Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 34
Filtrer
Plus de filtres











Gamme d'année
1.
Foods ; 13(13)2024 Jun 24.
Article de Anglais | MEDLINE | ID: mdl-38998497

RÉSUMÉ

The influence of the geographical location on the chemical composition of commercial Sauvignon Blanc wines was investigated. The assay was carried out on Sauvignon Blanc wines from three cold-climate valleys in Central Chile, Casablanca, Leyda, and San Antonio. The analyses revealed clear variations in some chemical parameters, especially in titratable acidity, which was higher in the geographical areas closest to the Pacific Ocean, such as the Leyda and San Antonio valleys. Regarding the composition of low-molecular-weight phenolic compounds, 17 compounds were found, and the results show that the Casablanca valley exhibits a greater abundance of monomeric flavanols, such as (+)-catechin, whereas the Leyda valley shows a higher abundance in flavonols and phenolic acids esterified with tartaric acid. Concerning the aromatic compound profile, the wines from the Casablanca valley showed a greater abundance of esters, C13 norisoprenoids, and some terpenes. The PLS-DA analysis revealed some differences, especially between wines from Casablanca and Leyda, demonstrating that the difference in the chemical composition of the wines was influenced by the geographical area.

2.
Talanta ; 277: 126418, 2024 Sep 01.
Article de Anglais | MEDLINE | ID: mdl-38879948

RÉSUMÉ

Polycyclic aromatic compounds (PACs) encompass a wide variety of organic analytes that have mutagenic and carcinogenic potentials for human health and are recalcitrant in the environment. Evaluating PACs levels in fuel (e.g., gasoline and diesel), food (e.g., grilled meat, fish, powdered milk, fruits, honey, and coffee) and environmental (e.g., industrial effluents, water, wastewater and marine organisms) samples are critical to determine the risk that these chemicals pose. Deep eutectic solvents (DES) have garnered significant attention in recent years as a green alternative to traditional organic solvents employed in sample preparation. DES are biodegradable, have low toxicities, ease of synthesis, low cost, and a remarkable ability to extract PACs. However, no comprehensive assessment of the use of DESs for extracting PACs from fuel, food and environmental samples has been performed. This review focused on research involving the utilization of DESs to extract PACs in matrices such as PAHs in environmental samples, NSO-HET in fuels, and bisphenols in foods. Chromatographic methods, such as gas chromatography (GC) and high-performance liquid chromatography (HPLC), were also revised, considering the sensibility to quantify these compound types. In addition, the characteristics of DES and advantages and limitations for PACs in the context of green analytical chemistry principles (GAC) and green profile based on metrics provide perspective and directions for future development.


Sujet(s)
Solvants eutectiques profonds , Hydrocarbures aromatiques polycycliques , Hydrocarbures aromatiques polycycliques/analyse , Hydrocarbures aromatiques polycycliques/isolement et purification , Hydrocarbures aromatiques polycycliques/composition chimique , Solvants eutectiques profonds/composition chimique , Analyse d'aliment/méthodes , Contamination des aliments/analyse
3.
Int J Biol Macromol ; 270(Pt 1): 132294, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38735602

RÉSUMÉ

Polycyclic aromatic hydrocarbons (PAHs) are molecules with two or more fused aromatic rings that occur naturally in the environment due to incomplete combustion of organic substances. However, the increased demand for fossil fuels in recent years has increased anthropogenic activity, contributing to the environmental concentration of PAHs. The enzyme chlorocatechol 1,2-dioxygenase from Pseudomonas putida (Pp 1,2-CCD) is responsible for the breakdown of the aromatic ring of catechol, making it a potential player in bioremediation strategies. Pp 1,2-CCD can tolerate a broader range of substrates, including halogenated compounds, than other dioxygenases. Here, we report the construction of a chimera protein able to form biomolecular condensates with potential application in bioremediation. The chimera protein was built by conjugating Pp 1,2-CCD to low complex domains (LCDs) derived from the DEAD-box protein Dhh1. We showed that the chimera could undergo liquid-liquid phase separation (LLPS), forming a protein-rich liquid droplet under different conditions (variable protein and PEG8000 concentrations and pH values), in which the protein maintained its structure and main biophysical properties. The condensates were active against 4-chlorocatechol, showing that the chimera droplets preserved the enzymatic activity of the native protein. Therefore, it constitutes a prototype of a microreactor with potential use in bioremediation.


Sujet(s)
Dépollution biologique de l'environnement , Dioxygenases , Hydrocarbures aromatiques polycycliques , Dioxygenases/métabolisme , Dioxygenases/composition chimique , Hydrocarbures aromatiques polycycliques/composition chimique , Hydrocarbures aromatiques polycycliques/métabolisme , Pseudomonas putida/enzymologie , Catéchols/métabolisme , Catéchols/composition chimique , Protéines bactériennes/composition chimique , Protéines bactériennes/métabolisme
4.
Heliyon ; 10(8): e29900, 2024 Apr 30.
Article de Anglais | MEDLINE | ID: mdl-38699711

RÉSUMÉ

Ecuador is one of the world's leading producers of cacao beans, and Nacional x Trinitario cacao represents one of the most distinctive varieties due to its flavor and aroma characteristics. This study aimed to evaluate the effect of the starter culture isolated from microbial diversity during the spontaneous fermentation of Nacional x Trinitario cacao. A total of 249 microbial isolates were obtained from spontaneous culture, with Lactiplantibacillus (45 %), Saccharomyces (17 %), and Acetobacter (2 %) being the most relevant genera for fermentation. Tolerance tests were conducted to select microorganisms for the starter culture. Lactiplantibacillus plantarum exhibited the highest tolerance at pH 5 and 6 % ethanol and tolerated concentrations up to 15 % for glucose and fructose. Acetobacter pasteurianus grew at pH 2 and 6 % ethanol, tolerating high sugar concentrations of up to 15 % for glucose and 30 % for fructose, with growth observed in concentrations up to 5 % for lactic and acetic acid. Subsequently, a laboratory-scale fermentation was conducted with the formulated starter culture (SC) comprising S. cerevisiae, L. plantarum, and A. pasteurianus, which exhibited high tolerance to various stress conditions. The fermentation increased alcoholic compounds, including citrusy, fruity aromas, and floral notes such as 2-heptanol and phenylethyl alcohol, respectively 1.6-fold and 5.6-fold compared to the control. Moreover, the abundance of ketones 2-heptanone and 2-nonanone increased significantly, providing sweet green herbs and fruity woody aromas. Cacao fermented with this SC significantly enhanced the favorable aroma-producing metabolites characteristic of Fine-aroma cacao. These findings underscore the potential of tailored fermentation strategies to improve cacao product quality and sensory attributes, emphasizing the importance of ongoing research in optimizing fermentation processes for the cacao industry.

5.
Metabolites ; 14(3)2024 Feb 28.
Article de Anglais | MEDLINE | ID: mdl-38535304

RÉSUMÉ

Many biogeochemical processes are modulated by dissolved organic matter (DOM), but the drivers influencing the chemodiversity of DOM compounds in Amazonian soils are poorly understood. It has also been theorized whether deforestation controls the decline of DOM. In this study, we collected soil samples from thirty sites across different regions of Brazil's Legal Amazon, and we investigated the trade-offs among soil physical-chemical properties and DOM chemodiversity. We employed optical spectroscopy, Fourier transform ion cyclotron resonance, and multivariate analysis. Our results indicated that, despite variations in land use and soil physical-chemical properties, factors such as the deforested site, geometric mean diameter, weighted average diameter, and soil organic carbon were the main influencers of DOM chemodiversity variation. These findings highlight the importance of considering DOM chemodiversity as closely related to land use and its potential use in developing deforestation models for predicting soil quality decline in Brazil's Legal Amazon.

6.
Food Res Int ; 174(Pt 1): 113569, 2023 12.
Article de Anglais | MEDLINE | ID: mdl-37986521

RÉSUMÉ

Kombuchas are a trend in the fermented beverage field and the effect of fermentation time on their characteristics is necessary to better understand the process, mainly concerning volatile compounds, which are scarce information in the current literature. Thus, the present work aimed to evaluate the features of green tea kombucha during fermentation, monitoring the changes in pH, acidity, turbidity, polyphenols, ethanol, acetic acid, volatile compounds, and sensory profile and acceptance up to 14 days of fermentation. Kombuchas' pH and acidity decreased through time as expected, but after 4 days of fermentation, the beverage exceeded the Brazilian legal limits of acidity (130 mEq/L) and produced more than 0.5% AVB, which labels the beverage as alcoholic. Total polyphenols and condensed tannins content enhanced until the seventh day of fermentation and remained constant. Fermentation highly impacted the aroma of the infusion with a high formation of volatile acids, such as alcohols, esters, and ketones. Aldehydes were degraded during the bioprocess. Sensory characterization of kombucha showed that fermentation of 4 days increased perceived turbidity; vinegar, citric fruit, acid, and alcoholic aroma; and produced the beverage with sour, bitter, and vinegar flavor. Thus, the fermentation time of kombuchas must be controlled as they rapidly change and impact on the physicochemical parameters and sensory profile of the beverage can be negative.


Sujet(s)
Acide acétique , Thé , Acide acétique/analyse , Fermentation , Boissons/analyse , Éthanol/analyse , Polyphénols/analyse
7.
Front Microbiol ; 14: 1251602, 2023.
Article de Anglais | MEDLINE | ID: mdl-37954249

RÉSUMÉ

Introduction: This work investigates whether rhizosphere microorganisms that colonize halophyte plants thriving in saline habitats can tolerate salinity and provide beneficial effects to their hosts, protecting them from environmental stresses, such as aromatic compound (AC) pollution. Methods: To address this question, we conducted a series of experiments. First, we evaluated the effects of phenol, tyrosine, 4-hydroxybenzoic acid, and 2,4-dichlorophenoxyacetic (2,4-D) acids on the soil rhizosphere microbial community associated with the halophyte Allenrolfea vaginata. We then determined the ability of bacterial isolates from these microbial communities to utilize these ACs as carbon sources. Finally, we assessed their ability to promote plant growth under saline conditions. Results: Our study revealed that each AC had a different impact on the structure and alpha and beta diversity of the halophyte bacterial (but not archaeal) communities. Notably, 2,4-D and phenol, to a lesser degree, had the most substantial decreasing effects. The removal of ACs by the rhizosphere community varied from 15% (2,4-D) to 100% (the other three ACs), depending on the concentration. Halomonas isolates were the most abundant and diverse strains capable of degrading the ACs, with strains of Marinobacter, Alkalihalobacillus, Thalassobacillus, Oceanobacillus, and the archaea Haladaptatus also exhibiting catabolic properties. Moreover, our study found that halophile strains Halomonas sp. LV-8T and Marinobacter sp. LV-48T enhanced the growth and protection of Arabidopsis thaliana plants by 30% to 55% under salt-stress conditions. Discussion: These results suggest that moderate halophile microbial communities may protect halophytes from salinity and potential adverse effects of aromatic compounds through depurative processes.

8.
Appl Biochem Biotechnol ; 195(6): 3566-3584, 2023 Jun.
Article de Anglais | MEDLINE | ID: mdl-36630048

RÉSUMÉ

The kinetic model derived in this study was able to adequately predict the simultaneous oxidation of ammonia, nitrite, and m-cresol and microbial growth using nitrifying sludge in a sequencing batch reactor. Time-varying inhibition and inactivation effects were successfully incorporated in the process kinetics to account for the past cell exposure history to m-cresol increasing concentrations (up to 150 mg C L-1). The initial concentration of the microbial species (ammonia and nitrite oxidizers, heterotrophs) was evaluated using pyrosequencing of DNA samples of the consortium. These measurements allowed to establish a model that explicitly handles specific reaction rates and to enhance the practical identifiability of the model parameters. A single simulation run was used to adequately predict the kinetic behavior of the main variables throughout the 242 cycles using a single set of initial conditions in the first cycle. This kind of dynamic model may be used as a helpful predictive tool to improve nitrification by avoiding the occurrence of severely repetitive inhibitive conditions due to the presence of inhibitive/toxic aromatic compounds.


Sujet(s)
Ammoniac , Nitrites , Nitrites/métabolisme , Ammoniac/métabolisme , Cinétique , Crésols , Oxydoréduction , Eaux d'égout , Nitrification , Bioréacteurs
9.
Int Microbiol ; 26(2): 243-255, 2023 May.
Article de Anglais | MEDLINE | ID: mdl-36357545

RÉSUMÉ

Gallic acid is a powerful antioxidant with multiple therapeutic applications, usually obtained from the acidic hydrolysis of tannins produced by many plants. As this process generates a considerable amount of toxic waste, the use of tannases or tannase-producing microorganisms has become a greener alternative over the last years. However, their high costs still impose some barriers for industrial scalability, requiring solutions that could be both greener and cost-effective. Since Pseudomonas putida KT2440 is a powerful degrader of gallic acid, its metabolism offers pathways that can be engineered to produce it from cheap and renewable carbon sources, such as the crude glycerol generated in biodiesel units. In this study, a synthetic operon with the heterologous genes aroG4, quiC and pobA* was developed and expressed in P. putida, based on an in silico analysis of possible metabolic routes, resulting in no production. Then, the sequences pcaHG and galTAPR were deleted from the genome of this strain to avoid the degradation of gallic acid and its main intermediate, the protocatechuic acid. This mutant was transformed with the vector containing the synthetic operon and was finally able to convert glycerol into gallic acid. Production assays in shaker showed a final concentration of 346.7 ± 0.004 mg L-1 gallic acid after 72 h.


Sujet(s)
Pseudomonas putida , Pseudomonas putida/génétique , Pseudomonas putida/métabolisme , Glycérol/métabolisme , Acide gallique/métabolisme
10.
Nat Prod Res ; 36(15): 3999-4002, 2022 Aug.
Article de Anglais | MEDLINE | ID: mdl-33663291

RÉSUMÉ

Endophytic fungi are biodiverse and alternative source of bioactive compounds, due their different abilities of genetic expression and alteration of biosynthetic pathway when submitted to different culture conditions. The metabolic profile of three different crude extracts (A, B and C), obtained from the endophytic fungus Asordaria conoidea, were evaluated by HPLC and 1H NMR. Antioxidant and allelochemical activity were also evaluated. OSMAC diversified the metabolic production, mainly in the solid culture, where the tyrosol, 4-hydroxybenzaldehyde, 2-phenylacetamide and vanillic acid were isolated. The structures of the compounds were elucidated mainly by NMR. Extracts had antioxidant potential, however, only Extract C showed allelochemical activity, as inhibition of 65.5% in growth. This study confirms the efficiency of the OSMAC platform in producing extracts of different properties and compounds. Herein the A. conoidea was isolated for the first time as an endophytic microorganism.


Sujet(s)
Phéromones , Sordariales , Antioxydants/pharmacologie , Champignons , Composés chimiques organiques
11.
Braz. J. Pharm. Sci. (Online) ; 58: e18871, 2022. tab, graf
Article de Anglais | LILACS-Express | LILACS | ID: biblio-1374535

RÉSUMÉ

Abstract Phoenix dactylifera L. has traditionally been used as a medicine in many cultures. The aim of this study was to evaluate the nutritional properties, aromatic compounds, total phenolic content and the antioxidant activity of ten ripe date fruit varieties grown in Tunisia. Sugar profiles were analyzed by high performance liquid chromatography, while fatty acid compounds were detected by gas chromatography and aromatic compounds were analyzed by GC-Electron Impact Mass Spectroscopy. Total phenolic contents were measured using colorimetric methods, whereas antioxidant capacities were evaluated in vitro using DPPH and ABTS radicals. It has been found that total sugars are the predominant component in all date varieties, followed by moisture, along with moderate amounts of proteins, ash, and fats. Multivariate tests based on the volatile compounds profile showed significant differences among varieties. Between the sixty-two volatile compounds detected, alcohols, aldehydes and unsaturated hydrocarbons constituted the main chemical classes. The date varieties exhibited strong antioxidant potential that correlated with phenolic content. In conclusion date varieties can play a major role in human nutrition and health because of their wide range of valuable nutritional components and natural antioxidants that could potentially be considered as a functional food ingredient.

12.
Front Microbiol ; 12: 713702, 2021.
Article de Anglais | MEDLINE | ID: mdl-34413843

RÉSUMÉ

Paenarthrobacter sp. GOM3, which is a strain that represents a new species-specific context within the genus Paenarthrobacter, is clearly a branched member independent of any group described thus far. This strain was recovered from marine sediments in the Gulf of Mexico, and despite being isolated from a consortium capable of growing with phenanthrene as a sole carbon source, this strain could not grow successfully in the presence of this substrate alone. We hypothesized that the GOM3 strain could participate in the assimilation of intermediate metabolites for the degradation of aromatic compounds. To date, there are no experimental reports of Paenarthrobacter species that degrade polycyclic aromatic hydrocarbons (PAHs) or their intermediate metabolites. In this work, we report genomic and experimental evidence of metabolic benzoate, gentisate, and protocatechuate degradation by Paenarthrobacter sp. GOM3. Gentisate was the preferred substrate with the highest volumetric consumption rate, and genomic analysis revealed that this strain possesses multiple gene copies for the specific transport of gentisate. Furthermore, upon analyzing the GOM3 genome, we found five different dioxygenases involved in the activation of aromatic compounds, suggesting its potential for complete remediation of PAH-contaminated sites in combination with strains capable of assimilating the upper PAH degradation pathway. Additionally, this strain was characterized experimentally for its pathogenic potential and in silico for its antimicrobial resistance. An overview of the potential ecological role of this strain in the context of other members of this taxonomic clade is also reported.

13.
Synth Syst Biotechnol ; 6(3): 153-162, 2021 Sep.
Article de Anglais | MEDLINE | ID: mdl-34278013

RÉSUMÉ

Ubiquitously distributed microorganisms are natural decomposers of environmental pollutants. However, because of continuous generation of novel recalcitrant pollutants due to human activities, it is difficult, if not impossible, for microbes to acquire novel degradation mechanisms through natural evolution. Synthetic biology provides tools to engineer, transform or even re-synthesize an organism purposefully, accelerating transition from unable to able, inefficient to efficient degradation of given pollutants, and therefore, providing new solutions for environmental bioremediation. In this review, we described the pipeline to build chassis cells for the treatment of aromatic pollutants, and presented a proposal to design microbes with emphasis on the strategies applied to modify the target organism at different level. Finally, we discussed challenges and opportunities for future research in this field.

14.
Front Microbiol ; 11: 1100, 2020.
Article de Anglais | MEDLINE | ID: mdl-32582076

RÉSUMÉ

Catechol 1,2 dioxygenases (C12DOs) have been studied for its ability to cleavage the benzene ring of catechol, the main intermediate in the degradation of aromatic compounds derived from aerobic degradation of hydrocarbons. Here we report the genome sequence of the marine bacterium Pseudomonas stutzeri GOM2, isolated from the southwestern Gulf of Mexico, and the biochemical characterization of its C12DO (PsC12DO). The catA gene, encoding PsC12DO of 312 amino acid residues, was cloned and expressed in Escherichia coli. Many C12DOs have been described as dimeric enzymes including those present in Pseudomonas species. The purified PsC12DO enzyme was found as an active trimer, with a molecular mass of 107 kDa. Increasing NaCl concentration in the enzyme reaction gradually reduced activity; in high salt concentrations (0.7 M NaCl) quaternary structural analysis determined that the enzyme changes to a dimeric arrangement and causes a 51% decrease in specific activity on catechol substrate. In comparison with other C12DOs, our enzyme showed a broad range of action for PsC12DO in solutions with pH values ranging from neutral to alkaline (70%). The enzyme is still active after incubation at 50°C for 30 min and in low temperatures to long term storage after 6 weeks at 4°C (61%). EDTA or Ca2+ inhibitors cause no drastic changes on residual activity; nevertheless, the activity of the enzyme was affected by metal ions Fe3+, Zn2+ and was completely inhibited by Hg2+. Under optimal conditions the k cat and K m values were 16.13 s-1 and 13.2 µM, respectively. To our knowledge, this is the first report describing the characterization of a marine C12DOs from P. stutzeri isolated from the Gulf of Mexico that is active in a trimeric state. We consider that our enzyme has important features to be used in environments in presence of EDTA, metals and salinity conditions.

15.
Talanta ; 204: 776-791, 2019 Nov 01.
Article de Anglais | MEDLINE | ID: mdl-31357365

RÉSUMÉ

In this work, we developed a simple, comprehensive, and effective device and procedure for sample preparation based on dispersive micro-solid phase extraction (d-µ-SPE) for the simultaneous determination of 30 polycyclic aromatic compounds or PACs (including 16 polycyclic aromatic hydrocarbons (PAHs), 3 quinones, and 11 nitro-PAHs) in water samples. The extraction/preconcentration step was carried out in a customized glass device (20-250 mL) using C18 as the sorbent. A mini-UniPrep syringeless filter was used as a desorption device, which allowed one-step desorption, filtration, and injection. The main factors affecting the d-µ-SPE were optimized using the Doehlert design. The optimal d-µ-SPE conditions were 100 mg of C18, 32 min of extraction at 1000 rpm, and 20 min of sonication (at the desorption step). The limit of detection (LOD) for PAHs and nitro-PAHs ranged from 0.8 ng L-1 (phenanthrene) to 1.5 ng L-1 (indene [1,2,3-cd]pyrene) and from 300 ng L-1 (2-nitrofluorene) to 500 ng L-1 (2-nitrobiphenyl), respectively. For quinones, it varied from 1.12 µg L-1 (1,4-naphthoquinone) to 1.70 µg L-1(9,10-phenanthrenequinone). Relative recoveries ranged from 59.1% (benzo[a]pyrene) to 110% (chrysene) for most PAHs and 68.9% (2-nitrofluorene) to 124% (1-methyl-6-nitronaphthalene) for the nitro-PAHs. The recoveries for quinones ranged from 65.3% (9,10-phenanthrenequinone) to 95.3% (9,10-anthraquinone). The enrichment factor varied from 213 (Nap) to 497 (Flu), from 39 (1,4-naphthoquinone) to 254 (9,10-anthraquinone), and from 122 (2-nitrobiphenyl) to 295 (1-methyl-4-nitronaphthalene) for the PAHs, nitro-PAHs, and quinones, respectively. After validation, the procedure was successfully applied toward the determination of PACs in river and marine water samples. Low-molecular-weight PAHs were detected with high frequencies (62.5-100%) and the total PAH concentration ranged from 2.30 ng L-1 (benzo[a]pyrene) to 1070 ng L-1 (pyrene). Quinones were found at concentrations ranging from below the LOD to up to 19.8 µg L-1. The proposed procedure was thus found to be comprehensive, precise, accurate, and suitable for determination of PACs in water samples.

16.
Front Microbiol ; 10: 1154, 2019.
Article de Anglais | MEDLINE | ID: mdl-31178851

RÉSUMÉ

We obtained the complete genome sequence of the psychrotolerant extremophile Pseudomonas sp. MPC6, a natural Polyhydroxyalkanoates (PHAs) producing bacterium able to rapidly grow at low temperatures. Genomic and phenotypic analyses allowed us to situate this isolate inside the Pseudomonas fluorescens phylogroup of pseudomonads as well as to reveal its metabolic versatility and plasticity. The isolate possesses the gene machinery for metabolizing a variety of toxic aromatic compounds such as toluene, phenol, chloroaromatics, and TNT. In addition, it can use both C6- and C5-carbon sugars like xylose and arabinose as carbon substrates, an uncommon feature for bacteria of this genus. Furthermore, Pseudomonas sp. MPC6 exhibits a high-copy number of genes encoding for enzymes involved in oxidative and cold-stress response that allows it to cope with high concentrations of heavy metals (As, Cd, Cu) and low temperatures, a finding that was further validated experimentally. We then assessed the growth performance of MPC6 on glycerol using a temperature range from 0 to 45°C, the latter temperature corresponding to the limit at which this Antarctic isolate was no longer able to propagate. On the other hand, the MPC6 genome comprised considerably less virulence and drug resistance factors as compared to pathogenic Pseudomonas strains, thus supporting its safety. Unexpectedly, we found five PHA synthases within the genome of MPC6, one of which clustered separately from the other four. This PHA synthase shared only 40% sequence identity at the amino acid level against the only PHA polymerase described for Pseudomonas (63-1 strain) able to produce copolymers of short- and medium-chain length PHAs. Batch cultures for PHA synthesis in Pseudomonas sp. MPC6 using sugars, decanoate, ethylene glycol, and organic acids as carbon substrates result in biopolymers with different monomer compositions. This indicates that the PHA synthases play a critical role in defining not only the final chemical structure of the biosynthesized PHA, but also the employed biosynthetic pathways. Based on the results obtained, we conclude that Pseudomonas sp. MPC6 can be exploited as a bioremediator and biopolymer factory, as well as a model strain to unveil molecular mechanisms behind adaptation to cold and extreme environments.

17.
Appl Microbiol Biotechnol ; 103(13): 5065-5078, 2019 Jul.
Article de Anglais | MEDLINE | ID: mdl-31044311

RÉSUMÉ

Phenoxy herbicides are the most widely used family of herbicides worldwide. The dichlorophenoxyacetic acid (2,4-D) is extensively used as a weed killer on cereal crops and pastures. This herbicide is highly water-soluble, and even after a long period of disuse, considerable amounts of both 2,4-D and its main product of degradation, 2,4 dichlorophenol (2,4-DCP), might be found in nature. Biological decomposition of pesticides is an expressive and effective way for the removal of these compounds from the environment. The role of bacteria as well as the enzymes and genes that regulate the 2,4-D degradation has been widely studied, but the 2,4-D degradation by fungi, especially regarding the ability of white-rot basidiomycetes as agent for its bioconversion, has been not extensively considered. This review discusses the current knowledge about the biochemical mechanisms of 2,4-D biodegradation, focused on the role of white-rot fungi in this process. Finally, the cultivation conditions and medium composition for the growth of 2,4-D-degrading microorganisms are also addressed.


Sujet(s)
Acide 2,4-dichlorophénoxy-acétique/métabolisme , Dépollution biologique de l'environnement , Champignons/métabolisme , Herbicides/métabolisme , Bactéries/métabolisme , Milieux de culture , Champignons/croissance et développement , Voies et réseaux métaboliques , Techniques microbiologiques , Eau
18.
Waste Manag ; 88: 347-355, 2019 Apr 01.
Article de Anglais | MEDLINE | ID: mdl-31079648

RÉSUMÉ

The influence of reactor temperature of 300  and 600 °C and the acidity of the ZSM-5 and HZSM-5 catalysts on the pyrolysis product yields of the pineapple crown leaves have been investigated in a fixed bed reactor Py-GC/MS. The ZSM-5 catalyst was hydrothermally synthesized with a Si/Al ratio 50, using residual diatomite and rice husk ash as alternative sources of Al and Si for catalyst cost reduction. For the HZSM-5 synthesis, calcined ZSM-5 was activated by ion exchange between Na+ and H+. The catalysts structure was confirmed by the XRD and Rietveld treatment, SEM, FTIR, FRX, TGA and BET results. Analytical pyrolysis of the biomass was carried out at 500 °C in a Py-5200 HP-R pyrolyzer connected to the GC/MS and the pyrolysis vapors were transported to a catalytic bed at 300 and 600 °C. The results showed that the increase in the catalytic bed temperature promoted increased the aromatic content. The main pyrolysis products of the PCL were oxygenated compounds that were converted at 600 °C using the HZSM-5 catalyst into high value renewable aromatic compounds for the chemical industry, such as benzene, toluene, xylene, etilbenzene, thereby confirming the deoxygenation activity of synthesized catalyst to produce renewable aromatics compounds which are important platform chemicals and precursors for jet fuels, gases, polymers and solvents.


Sujet(s)
Ananas , Pyrolyse , Catalyse , Terre de diatomée , Feuilles de plante
19.
Electron. j. biotechnol ; Electron. j. biotechnol;38: 32-39, Mar. 2019. ilus, graf, tab
Article de Anglais | LILACS | ID: biblio-1051317

RÉSUMÉ

BACKGROUND: Eugenol is an economically favorable substrate for the microbial biotransformation of aromatic compounds. Coniferyl aldehyde is one kind of aromatic compound that is widely used in condiment and medical industries; it is also an important raw material for producing other valuable products such as vanillin and protocatechuic acid. However, in most eugenol biotransformation processes, only a trace amount of coniferyl aldehyde is detected, thus making these processes economically unattractive. As a result, an investigation of new strains with the capability of producing more coniferyl aldehyde from eugenol is required. RESULTS: We screened a novel strain of Gibberella fujikuroi, labeled as ZH-34, which was capable of transforming eugenol to coniferyl aldehyde. The metabolic pathway was analyzed by high-performance liquid chromatography­mass spectrometry and transformation kinetics. The culture medium and biotransformation conditions were optimized. At a 6 h time interval of eugenol fed-batch strategy, 3.76 ± 0.22 g/L coniferyl aldehyde was obtained, with the corresponding yield of 57.3%. CONCLUSIONS: This work improves the yield of coniferyl aldehyde with a biotechnological approach. Moreover, the fed-batch strategy offers possibility for controlling the target product and accumulating different metabolites


Sujet(s)
Acroléine/analogues et dérivés , Eugénol/métabolisme , Biotransformation , Gibberella/métabolisme , Dépollution biologique de l'environnement , Acroléine/métabolisme , Biotechnologie , Chromatographie en phase liquide à haute performance , Ressources Renouvelables , Techniques de culture cellulaire en batch
20.
Nat Prod Res ; 33(3): 443-446, 2019 Feb.
Article de Anglais | MEDLINE | ID: mdl-29577744

RÉSUMÉ

Endophytic fungi were isolated from red alga Asparagopsis taxiformis - Falkenbergia stage, collected from the Brazilian coast, and were identified as Annulohypoxylon stygium (AT-03) and A. yungensis (AT-06) based on their macro/micromorphological and molecular features. Bioassay-guided fractionation of the EtOAc extract from laboratory cultures of both strains yielded known compounds pyrogallol from A. stygium, (3 R)-scytalone and (3 R,4 R)-4-hydroxy-scytalone from A. yungensis. Pyrogallol was active against methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli strains. An inactive fraction from A. stygium afforded two additional compounds, (3 R,4 R)-3,4,5-trihydroxy-1-tetralone and tyrosol. Optically active compounds had their stereochemistry determined by circular dichroism (CD) spectroscopy.


Sujet(s)
Endophytes/composition chimique , Champignons/composition chimique , Hydrocarbures aromatiques/isolement et purification , Pyrogallol/pharmacologie , Rhodophyta/microbiologie , Antibactériens/composition chimique , Antibactériens/isolement et purification , Brésil , Escherichia coli/effets des médicaments et des substances chimiques , Hydrocarbures aromatiques/composition chimique , Staphylococcus aureus résistant à la méticilline/effets des médicaments et des substances chimiques , Naphtols/isolement et purification , Naphtols/pharmacologie , Pyrogallol/isolement et purification , Stéréoisomérie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE