Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres











Gamme d'année
1.
Int. j interdiscip. dent. (Print) ; 14(3): 222-225, dic. 2021. ilus, graf
Article de Anglais | LILACS | ID: biblio-1385222

RÉSUMÉ

ABSTRACT: Objective: To compare the structural and antibacterial properties of a Laser - treated commercial dental implant (No-Itis®) with those of a traditional sandblasted and acid-etched (SLA) implant. Materials and Methods: Surface topography and elemental composition of the implant surfaces were analyzed by using scanning electron microscopy (SEM) coupled to dispersive X - ray spectrometry (EDX). The antibacterial properties of the implants were tested against Aggregatibacter actinomycetemcomitans. Protein adsorption capacity and bioactivity in simulated body fluid (SBF) of the implant surfaces were also analyzed. Results: The Laser - treated implant presents a topography constituted by smooth and uniform concavities of ~ 30 µm in diameter, free of Laser - induced alterations, and impurity elements. The Laser - textured surface demonstrated to significantly (p = 0.0132) reduce by up to around 61% the bacterial growth as compared with the SLA implant, which was found to be associated to a reduced adhesion of proteins on the Laser surface. No apatite - related mineral deposits were detected on the SBF - incubated surfaces. Conclusion: The smooth Laser - designed surface exhibits an antimicrobial effect that decreases the growth of bacterial biofilm on its surface, which could contribute to reduce the risk of peri-implantitis.


Sujet(s)
Humains , Implants dentaires , Lasers , Antibactériens/usage thérapeutique , Étude comparative
2.
ACS Appl Bio Mater ; 4(12): 8559-8570, 2021 12 20.
Article de Anglais | MEDLINE | ID: mdl-35005911

RÉSUMÉ

The spreading of different infections can occur through direct contact with glass surfaces in commonly used areas. Incorporating the use of alternative therapies in these materials seems essential to reduce and also avoid bacterial resistance. In this work, the capability to kill microbes of glass surfaces coated with two electroactive metalated phthalocyanines (ZnPc-EDOT and CuPc-EDOT) is assessed. The results show that both of these materials are capable of producing reactive oxygen species; however, the polymer with Zn(II) (ZnPc-PEDOT) has a singlet oxygen quantum yield 8-fold higher than that of the Cu(II) containing analogue. This was reflected in the in vitro experiments where the effectiveness of the surfaces was tested in bacterial suspensions, monitoring single microbe inactivation upon attachment to the polymers, and eliminating mature biofilms. Furthermore, we evaluated the use of an inorganic salt (KI) to potentiate the photodynamic inactivation mediated by an electropolymerized surface. The addition of the salt improved the efficiency of phototherapy at least two times for both polymers; nevertheless, the material coated with ZnPc-PEDOT was the only one capable of eliminating >99.98% of the initial microbes loading under different circumstances.


Sujet(s)
Anti-infectieux , Iode , Iodures , Photosensibilisants/pharmacologie , Polymères/pharmacologie , Oxygène singulet
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE