10%. Moreover, a PCE of 13.00% is obtained on a flexible substrate by the roll-to-roll (R2R) coating, which is one of the highest reported cells with all layers except for metal electrode fabricated by R2R process under ambient condition.

13.
ACS Appl Mater Interfaces ; 14(7): 9264-9271, 2022 Feb 23.
Article de Anglais | MEDLINE | ID: mdl-35138786

RÉSUMÉ

Seeking fast proton transport pathways at ambient conditions is desirable but challenging. Here, we report a strategy to synthesize a composite material with a polyoxometalate (POM) and an ionic liquid (IL) confined in stable metal-organic framework (MOF) channels through electrostatic interaction. The obtained SO3H-IL-PMo12@MIL-101 possesses fast proton transfer, and its proton conductivity can reach 1.33 × 10-2 S cm-1 at ambient conditions (30 °C, 70% relative humidity (RH)), which is the highest value among the MOF-based proton conductors operated in an ambient environment. Therefore, it has the potential of becoming a room-temperature proton conductor without a humidifier. Importantly, the composite material is further fabricated into a composite membrane for proton-exchange membrane fuel cells (PEMFCs), which can deliver a power density of 0.93 mW cm-2 at 30 °C and 98% RH. This result can lay a fundamental basis for the application of MOF-based proton conductors in the area of electrochemical energy conversion.

14.
J Hazard Mater ; 421: 126769, 2022 Jan 05.
Article de Anglais | MEDLINE | ID: mdl-34388924

RÉSUMÉ

Surface hydroxyl is widely perceived as conducive to HCHO degradation. Here, a kind of sodium titanate with interlayered hydroxyls (NaTi2HO5) was prepared to study the action conditions of surface hydroxyls in HCHO oxidation. The nanotubes mainly exposing (001) and nanobelts mainly exposing (100) are synthesized as the two morphologies of NaTi2HO5. We found the (001) facet is much more favored to HCHO adsorption via HRTEM and XPS analysis. The DFT calculations prove that the synergy of surface hydroxyl and Na atom is perfect for HCHO chemisorption. By this means NaTi2HO5 nanotubes can partially oxidize HCHO into formate and release very few CO, measured by in situ DRIFTS. Dominated by Pt nanoparticles, the complete oxidation of HCHO can be performed on NaTi2HO5 nanotubes with enhanced early reaction speed. Rather than simple surface hydroxyl, the effective synergy of hydroxyl and positive ion is proposed as an advantage for HCHO oxidation.

15.
ACS Nano ; 15(12): 20079-20086, 2021 Dec 28.
Article de Anglais | MEDLINE | ID: mdl-34860010

RÉSUMÉ

The adsorption states of N2 and H2 on MgO-supported Ru nanoparticles under conditions close to those of ammonia synthesis (AS; 1 atm, 250 °C) were uncovered by modulation-excitation infrared spectroscopy and density functional theory calculations using a nanoscale Ru particle model. The two most intense N2 adsorption peaks corresponded to the vertical chemisorption of N2 on the nanoparticle's top and bridge sites, while the remaining peaks were assigned to horizontally adsorbed N2 in view of the site heterogeneity of Ru nanoparticles. Long-term observations showed that vertically adsorbed N2 molecules gradually migrated from the top sites to the bridge sites. Compared to those adsorbed vertically, N2 molecules adsorbed horizontally exhibited a lower dipole moment, an increased N─N bond distance, and a decreased N─N bond order (i.e., were activated), which was ascribed to enhanced Ru-to-N charge transfer. H2 molecules were preferentially adsorbed horizontally on top sites and then rapidly dissociated to afford strongly surface-bound H atoms and thus block the active sites of Ru nanoparticles. Our results clarify the controversial adsorption/desorption behavior of N2 and H2 on AS catalysts and facilitate their further development.

16.
Angew Chem Int Ed Engl ; 60(24): 13621-13625, 2021 Jun 07.
Article de Anglais | MEDLINE | ID: mdl-33751767

RÉSUMÉ

We report herein a facile and generalized approach to the modification of solid surfaces with polymer brushes under ambient conditions: filter paper-assisted surface-initiated Cu0 -mediated controlled radical polymerization (PSI-CuCRP). The polymerization solution wetted filter paper is sandwiched between a copper plate and an initiator-modified substrate, which allows the creation of a surface-initiated polymerization (SIP) "band-aid" so that everyone can perform the surface grafting selectively with good control over the quality of the polymer brushes employing low concentration and microliter amounts of the monomer solution. The versatility of this method is demonstrated by grafting different homo-, block-, and multicomponent polymer brushes by using the same activation system and reaction conditions, the polymerization process can be precisely controlled to yield uniform polymers and show high chain-end functionality which is exemplified by in situ tetra-copolymerization. The combination of photolithography and paper cutting enables to prepare arbitrary three-dimensional patterned polymer brushes on the surface.

17.
Sci Total Environ ; 778: 146362, 2021 Jul 15.
Article de Anglais | MEDLINE | ID: mdl-33725598

RÉSUMÉ

Solar assisted heat pump (SAHP) systems aim to increase the performance of heat pumps by supporting with solar energy using various heating modes, whose performances depend on ambient conditions. In the literature, SAHP systems are classified by structure types, and the heating mode options are not considered as the main priority of the design but a result of the structure of the system. This paper aimed to investigate the effect of ambient conditions on heating modes, and identify the preferable ambient condition ranges for each SAHP system depends on their heating modes, by using a narrative review of 47 recent studies, that shed light on the problem. For this purpose, direct solar heating (DSH), air source heat pump (ASHP), solar source heat pump (SSHP) and solar-air source heat pump (S/ASHP) modes were stated as the basic heating modes of SAHP systems. In accordance with the literature, SAHP systems were classified as direct expansion solar assisted heat pump (DX-SAHP) and series, parallel and dual source indirect expansion solar assisted heat pumps (IDX-SAHP). Solar irradiation, ambient temperature, relative humidity and wind speed has been taken as major ambient conditions to investigate. Reviewed studies indicated that, parallel and series IDX-SAHP are preferable in high solar irradiations about 800 W/m2 with their DSH mode options. Frosting on evaporator is prevented in DX-SAHP with its S/ASHP mode, and even in the presence of frosting, unlike IDX-SAHPs ASHP mode, freezing is a factor that improves performance on flat evaporator in cold and humid conditions. This study indicates that there are obscure areas for future studies to focus on for a better comparison between SAHP types. Moreover, proposed novel designs of this paper, such as solar preheating of air in IDX-SAHP systems to add S/ASHP mode as an option, might enhance the performance and applicability of SAHP systems.

18.
Nanoscale Res Lett ; 15(1): 178, 2020 Sep 16.
Article de Anglais | MEDLINE | ID: mdl-32936365

RÉSUMÉ

Although the power conversion efficiency (PCE) of perovskite solar cells (PSCs) increases rapidly, there are still some issues that limit their commercialization. The perovskite is sensitive to the water molecules, increasing the difficulty in the preparation of perovskite films in ambient condition. Most high-performance PSCs based on conventional method are required to be prepared in inert atmosphere condition, which increase the fabrication cost. To fabricate the high-quality perovskite in ambient condition, we preheated the substrates and selected the proper anti-solvent. As a result, the target perovskite films show a better crystallinity compared with perovskite film prepared via the conventional one-step deposition method in ambient condition. The PSCs prepared in ambient condition yield the improved PCE of 16.89% from a PCE of 11.59%. Compared with the reference devices, the performance stability of target PSCs is much better than that of reference PSCs.

19.
Article de Anglais | MEDLINE | ID: mdl-32674282

RÉSUMÉ

This study assesses the status of hydration and the acid-base balance in female handball players in the Polish Second League before and after simulated matches in both indoor (hall) and beach (outdoor) conditions. The values of biochemical indicators useful for describing water-electrolyte management, such as osmolality, hematocrit, aldosterone, sodium, potassium, calcium, chloride and magnesium, were determined in the players' fingertip capillary blood. Furthermore, the blood parameters of the acid-base balance were analysed, including pH, standard base excess, lactate and bicarbonate ion concentration. Additionally, the pH and specific gravity of the players' urine were determined. The level of significance was set at p < 0.05. It was found that both indoor and beach simulated matches caused post-exercise changes in the biochemical profiles of the players' blood and urine in terms of water-electrolyte and acid-base balance. Interestingly, the location of a simulated match (indoors vs. beach) had a statistically significant effect on only two of the parameters measured post-exercise: concentration of calcium ions (lower indoors) and urine pH (lower on the beach). A single simulated game, regardless of its location, directly affected the acid-base balance and, to a smaller extent, the water-electrolyte balance, depending mostly on the time spent physically active during the match.


Sujet(s)
Équilibre acido-basique , Sports , Équilibre hydroélectrolytique , Hydrogénocarbonates , Femelle , Humains , Concentration osmolaire , Sports/physiologie , Jeune adulte
20.
ACS Nano ; 14(5): 6249-6257, 2020 May 26.
Article de Anglais | MEDLINE | ID: mdl-32356971

RÉSUMÉ

Graphene aerogels (GAs) with attractive properties have shown tremendous potentials in energy- and environment-related applications. Unfortunately, current assembly methods for GAs such as sol-gel and freeze-casting processes must be conducted in enclosed spaces with unconventional conditions, thus being literally inoperative for in situ and continuous productions. Herein, a direct slurry-casting method at open ambient conditions is established to arbitrarily prepare three-dimensional (3D) porous graphene oxide (GO) bulks without macroscopic dimension limits on a wide range of solid surfaces by retarding Ostwald ripening of 3D liquid GO foams when being dried in air. A subsequent fast thermal reduction (FTR) of GO foams leads to the formation of graphene aerogels (denoted as FTR-GAs) with hierarchical closed-cellular graphene structures. The FTR-GAs show outstanding high-temperature thermal insulation (70% decrease for 400 °C), as well as superelasticity (>1000 compression-recovery cycles at 50% strain), ultralow density (10-28 mg cm-3), large specific surface area (BET, 206.8 m2 g-1), and high conductivity (ca. 100 S m-1). This work provides a viable method to achieve in situ preparations of high-performance GAs as multifunctional structural materials in aircrafts, high-speed trains, or even buildings for the targets of energy efficiency, comfort, and safety.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE