Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 57
Filtrer
1.
Indian J Microbiol ; 64(3): 917-926, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39282195

RÉSUMÉ

In the present study, a total of 102 samples were collected from chickens of different flocks, died due to suspected colibacillosis. Bacteriological and PCR methods were applied to detect avian pathogenic Escherichia coli (APEC). Phenotypic antimicrobial resistance (AMR) was determined by disk diffusion method. Extended spectrum beta lactamases (ESBL) detection was carried out via PCR by targeting blaTEM, blaSHV, blaOXA, and blaCTX-M groups 1, 2, and 9. Genes of eight virulence factors and class I integrons were also detected by PCR using gene specific primers. Culture, microscopic, biochemical tests and PCR recognised 69/102 (67.64%) samples as E. coli. Phenotypic AST revealed higher resistance against fluoroquinolone antibiotics, i.e., enrofloxacin (72.46%), levofloxacin (69.56%) & ciprofloxacin (66.66%), followed by amoxyclav (63.77%) and tetracycline (59.42%). Six isolates were found as pan-drug-resistant E. coli. A total of 48 (69.56%) and 7 (10.14%) isolates were positive for the presence of blaTEM and blaCTX-M-G9 genes, respectively, whereas 2 (2.90%) isolates each were found positive for blaSHV, blaOXA, and blaCTX-M-G1 genes. Among APEC associated virulence genes, iss (79.71%) was the most predominant, followed by tsh (50.72%), ast (30.43%), cvaf (26.08%), pap (23.18%), vat (8.69%) and stx-1 (1.44%). Thirty-two isolates harboured class I integrons, either with or without ESBL genes. Conclusively, the isolates under study showed pan and multiple-drug resistance, specifically against fluoroquinolone drugs. ESBL production was mediated principally through bla TEM and blaCTX-M-G9. Multiple virulence factors, toxins, and carriage & spread factor render these as zoonotically potential pathogens for humans. Supplementary Information: The online version contains supplementary material available at 10.1007/s12088-023-01132-2.

2.
Microorganisms ; 12(8)2024 Aug 06.
Article de Anglais | MEDLINE | ID: mdl-39203441

RÉSUMÉ

Avian pathogenic E. coli (APEC), a widespread bacterium, results in serious economic losses to the poultry industry annually, and it poses a threat to human health due to the contaminated retail poultry meat and eggs. Recently, it has been demonstrated that long non-coding RNAs played important roles in regulating gene expression and the animal immune response. This study aimed to systematically explore the function of the novel long intergenic non-coding transcript, lincRNA-73240, upon APEC infection. A bioinformatics analysis indicated that lincRNA-73240 had no coding ability and a relative stable secondary structure with multiple hairpin rings. Moreover, the RT-qPCR results showed that lincRNA-73240 was highly expressed in lungs, heart, liver, spleen, cecum tonsils, thymus, ileum, bursa of Fabricius, harderian gland, and muscles in comparison to the cerebrum. Additionally, overexpression of lincRNA-73240 can promote the expression levels of inflammation, apoptosis, autophagy, and oxidative stress-related genes, as well as the production of reactive oxygen species (ROS), malondialdehyde (MDA), and nitric oxide (NO) upon APEC infection, which lead to cellular injury and apoptosis. These findings collectively establish a foundation for the study of the biological function of chicken lincRNA-73240 and provide a theoretical basis for further research on the molecular mechanisms of the chicken immune response.

3.
Poult Sci ; 103(11): 104170, 2024 Nov.
Article de Anglais | MEDLINE | ID: mdl-39154611

RÉSUMÉ

Colibacillosis, a bacterial disease caused by avian pathogenic E. coli (APEC), is a prevalent condition in the poultry industry, resulting in substantial economic losses annually. Previously, we identified PTEN as a crucial candidate gene that may play a significant role in chicken's immune response to APEC infection. Bioinformatics analysis indicated that the PTEN protein was unstable, hydrophilic and nuclear localization, with multiple putative phosphorylation sites and a high degree of similarity to duck and goose PTEN. Moreover, PTEN exhibited high expression levels in various tissues such as the stomach, cecum, small intestine, spleen, thymus, harderian gland, muscle, cerebrum, cerebellum, lung, and liver in comparison to heart tissue. Overexpression of PTEN resulted in a significant promotion of the expression level of pro-apoptosis genes and inflammatory mediators, as well as the production of NO, with or without APEC infection, which led to cellular injury. Furthermore, overexpression of PTEN was found to regulate the expression levels of autophagy related genes, regardless of APEC infection. Additionally, PTEN was a target gene of gga-miR-20a-5p and regulated by gga-miR-20a-5p upon APEC infection. Taken together, these findings establish a foundation for investigating the biological function of chicken PTEN, providing a potential target for future treatments against APEC infection as well as the breeding of genetically resistant poultry.


Sujet(s)
Autophagie , Protéines aviaires , Poulets , Infections à Escherichia coli , microARN , Phosphohydrolase PTEN , Maladies de la volaille , Animaux , Maladies de la volaille/génétique , Maladies de la volaille/immunologie , Maladies de la volaille/microbiologie , Poulets/génétique , Phosphohydrolase PTEN/génétique , Phosphohydrolase PTEN/métabolisme , Protéines aviaires/génétique , Protéines aviaires/métabolisme , microARN/génétique , microARN/métabolisme , Infections à Escherichia coli/médecine vétérinaire , Infections à Escherichia coli/immunologie , Infections à Escherichia coli/génétique , Macrophages/immunologie , Inflammation/médecine vétérinaire , Inflammation/génétique , Escherichia coli/physiologie
4.
Poult Sci ; 103(10): 104148, 2024 Oct.
Article de Anglais | MEDLINE | ID: mdl-39142031

RÉSUMÉ

Avian pathogenic Escherichia coli (APEC) is a notable pathogen that frequently leads to avian colibacillosis, posing a substantial risk to both the poultry industry and public health. The commercial vaccines against avian colibacillosis are primarily inactivated vaccines, but their effectiveness is limited to specific serotypes. Recent advances have highlighted bacterial membrane vesicles (MV) as a promising candidate in vaccine research. How to produce bacterial MVs vaccines on a large scale is a significant challenge for the industrialization of MVs. The msbB gene encodes an acyltransferase and has been implicated in altering the acylation pattern of lipid A, leading to a decrease in lipid A content in lipopolysaccharides (LPS). Here, we evaluated the immunoprotective efficacy of MVs derived from the LPS low-expressed APEC strain FY26ΔmsbB, which was an APEC mutant strain with a deletion of the msbB gene. The nitrogen cavitation technique was employed to extract APEC MVs, with results indicating a significant increase in MVs yield compared to that obtained under natural culture. The immunization effectiveness was assessed, revealing that FY26ΔmsbB MVs elicited an antibody response of laying hens and facilitated bacterial clearance. Protective efficacy studies demonstrated that immunization with FY26ΔmsbB MVs conferred the immune protection in chickens challenged with the wild-type APEC strain FY26. Notably, LPS low-carried MVs recovered from the mutant FY26ΔmsbB also displayed cross-protective capabilities, and effectively safeguarding against infections caused by O1, O7, O45, O78, and O101 serotypes virulent APEC strains. These findings suggest that MVs generated from the LPS low-expressed APEC strain FY26ΔmsbB represent a novel and empirically validated subunit vaccine for the prevention and control of infections by various APEC serotypes.


Sujet(s)
Poulets , Infections à Escherichia coli , Vaccins anti-Escherichia coli , Escherichia coli , Maladies de la volaille , Vaccins sous-unitaires , Animaux , Maladies de la volaille/prévention et contrôle , Maladies de la volaille/microbiologie , Maladies de la volaille/immunologie , Infections à Escherichia coli/médecine vétérinaire , Infections à Escherichia coli/prévention et contrôle , Infections à Escherichia coli/immunologie , Escherichia coli/immunologie , Vaccins anti-Escherichia coli/immunologie , Vaccins anti-Escherichia coli/administration et posologie , Vaccins sous-unitaires/immunologie , Vaccins sous-unitaires/administration et posologie , Femelle , Protection croisée
5.
Biochem Biophys Res Commun ; 709: 149823, 2024 05 21.
Article de Anglais | MEDLINE | ID: mdl-38569245

RÉSUMÉ

Avian pathogenic Escherichia coli (APEC) causes enormous economic losses and is a primary contributor to the emergence of multidrug resistance (MDR)-related problems in the poultry industry. Bacteriophage (phage) therapy has been successful in controlling MDR, but phage-resistant variants have rapidly emerged through the horizontal transmission of diverse phage defense systems carried on mobile genetic elements. Consequently, while multiple phage cocktails are recommended for phage therapy, there is a growing need to explore simpler and more cost-effective phage treatment alternatives. In this study, we characterized two novel O78-specific APEC phages, φWAO78-1 and φHAO78-1, in terms of their morphology, genome, physicochemical stability and growth kinetics. Additionally, we assessed the susceptibility of thirty-two O78 APEC strains to these phages. We analyzed the roles of highly susceptible cells in intestinal settlement and fecal shedding (susceptible cell-assisted intestinal settlement and shedding, SAIS) of phages in chickens via coinoculation with phages. Furthermore, we evaluated a new strategy, susceptible cell-assisted resistant cell killing (SARK), by comparing phage susceptibility between resistant cells alone and a mixture of resistant and highly susceptible cells in vitro. As expected, high proportions of O78 APEC strains had already acquired multiple phage defense systems, exhibiting considerable resistance to φWAO78-1 and φHAO78-1. Coinoculation of highly susceptible cells with phages prolonged phage shedding in feces, and the coexistence of susceptible cells markedly increased the phage susceptibility of resistant cells. Therefore, the SAIS and SARK strategies were demonstrated to be promising both in vivo and in vitro.


Sujet(s)
Bactériophages , Infections à Escherichia coli , Maladies de la volaille , Animaux , Bactériophages/génétique , Poulets , Escherichia coli/génétique , Coliphages , Mort cellulaire , Maladies de la volaille/thérapie
6.
Vet Res ; 55(1): 37, 2024 Mar 26.
Article de Anglais | MEDLINE | ID: mdl-38532498

RÉSUMÉ

In the last decade, prophages that possess the ability of lysogenic transformation have become increasingly significant. Their transfer and subsequent activity in the host have a significant impact on the evolution of bacteria. Here, we investigate the role of prophage phi456 with high spontaneous induction in the bacterial genome of Avian pathogenic Escherichia coli (APEC) DE456. The phage particles, phi456, that were released from DE456 were isolated, purified, and sequenced. Additionally, phage particles were no longer observed either during normal growth or induced by nalidixic acid in DE456Δphi456. This indicated that the released phage particles from DE456 were only phi456. We demonstrated that phi456 contributed to biofilm formation through spontaneous induction of the accompanying increase in the eDNA content. The survival ability of DE456Δphi456 was decreased in avian macrophage HD11 under oxidative stress and acidic conditions. This is likely due to a decrease in the transcription levels of three crucial genes-rpoS, katE, and oxyR-which are needed to help the bacteria adapt to and survive in adverse environments. It has been observed through animal experiments that the presence of phi456 in the DE456 genome enhances colonization ability in vivo. Additionally, the number of type I fimbriae in DE456Δphi456 was observed to be reduced under transmission electron microscopy when compared to the wild-type strain. The qRT-PCR results indicated that the expression levels of the subunit of I fimbriae (fimA) and its apical adhesin (fimH) were significantly lower in DE456Δphi456. Therefore, it can be concluded that phi456 plays a crucial role in helping bacterial hosts survive in unfavorable conditions and enhancing the colonization ability in DE456.


Sujet(s)
Bactériophages , Infections à Escherichia coli , Animaux , Escherichia coli/génétique , Prophages/génétique , Poulets/microbiologie , Adhésines bactériennes/génétique , Infections à Escherichia coli/microbiologie , Infections à Escherichia coli/médecine vétérinaire
7.
BMC Vet Res ; 20(1): 49, 2024 Feb 07.
Article de Anglais | MEDLINE | ID: mdl-38326918

RÉSUMÉ

BACKGROUND: Avian pathogenic E. coli (APEC) can cause localized or systemic infections, collectively known as avian colibacillosis, resulting in huge economic losses to poultry industry globally per year. In addition, increasing evidence indicates that long non-coding RNAs (lncRNAs) play a critical role in regulating host inflammation in response to bacterial infection. However, the role of lncRNAs in the host response to APEC infection remains unclear. RESULTS: Here, we found 816 differentially expressed (DE) lncRNAs and 1,798 DE mRNAs in APEC infected chicken macrophages by RNAseq. The identified DE lncRNA-mRNAs were involved in Toll like receptor signaling pathway, VEGF signaling pathway, fatty acid metabolism, phosphatidylinositol signaling system, and other types of O-glycan biosynthesis. Furthermore, we found the novel lncRNA TCONS_00007391 as an important immune regulator in APEC infection was able to regulate the inflammatory response by directly targeting CD86. CONCLUSION: These findings provided a better understanding of host response to APEC infection and also offered the potential drug targets for therapy development against APEC infection.


Sujet(s)
Infections à Escherichia coli , Maladies de la volaille , ARN long non codant , Animaux , Escherichia coli/génétique , Poulets/génétique , Poulets/microbiologie , ARN long non codant/génétique , ARN messager/génétique , Infections à Escherichia coli/microbiologie , Infections à Escherichia coli/médecine vétérinaire , Macrophages , Maladies de la volaille/génétique , Maladies de la volaille/microbiologie
8.
Antibiotics (Basel) ; 12(12)2023 Dec 09.
Article de Anglais | MEDLINE | ID: mdl-38136748

RÉSUMÉ

Avian pathogenic E. coli (APEC) causes severe economic losses in the poultry industry, and O78 serogroup APEC strains are prevalent in chickens. In this study, we aimed to understand the evolutionary pathways and relationships between O78 APEC and other E. coli strains. To trace these evolutionary pathways, we classified 3101 E. coli strains into 306 subgenotypes according to the numbers and types of single nucleotide polymorphisms (RST0 to RST63-1) relative to the consensus sequence (RST0) of the RNA polymerase beta subunit gene and performed network analysis. The E. coli strains showed four apparently different evolutionary pathways (I-1, I-2, I-3, and II). The thirty-two Korean O78 APEC strains tested in this study were classified into RST4-4 (45.2%), RST3-1 (32.3%), RST21-1 (12.9%), RST4-5 (3.2%), RST5-1 (3.2%), and RST12-6 (3.2%), and all RSTs except RST21-1 (I-2) may have evolved through the same evolutionary pathway (I-1). A comparative genomic study revealed the highest relatedness between O78 strains of the same RST in terms of genome sequence coverage/identity and the spacer sequences of CRISPRs. The early-appearing RST3-1 and RST4-4 prevalence among O78 APEC strains may reflect the early settlement of O78 E. coli in chickens, after which these bacteria accumulated virulence and antibiotic resistance genes to become APEC strains. The zoonotic risk of the conventional O78 APEC strains is low at present, but the appearance of genetically distinct and multiple virulence gene-bearing RST21-1 O78 APEC strains may alert us to a need to evaluate their virulence in chickens as well as their zoonotic risk.

9.
Pathogens ; 12(11)2023 Oct 26.
Article de Anglais | MEDLINE | ID: mdl-38003745

RÉSUMÉ

Poultry meat is one of the major animal protein sources necessary to meet the global protein demand. Sustainability in broiler production is the key to achieving its continuous supply, and broiler breeders play a critical role in maintaining this sustainability by providing good quality chicks. Colibacillosis, the disease caused by avian pathogenic Escherichia coli (APEC), causes severe economic losses to the poultry industry globally. Moreover, APEC causes an additional burden among broiler breeders, such as a decrease in egg production and mortality among these birds. There is vertical transmission of APEC to the broiler chicks through eggs, resulting in increased first-week mortality and subsequent horizontal transmission at the hatchery. In this regard, the vertical transmission of antibiotic resistance genes is another concern that needs attention. Controlling several diseases in broiler breeders would possibly reduce the first-week mortality in chicks, thereby maintaining the production level. For that, constant monitoring of the bacterial populations is critical. Moreover, amidst the increased antibiotic resistance pattern, more focus on alternative treatment strategies like vaccines, probiotics, and bacteriophages is necessary. Future research focusing on strategies to mitigate APEC in broiler breeders would be one of the finest solutions for sustainable broiler production.

10.
Pathogens ; 12(11)2023 Nov 08.
Article de Anglais | MEDLINE | ID: mdl-38003794

RÉSUMÉ

The aim of this work was to describe the pathotypes of Escherichia coli strains isolated from one-day-old chickens, as well as the occurrence of resistance and multidrug resistance (MDR) in these strains. A total of 429 mixed swabs from 4290 one-day-old chicks were examined between August 2021 and July 2023 (24 months) during routine point-of-destination inspections at 12 poultry farms in the Czech Republic. All samples were processed via cultivation methods using meat-peptone blood agar and Mc Conkey agar under aerobic conditions at 37 ± 1 °C for 18-24 h. The identification of the strains was performed using MALDI-TOF mass spectrometry. All confirmed strains of E. coli were screened via single or multiplex PCRs for the presence of genes encoding the virulence-associated factors iroN, cvaC, iss, felA, iutA, frz and tsh. Antimicrobial susceptibility tests were performed using the minimal inhibitory concentration (MIC) method, focusing on ampicillin, cefotaxime, tetracycline, doxycycline, enrofloxacin, florfenicol, amoxicillin with clavulanic acid and trimethoprim with sulfamethoxazole. A total of 321 E. coli strains (prevalence of 74.8%) were isolated, and 300 isolates were defined as avian pathogenic strains of E. coli (APEC) via multiplex PCR. Based on the defined virulence genes, the isolates were classified into 31 pathotypes. A total of 15.9% of the tested isolates were susceptible to all the tested antimicrobials. On the other hand, 20.5% of the isolates were identified as multidrug-resistant (8.7% of isolates were resistant to three antimicrobials, 7.3% to four antimicrobials, 3.6% to five antimicrobials and 0.9% to six antimicrobials). Monitoring pathogenic strains of E. coli in different animals and in the environment makes it possible to understand their spread in animal and human populations and, at the same time, reveal the sources of virulence and resistance genes.

11.
BMC Vet Res ; 19(1): 108, 2023 Aug 04.
Article de Anglais | MEDLINE | ID: mdl-37542317

RÉSUMÉ

BACKGROUND: Colibacillosis is one of the broilers' most dominant bacterial diseases, either as a primary or a secondary infection. As E. coli antimicrobial drug resistance is rising; there is a need to develop new approaches to its control. In light of this, a comparative study of the in-vitro antibacterial activity of Arabic gum stabilized zinc and copper nanoparticles (AG-ZnNPs and AG-CuNPs) against PCR-identified field avian pathogenic E. coli (APEC) strains and virulence genes (ibeA, hlyA, iss, pap C and ompA) was applied to study the therapeutic effect of zinc and copper nanoparticles to be used as an antibiotic alternative (Nanobiotic). Furthermore, the in-vivo effects of CuNPs were evaluated. Additionally, the CuNPs liver and muscle residues with or without infection were examined. The eighty broilers were divided into four groups; G1: negative control, G2: infected control with E. coli O17, G3: non-infected treated (AG-CuNPs 50 mg/kg body weight), and G4: infected treated (AG-CuNPs 50 mg/kg body weight). AG-CuNPs treatment was given to broilers for five days in drinking water. RESULTS: E. coli was isolated from diseased broilers at an average incidence rate of 20% from intestinal and liver samples. All identified serotypes (O17, O78, O91, O121, and O159) were resistant to AG-ZnNPs and sensitive to AG-CuNPs. AG-CuNPs minimal inhibitory and bactericidal concentrations (MIC and MBC) for O17 were 7.5 and 60 mg/ml, respectively. Conventional uniplex PCR results showed that strain O17 contained virulence genes (ibeA, hlyA, iss, and papC), where AG-CuNPs significantly reduced the expression of all target genes when examined by Real-time quantitative PCR. Additionally, the bactericidal activity of AG-CuNPs on O17 was 100% at 20 minutes and 40 mg/ml and confirmed by transmission electron microscopy. Furthermore, no mortality was recorded in treated groups compared to G2. Subsequently, no E. coli was re-isolated from the liver in the G4 after treatment. The total protein, albumin, globulin, and lysozyme activity were significantly increased in G4 compared to G2, while the activities of liver enzymes (alanine aminotransferase (ALT), Gamma-glutamyl transferase (GGT), and alkaline phosphatase (ALP)) were markedly decreased in G4 compared to G2. Additionally, uric acid, creatinine, and C-reactive protein levels were decreased in G4 compared to G2. However, the liver enzymes, kidney functions, C-reactive protein levels, and Cu residues were non-significantly changed in G4 compared to G1. CONCLUSION: Green synthesized AG-CuNPs are recommended as an effective antimicrobial alternative against APEC strains.


Sujet(s)
Infections à Escherichia coli , Nanoparticules , Maladies de la volaille , Oxyde de zinc , Animaux , Escherichia coli , Virulence/génétique , Poulets/microbiologie , Cuivre/pharmacologie , Oxyde de zinc/pharmacologie , Protéine C-réactive , Infections à Escherichia coli/traitement médicamenteux , Infections à Escherichia coli/médecine vétérinaire , Infections à Escherichia coli/épidémiologie , Zinc , Poids , Maladies de la volaille/microbiologie , Antibactériens/pharmacologie
12.
Pathogens ; 12(8)2023 Jul 31.
Article de Anglais | MEDLINE | ID: mdl-37623962

RÉSUMÉ

Colibacillosis, caused by avian pathogenic Escherichia coli (APEC), is an important infectious disease in chickens and a major cause of mortality in young chicks. Therefore, protecting young chickens from colibacillosis is important for improving welfare and productivity in the poultry industry. Recently, we developed a novel enterobactin (Ent) conjugate vaccine that could induce high titers of anti-Ent immunoglobulin Y (IgY) in chicken serum and consequently mitigate the organ lesions caused by APEC infection. Considering that maternal immunization is a practical approach to confer instant immune protection to the hatchlings, in this study, we immunized breeder hens with the Ent conjugate vaccine and evaluated the maternal immune protection on the progenies challenged with APEC. Three doses of the vaccine induced high titers of anti-Ent IgY in the hens (about 16- and 64-fold higher than the control group in the sera and egg yolks, respectively), resulting in an eight-fold of increase in anti-Ent IgY in the sera of progenies. However, the anti-Ent maternal immunity did not display significant protection against APEC challenge in the young chicks as there was no significant difference in APEC load (in liver, lung, and spleen) or organ lesions (in heart, liver, spleen, lung, and air sac) between the vaccinated and control groups. In future studies, the APEC infection model needs to be optimized to exhibit proper pathogenicity of APEC, and the maternal immunization regimen can be further improved to boost the maternally derived anti-Ent IgY in the hatchlings.

13.
Microorganisms ; 11(6)2023 Jun 06.
Article de Anglais | MEDLINE | ID: mdl-37375015

RÉSUMÉ

Bacterial chondronecrosis with osteomyelitis (BCO) impacts animal welfare and productivity in the poultry industry worldwide, yet it has an understudied pathogenesis. While Avian Pathogenic Escherichia coli (APEC) are known to be one of the main causes, there is a lack of whole genome sequence data, with only a few BCO-associated APEC (APECBCO) genomes available in public databases. In this study, we conducted an analysis of 205 APECBCO genome sequences to generate new baseline phylogenomic knowledge regarding the diversity of E. coli sequence types and the presence of virulence associated genes (VAGs). Our findings revealed the following: (i) APECBCO are phylogenetically and genotypically similar to APEC that cause colibacillosis (APECcolibac), with globally disseminated APEC sequence types ST117, ST57, ST69, and ST95 being predominate; (ii) APECBCO are frequent carriers of ColV-like plasmids that carry a similar set of VAGs as those found in APECcolibac. Additionally, we performed genomic comparisons, including a genome-wide association study, with a complementary collection of geotemporally-matched genomes of APEC from multiple cases of colibacillosis (APECcolibac). Our genome-wide association study found no evidence of novel virulence loci unique to APECBCO. Overall, our data indicate that APECBCO and APECcolibac are not distinct subpopulations of APEC. Our publication of these genomes substantially increases the available collection of APECBCO genomes and provides insights for the management and treatment strategies of lameness in poultry.

14.
Comp Immunol Microbiol Infect Dis ; 95: 101961, 2023 Apr.
Article de Anglais | MEDLINE | ID: mdl-36870115

RÉSUMÉ

Colibacillosis is the most common bacteriological disease in poultry. The purpose of this study was to determine the recovery rate of avian pathogenic Escherichia coli (APEC) strains, the distribution, prevalence of Escherichia coli Reference (ECOR) collection and virulence associated gene (VAG) in four types of chickens infected by colibacillosis. Commercial broilers and layers had the highest percentage of positive APEC isolates (91%). We confirmed the ECOR phylogroup including B1 and E for the first time in Nepal. The prevalences of these phylogroups among chicken types were significantly different (p < 0.001). Among 57 VAGs, the number of genes found per isolate ranged from 8 to 26, with the top 5 VAGs being fimH (100%), issa (92.2%), traTa (90.6%), sit chro. (86%), and ironEC (84.8%). We found significant differences in gene prevalence among the chicken types. The predominance of B1 and E, and the VAG patterns suggest considering ECOR phylogroup and VAGs while formulating strategies for the prevention and control of APEC.


Sujet(s)
Infections à Escherichia coli , Maladies de la volaille , Animaux , Escherichia coli , Poulets , Virulence/génétique , Népal/épidémiologie , Maladies de la volaille/épidémiologie , Infections à Escherichia coli/épidémiologie , Infections à Escherichia coli/médecine vétérinaire , Phylogenèse
15.
Dev Comp Immunol ; 142: 104650, 2023 05.
Article de Anglais | MEDLINE | ID: mdl-36736641

RÉSUMÉ

Avian pathogenic E. coli (APEC) has been detected to cause many acute and chronic diseases, resulting in huge economic losses to the poultry industry. Previous experiments have identified the effect of receptor interacting serine/threonine kinase 2 (RIP2) gene in APEC infection. Moreover, increasing evidence indicates that long noncoding RNAs (lncRNAs) play important roles in the anti-bacteria responses. However, little is known about the functions of lncRNAs, especially related to RIP2, in response to APEC. Therefore, we tried to reveal lncRNAs potentially involved in the immune and inflammatory response against APEC infection, with a particular focus on those possibly correlated with RIP2. A total of 1856 and 1373 differentially expressed (DE) lncRNAs were identified in knockdown of RIP2 cells following APEC infection (shRIP2+APEC) vs. APEC and shRIP2 vs. wild type cells (WT), respectively, which were mainly enriched in lysosome, phagosome, NOD-like receptor signaling pathway, TGF-beta signaling pathway. Significantly, TCONS_00009695 regulated by RIP2 could directly alter the expression of target BIRC3 to modulate cytokines and to participate in immune and inflammatory response against APEC infection. Our findings aid to a better understanding of host responses to APEC infection and provide new directions for understanding the potential association between lncRNAs and APEC pathogenesis.


Sujet(s)
Infections à Escherichia coli , Maladies de la volaille , ARN long non codant , Animaux , Escherichia coli/physiologie , Poulets/génétique , ARN long non codant/génétique , ARN long non codant/métabolisme , Macrophages/métabolisme , Maladies de la volaille/génétique
16.
Avian Pathol ; 52(3): 185-198, 2023 Jun.
Article de Anglais | MEDLINE | ID: mdl-36803112

RÉSUMÉ

Avian pathogenic E. coli (APEC) is a common pathogen in the poultry industry, which can cause substantial economic losses. Recently, emerging evidence showed that miRNAs were involved in various viral and bacterial infections. To elucidate the role of miRNAs in chicken macrophages in response to APEC infection, we attempted to investigate the miRNAs expression pattern upon APEC infection via miRNA-seq, and to identify the molecular mechanism of the important miRNAs by using RT-qPCR, western blotting, dual-luciferase reporter assay, and CCK-8. The results showed that a total of 80 differentially expressed (DE) miRNAs were identified in comparison of APEC vs. wild-type group, which corresponded to 724 target genes. Moreover, the target genes of the identified DE miRNAs were mainly significantly enriched in the MAPK signalling pathway, autophagy-bird, mTOR signalling pathway, ErbB signalling pathway, Wnt signalling pathway, and TGF-beta signalling pathway. Remarkably, gga-miR-181b-5p is able to participate in host immune and inflammatory responses against APEC infection via targeting of TGFBR1 to modulate the activation of TGF-beta signalling pathway. Collectively, this study provides a perspective of miRNA expression patterns in chicken macrophages upon APEC infection. These findings provide insight into miRNAs against APEC infection, and gga-miR-181b-5p might be a potential target for treating APEC infection.


Sujet(s)
Infections à Escherichia coli , microARN , Maladies de la volaille , Animaux , microARN/génétique , microARN/métabolisme , Poulets/microbiologie , Escherichia coli/génétique , Infections à Escherichia coli/médecine vétérinaire , Infections à Escherichia coli/microbiologie , Macrophages , Facteur de croissance transformant bêta , Maladies de la volaille/microbiologie
17.
BMC Microbiol ; 23(1): 15, 2023 01 16.
Article de Anglais | MEDLINE | ID: mdl-36647025

RÉSUMÉ

Escherichia coli (E. coli) are typically present as commensal bacteria in the gastro-intestinal tract of most animals including poultry species, but some avian pathogenic E. coli (APEC) strains can cause localized and even systematic infections in domestic poultry. Emergence and re-emergence of antimicrobial resistant isolates (AMR) constrain antibiotics usage in poultry production, and development of an effective vaccination program remains one of the primary options in E. coli disease prevention and control for domestic poultry. Thus, understanding genetic and pathogenic diversity of the enzootic E. coli isolates, particularly APEC, in poultry farms is the key to designing an optimal vaccine candidate and to developing an effective vaccination program. This study explored the genomic and pathogenic diversity among E. coli isolates in southern United States poultry. A total of nine isolates were recovered from sick broilers from Mississippi, and one from Georgia, with epidemiological variations among clinical signs, type of housing, and bird age. The genomes of these isolates were sequenced by using both Illumina short-reads and Oxford Nanopore long-reads, and our comparative analyses suggested data from both platforms were highly consistent. The 16 s rRNA based phylogenetic analyses showed that the 10 bacteria strains are genetically closer to each other than those in the public database. However, whole genome analyses showed that these 10 isolates encoded a diverse set of reported virulence and AMR genes, belonging to at least nine O:H serotypes, and are genetically clustered with at least five different groups of E. coli isolates reported by other states in the United States. Despite the small sample size, this study suggested that there was a large extent of genomic and serological diversity among E. coli isolates in southern United States poultry. A large-scale comprehensive study is needed to understand the overall genomic diversity and the associated virulence, and such a study will be important to develop a broadly protective E. coli vaccine.


Sujet(s)
Infections à Escherichia coli , Maladies de la volaille , Animaux , États-Unis , Escherichia coli , Virulence/génétique , Volaille , Antibactériens/pharmacologie , Infections à Escherichia coli/médecine vétérinaire , Infections à Escherichia coli/microbiologie , Poulets/microbiologie , Phylogenèse , Maladies de la volaille/épidémiologie , Maladies de la volaille/microbiologie , Résistance bactérienne aux médicaments/génétique , Génomique
18.
Vaccine ; 41(4): 930-937, 2023 Jan 23.
Article de Anglais | MEDLINE | ID: mdl-36585279

RÉSUMÉ

Colibacillosis is one of the most common and economically devastating infectious diseases in poultry production worldwide. Innovative universal vaccines are urgently needed to protect chickens from the infections caused by genetically diverse avian pathogenic Escherichia coli (APEC). Enterobactin (Ent) is a highly conserved siderophore required for E. coli iron acquisition and pathogenesis. The Ent-specific antibodies induced by a novel Ent conjugate vaccine significantly inhibited the in vitro growth of diverse APEC strains. In this study, White Leghorn chickens were immunized with the Ent conjugate vaccine using a crossed design with two variables, vaccination (with or without) and APEC challenge (O1, O78, or PBS control), resulting in six study groups (9 to 10 birds/group). The chickens were subcutaneously injected with the vaccine (100 µg per bird) at 7 days of age, followed by booster immunization at 21 days of age. The chickens were intratracheally challenged with an APEC strain (108 CFU/bird) or PBS at 28 days of age. At 5 days post infection, all chickens were euthanized to examine lesions and APEC colonization of the major organs. Immunization of chickens with the Ent vaccine elicited a strong immune response with a 64-fold increase in the level of Ent-specific IgY in serum. The hypervirulent strain O78 caused extensive lesions in lung, air sac, heart, liver, and spleen with significantly reduced lesion scores observed in the vaccinated chickens. Interestingly, the vaccination did not significantly reduce APEC levels in the examined organs. The APEC O1 with low virulence only caused sporadic lesions in the organs in both vaccination and control groups. The Ent conjugate vaccine altered the bacterial community of the ileum and cecum. Taken together, the findings from this study showed the Ent conjugate vaccine could trigger a strong specific immune response and was promising to confer protection against APEC infection.


Sujet(s)
Infections à Escherichia coli , Vaccins anti-Escherichia coli , Maladies de la volaille , Animaux , Escherichia coli , Poulets , Vaccins conjugués , Entérobactine , Infections à Escherichia coli/prévention et contrôle , Infections à Escherichia coli/médecine vétérinaire
19.
Front Vet Sci ; 9: 1055320, 2022.
Article de Anglais | MEDLINE | ID: mdl-36504870

RÉSUMÉ

The third- or fourth-generation cephalosporins (3GC or 4 GC) are classified as "critically important antimicrobials for human medicine" by WHO, but resistance to these drugs is increasing rapidly in avian pathogenic E. coli (APEC). This study investigated the distribution and genetic characteristics of 3GC- or 4 GC-resistant APEC isolates from five major integrated broiler operations in Korea. The prevalence of 3GC- or 4GC-resistant APEC isolates in 1-week-old broilers was the highest in farms of operation C (53.3%); however, the highest prevalence of these isolates in 4-week-old broilers was the highest on the farms of operation A (60.0%), followed by operations E (50.0%) and C (35.7%). All 49 3GC- or 4GC-resistant APEC isolates had at least one ß-lactamase-encoding gene. The most common ß-lactamase-encoding genes was extended-spectrum ß-lactamase gene, bla CTX-M-15, detected in 24 isolates (49.0%), followed by bla TEM-1 (32.7%). Sixteen isolates (32.7%) harbored class 1 integrons, and four isolates (8.2%) showed different gene cassette-arrangements. However, only 1 of 26 isolates harboring class 2 integrons carried a gene cassette. Furthermore, both CRISPR 1 and 2 arrays were detected in most isolates (36 isolates; 73.5%), followed by CRISPR 2 (18.4%) and CRISPR 1 (4.1%). Interestingly, CRISPR 2 was significantly more prevalent in multidrug resistant (MDR)-APEC isolates than in non-MDR APEC isolates, whereas CRISPR 3 and 4 were significantly more prevalent in non-MDR APEC isolates (each 11.1%; p < 0.05). None of the protospacers of CRISPR arrays were directly associated with antimicrobial resistance. Our findings indicate that the distribution and characteristics of 3GC or 4GC-resistant APEC isolates differed among the integrated broiler operations; moreover, improved management protocols are needed to control the horizontal transmission of 3GC or 4GC-resistant APEC isolates.

20.
Microorganisms ; 10(11)2022 Nov 07.
Article de Anglais | MEDLINE | ID: mdl-36363793

RÉSUMÉ

Infectious diseases of livestock caused by novel pathogenic viruses and bacteria are a major threat to global animal health and welfare and their effective control is crucial for agronomic health and for securing global food supply. It has been widely recognized that the transmission of infectious agents can occur between people and/or animals in indoor spaces. Therefore, infection control practices are critical to reduce the transmission of the airborne pathogens. ViKiller®-high-pressure sprayer and Deger®-disinfectant are newly developed spraying systems that can produce an optimal size of disinfectants to reduce airborne microbes. The system was evaluated to reduce the infection caused by avian pathogenic Escherichia coli (APEC), an airborne bacterium which survives in indoor spaces. pH-neutral electrolyzed water (NEW) containing 100 ppm of free chlorine, laboratory-scale chambers, a recently developed sprayer, and a conventional sprayer were used in the study. A total of 123 day-of-hatch male layer chicks (Hy-Line W-36) were randomly classified into five groups (negative control (NC): no treatment; treatment 1 (Trt 1): spraying only NEW without APEC; treatment 2 (Trt 2): spraying NEW + APEC using a high-pressure sprayer; treatment 3 (Trt 3): spraying NEW + APEC using a conventional sprayer; positive control (PC): spraying only APEC). Experimental chicks in the chambers were daily exposed to 50 mL of NEW and/or APEC (1.0 × 106 cfu/mL) until the end of the experiment (day 35). APEC strains were sprayed by ViKiller®. At least four chicks in each group were evaluated weekly to monitor APEC infection and determine the lesion. Data showed that our spraying system significantly reduced airborne APEC concentrations, mortality rate, respiratory infection, and APEC lesions in birds in the chamber space (p < 0.05). The results demonstrate that the antibacterial effect of the novel spraying sprayer with NEW on APEC was far superior compared to the conventional sprayer. This study provides a new insight for preventive measures against airborne microorganisms in indoor spaces.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE