Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 260
Filtrer
1.
bioRxiv ; 2024 Jun 19.
Article de Anglais | MEDLINE | ID: mdl-38948770

RÉSUMÉ

The axon initial segment (AIS) constitutes not only the site of action potential initiation, but also a hub for activity-dependent modulation of output generation. Recent studies shedding light on AIS function used predominantly post-hoc approaches since no robust murine in vivo live reporters exist. Here, we introduce a reporter line in which the AIS is intrinsically labeled by an ankyrin-G-GFP fusion protein activated by Cre recombinase, tagging the native Ank3 gene. Using confocal, superresolution, and two-photon microscopy as well as whole-cell patch-clamp recordings in vitro, ex vivo, and in vivo, we confirm that the subcellular scaffold of the AIS and electrophysiological parameters of labeled cells remain unchanged. We further uncover rapid AIS remodeling following increased network activity in this model system, as well as highly reproducible in vivo labeling of AIS over weeks. This novel reporter line allows longitudinal studies of AIS modulation and plasticity in vivo in real-time and thus provides a unique approach to study subcellular plasticity in a broad range of applications.

2.
Proc Natl Acad Sci U S A ; 121(31): e2310120121, 2024 Jul 30.
Article de Anglais | MEDLINE | ID: mdl-39058579

RÉSUMÉ

The axon initial segment (AIS) is a critical compartment in neurons. It converts postsynaptic input into action potentials that subsequently trigger information transfer to target neurons. This process relies on the presence of several voltage-gated sodium (NaV) and potassium (KV) channels that accumulate in high densities at the AIS. TRAAK is a mechanosensitive leak potassium channel that was recently localized to the nodes of Ranvier. Here, we uncover that TRAAK is also present in AISs of hippocampal and cortical neurons in the adult rat brain as well as in AISs of cultured rat hippocampal neurons. We show that the AIS localization is driven by a C-terminal ankyrin G-binding sequence that organizes TRAAK in a 190 nm spaced periodic pattern that codistributes with periodically organized ankyrin G. We furthermore uncover that while the identified ankyrin G-binding motif is analogous to known ankyrin G-binding motifs in NaV1 and KV7.2/KV7.3 channels, it was acquired by convergent evolution. Our findings identify TRAAK as an AIS ion channel that convergently acquired an ankyrin G-binding motif and expand the role of ankyrin G to include the nanoscale organization of ion channels at the AIS.


Sujet(s)
Ankyrines , Segment initial de l'axone , Hippocampe , Cellules pyramidales , Animaux , Ankyrines/métabolisme , Rats , Cellules pyramidales/métabolisme , Segment initial de l'axone/métabolisme , Hippocampe/métabolisme , Hippocampe/cytologie , Axones/métabolisme , Motifs d'acides aminés , Canaux potassiques/métabolisme , Liaison aux protéines
3.
Neurosci Bull ; 2024 Jul 30.
Article de Anglais | MEDLINE | ID: mdl-39080101

RÉSUMÉ

Axon initial segment (AIS) is the most excitable subcellular domain of a neuron for action potential initiation. AISs of cortical projection neurons (PNs) receive GABAergic synaptic inputs primarily from chandelier cells (ChCs), which are believed to regulate action potential generation and modulate neuronal excitability. As individual ChCs often innervate hundreds of PNs, they may alter the activity of PN ensembles and even impact the entire neural network. During postnatal development or in response to changes in network activity, the AISs and axo-axonic synapses undergo dynamic structural and functional changes that underlie the wiring, refinement, and adaptation of cortical microcircuits. Here we briefly introduce the history of ChCs and review recent research advances employing modern genetic and molecular tools. Special attention will be attributed to the plasticity of the AIS and the ChC-PN connections, which play a pivotal role in shaping the dynamic network under both physiological and pathological conditions.

4.
Biol Open ; 13(7)2024 Jul 15.
Article de Anglais | MEDLINE | ID: mdl-38912559

RÉSUMÉ

Changes in mitochondrial distribution are a feature of numerous age-related neurodegenerative diseases. In Drosophila, reducing the activity of Cdk5 causes a neurodegenerative phenotype and is known to affect several mitochondrial properties. Therefore, we investigated whether alterations of mitochondrial distribution are involved in Cdk5-associated neurodegeneration. We find that reducing Cdk5 activity does not alter the balance of mitochondrial localization to the somatodendritic versus axonal neuronal compartments of the mushroom body, the learning and memory center of the Drosophila brain. We do, however, observe changes in mitochondrial distribution at the axon initial segment (AIS), a neuronal compartment located in the proximal axon involved in neuronal polarization and action potential initiation. Specifically, we observe that mitochondria are partially excluded from the AIS in wild-type neurons, but that this exclusion is lost upon reduction of Cdk5 activity, concomitant with the shrinkage of the AIS domain that is known to occur in this condition. This mitochondrial redistribution into the AIS is not likely due to the shortening of the AIS domain itself but rather due to altered Cdk5 activity. Furthermore, mitochondrial redistribution into the AIS is unlikely to be an early driver of neurodegeneration in the context of reduced Cdk5 activity.


Sujet(s)
Axones , Kinase-5 cycline-dépendante , Mitochondries , Animaux , Mitochondries/métabolisme , Kinase-5 cycline-dépendante/métabolisme , Kinase-5 cycline-dépendante/génétique , Axones/métabolisme , Drosophila , Protéines de Drosophila/métabolisme , Protéines de Drosophila/génétique , Modèles animaux de maladie humaine , Maladies neurodégénératives/étiologie , Maladies neurodégénératives/métabolisme , Segment initial de l'axone/métabolisme , Corps pédonculés/métabolisme , Dégénérescence nerveuse , Neurones/métabolisme , Drosophila melanogaster/métabolisme
5.
Front Mol Neurosci ; 17: 1376997, 2024.
Article de Anglais | MEDLINE | ID: mdl-38799616

RÉSUMÉ

The location of the axon initial segment (AIS) at the junction between the soma and axon of neurons makes it instrumental in maintaining neural polarity and as the site for action potential generation. The AIS is also capable of large-scale relocation in an activity-dependent manner. This represents a form of homeostatic plasticity in which neurons regulate their own excitability by changing the size and/or position of the AIS. While AIS plasticity is important for proper functionality of AIS-containing neurons, the cellular and molecular mechanisms of AIS plasticity are poorly understood. Here, we analyzed changes in the AIS actin cytoskeleton during AIS plasticity using 3D structured illumination microscopy (3D-SIM). We showed that the number of longitudinal actin fibers increased transiently 3 h after plasticity induction. We further showed that actin polymerization, especially formin mediated actin polymerization, is required for AIS plasticity and formation of longitudinal actin fibers. From the formin family of proteins, Daam1 localized to the ends of longitudinal actin fibers. These results indicate that active re-organization of the actin cytoskeleton is required for proper AIS plasticity.

6.
J Physiol ; 602(9): 2107-2126, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38568869

RÉSUMÉ

We are studying the mechanisms of H-reflex operant conditioning, a simple form of learning. Modelling studies in the literature and our previous data suggested that changes in the axon initial segment (AIS) might contribute. To explore this, we used blinded quantitative histological and immunohistochemical methods to study in adult rats the impact of H-reflex conditioning on the AIS of the spinal motoneuron that produces the reflex. Successful, but not unsuccessful, H-reflex up-conditioning was associated with greater AIS length and distance from soma; greater length correlated with greater H-reflex increase. Modelling studies in the literature suggest that these increases may increase motoneuron excitability, supporting the hypothesis that they may contribute to H-reflex increase. Up-conditioning did not affect AIS ankyrin G (AnkG) immunoreactivity (IR), p-p38 protein kinase IR, or GABAergic terminals. Successful, but not unsuccessful, H-reflex down-conditioning was associated with more GABAergic terminals on the AIS, weaker AnkG-IR, and stronger p-p38-IR. More GABAergic terminals and weaker AnkG-IR correlated with greater H-reflex decrease. These changes might potentially contribute to the positive shift in motoneuron firing threshold underlying H-reflex decrease; they are consistent with modelling suggesting that sodium channel change may be responsible. H-reflex down-conditioning did not affect AIS dimensions. This evidence that AIS plasticity is associated with and might contribute to H-reflex conditioning adds to evidence that motor learning involves both spinal and brain plasticity, and both neuronal and synaptic plasticity. AIS properties of spinal motoneurons are likely to reflect the combined influence of all the motor skills that share these motoneurons. KEY POINTS: Neuronal action potentials normally begin in the axon initial segment (AIS). AIS plasticity affects neuronal excitability in development and disease. Whether it does so in learning is unknown. Operant conditioning of a spinal reflex, a simple learning model, changes the rat spinal motoneuron AIS. Successful, but not unsuccessful, H-reflex up-conditioning is associated with greater AIS length and distance from soma. Successful, but not unsuccessful, down-conditioning is associated with more AIS GABAergic terminals, less ankyrin G, and more p-p38 protein kinase. The associations between AIS plasticity and successful H-reflex conditioning are consistent with those between AIS plasticity and functional changes in development and disease, and with those predicted by modelling studies in the literature. Motor learning changes neurons and synapses in spinal cord and brain. Because spinal motoneurons are the final common pathway for behaviour, their AIS properties probably reflect the combined impact of all the behaviours that use these motoneurons.


Sujet(s)
Segment initial de l'axone , Réflexe H , Motoneurones , Rat Sprague-Dawley , Animaux , Motoneurones/physiologie , Rats , Mâle , Réflexe H/physiologie , Segment initial de l'axone/physiologie , Apprentissage/physiologie , Moelle spinale/physiologie , Moelle spinale/cytologie , Axones/physiologie , Plasticité neuronale/physiologie , Conditionnement opérant/physiologie , Ankyrines/métabolisme
7.
Curr Res Neurobiol ; 6: 100121, 2024.
Article de Anglais | MEDLINE | ID: mdl-38616956

RÉSUMÉ

Parvalbumin-expressing (PV+) inhibitory interneurons drive gamma oscillations (30-80 Hz), which underlie higher cognitive functions. In this review, we discuss two groups/aspects of fundamental properties of PV+ interneurons. In the first group (dubbed Before Axon), we list properties representing optimal synaptic integration in PV+ interneurons designed to support fast oscillations. For example: [i] Information can neither enter nor leave the neocortex without the engagement of fast PV+ -mediated inhibition; [ii] Voltage responses in PV+ interneuron dendrites integrate linearly to reduce impact of the fluctuations in the afferent drive; and [iii] Reversed somatodendritic Rm gradient accelerates the time courses of synaptic potentials arriving at the soma. In the second group (dubbed After Axon), we list morphological and biophysical properties responsible for (a) short synaptic delays, and (b) efficient postsynaptic outcomes. For example: [i] Fast-spiking ability that allows PV+ interneurons to outpace other cortical neurons (pyramidal neurons). [ii] Myelinated axon (which is only found in the PV+ subclass of interneurons) to secure fast-spiking at the initial axon segment; and [iii] Inhibitory autapses - autoinhibition, which assures brief biphasic voltage transients and supports postinhibitory rebounds. Recent advent of scientific tools, such as viral strategies to target PV cells and the ability to monitor PV cells via in vivo imaging during behavior, will aid in defining the role of PV cells in the CNS. Given the link between PV+ interneurons and cognition, in the future, it would be useful to carry out physiological recordings in the PV+ cell type selectively and characterize if and how psychiatric and neurological diseases affect initiation and propagation of electrical signals in this cortical sub-circuit. Voltage imaging may allow fast recordings of electrical signals from many PV+ interneurons simultaneously.

8.
J Cell Sci ; 137(8)2024 04 15.
Article de Anglais | MEDLINE | ID: mdl-38525600

RÉSUMÉ

In neurons, the microtubule (MT) cytoskeleton forms the basis for long-distance protein transport from the cell body into and out of dendrites and axons. To maintain neuronal polarity, the axon initial segment (AIS) serves as a physical barrier, separating the axon from the somatodendritic compartment and acting as a filter for axonal cargo. Selective trafficking is further instructed by axonal enrichment of MT post-translational modifications, which affect MT dynamics and the activity of motor proteins. Here, we compared two knockout mouse lines lacking the respective enzymes for MT tyrosination and detyrosination, and found that both knockouts led to a shortening of the AIS. Neurons from both lines also showed an increased immobile fraction of endolysosomes present in the axon, whereas mobile organelles displayed shortened run distances in the retrograde direction. Overall, our results highlight the importance of maintaining the balance of tyrosinated and detyrosinated MTs for proper AIS length and axonal transport processes.


Sujet(s)
Transport axonal , Lysosomes , Souris knockout , Microtubules , Tyrosine , Animaux , Microtubules/métabolisme , Tyrosine/métabolisme , Lysosomes/métabolisme , Souris , Axones/métabolisme , Endosomes/métabolisme , Neurones/métabolisme
9.
bioRxiv ; 2024 Feb 14.
Article de Anglais | MEDLINE | ID: mdl-38405730

RÉSUMÉ

Changes in mitochondrial distribution are a feature of numerous age-related neurodegenerative diseases. In Drosophila, reducing the activity of Cdk5 causes a neurodegenerative phenotype and is known to affect several mitochondrial properties. Therefore, we investigated whether alterations of mitochondrial distribution are involved in Cdk5-associated neurodegeneration. We find that reducing Cdk5 activity does not alter the balance of mitochondrial localization to the somatodendritic vs. axonal neuronal compartments of the mushroom body, the learning and memory center of the Drosophila brain. We do, however, observe changes in mitochondrial distribution at the axon initial segment (AIS), a neuronal compartment located in the proximal axon involved in neuronal polarization and action potential initiation. Specifically, we observe that mitochondria are partially excluded from the AIS in wild-type neurons, but that this exclusion is lost upon reduction of Cdk5 activity, concomitant with the shrinkage of the AIS domain that is known to occur in this condition. This mitochondrial redistribution into the AIS is not likely due to the shortening of the AIS domain itself but rather due to altered Cdk5 activity. Furthermore, mitochondrial redistribution into the AIS is unlikely to be an early driver of neurodegeneration in the context of reduced Cdk5 activity.

10.
J Comp Neurol ; 532(2): e25574, 2024 02.
Article de Anglais | MEDLINE | ID: mdl-38411251

RÉSUMÉ

Due to its proximity to the axon initial segment (AIS), the paranode of the first myelin segment can influence the threshold for action potentials and how a neuron participates in a neuronal circuit. Using serial section electron microscopy, we examined its three-dimensional (3D) organization in the ventral horn of the mouse spinal cord. The myelin loops of postnatal day 18 mice resemble those at the node of Ranvier. However, in 3-month-old mice, 13 of 22 para-AIS showed 4 types of alteration: (A) A cytoplasmic foot process, with ultrastructural characteristics of an astrocyte, was interposed between the axolemma and the myelin loops. (B) A thin extension of the inner tongue was present between the foot process and axolemma. (C) The foot process was absent. The inner tongue extension was a broad lamella from which a thin extension reached beyond the loops and spiraled around axon. (D) One set of loops was adjacent to the axon, and another was further back and underlain by compact myelin. We suggest that (A)-(C) are steps in a progression toward (D). In this progression, a glial process displaces the original loops, the inner tongue reactivates and extends beneath the foot process, then wraps around the axon to form a new set of loops. This is the first study of the 3D organization of myelin at the AIS and provides evidence for glia-mediated age-dependent remodeling at this critical region.


Sujet(s)
Segment initial de l'axone , Gaine de myéline , Souris , Animaux , Gaine de myéline/ultrastructure , Axones/ultrastructure , Neurones , Microscopie électronique
11.
Sci Rep ; 14(1): 4967, 2024 02 29.
Article de Anglais | MEDLINE | ID: mdl-38424206

RÉSUMÉ

The toxin AaH-II, from the scorpion Androctonus australis Hector venom, is a 64 amino acid peptide that targets voltage-gated Na+ channels (VGNCs) and slows their inactivation. While at macroscopic cellular level AaH-II prolongs the action potential (AP), a functional analysis of the effect of the toxin in the axon initial segment (AIS), where VGNCs are highly expressed, was never performed so far. Here, we report an original analysis of the effect of AaH-II on the AP generation in the AIS of neocortical layer-5 pyramidal neurons from mouse brain slices. After determining that AaH-II does not discriminate between Nav1.2 and Nav1.6, i.e. between the two VGNC isoforms expressed in this neuron, we established that 7 nM was the smallest toxin concentration producing a minimal detectable deformation of the somatic AP after local delivery of the toxin. Using membrane potential imaging, we found that, at this minimal concentration, AaH-II substantially widened the AP in the AIS. Using ultrafast Na+ imaging, we found that local application of 7 nM AaH-II caused a large increase in the slower component of the Na+ influx in the AIS. Finally, using ultrafast Ca2+ imaging, we observed that 7 nM AaH-II produces a spurious slow Ca2+ influx via Ca2+-permeable VGNCs. Molecules targeting VGNCs, including peptides, are proposed as potential therapeutic tools. Thus, the present analysis in the AIS can be considered a general proof-of-principle on how high-resolution imaging techniques can disclose drug effects that cannot be observed when tested at the macroscopic level.


Sujet(s)
Animaux venimeux , Segment initial de l'axone , Venins de scorpion , Souris , Animaux , Potentiels d'action , Scorpions , Peptides , Venins de scorpion/pharmacologie , Venins de scorpion/composition chimique
12.
Neuron ; 112(7): 1133-1149.e6, 2024 Apr 03.
Article de Anglais | MEDLINE | ID: mdl-38290518

RÉSUMÉ

Dysfunction in sodium channels and their ankyrin scaffolding partners have both been implicated in neurodevelopmental disorders, including autism spectrum disorder (ASD). In particular, the genes SCN2A, which encodes the sodium channel NaV1.2, and ANK2, which encodes ankyrin-B, have strong ASD association. Recent studies indicate that ASD-associated haploinsufficiency in Scn2a impairs dendritic excitability and synaptic function in neocortical pyramidal cells, but how NaV1.2 is anchored within dendritic regions is unknown. Here, we show that ankyrin-B is essential for scaffolding NaV1.2 to the dendritic membrane of mouse neocortical neurons and that haploinsufficiency of Ank2 phenocopies intrinsic dendritic excitability and synaptic deficits observed in Scn2a+/- conditions. These results establish a direct, convergent link between two major ASD risk genes and reinforce an emerging framework suggesting that neocortical pyramidal cell dendritic dysfunction can contribute to neurodevelopmental disorder pathophysiology.


Sujet(s)
Trouble du spectre autistique , Trouble autistique , Néocortex , Animaux , Souris , Ankyrines/génétique , Ankyrines/métabolisme , Trouble du spectre autistique/génétique , Trouble du spectre autistique/métabolisme , Trouble autistique/métabolisme , Dendrites/physiologie , Canal sodique voltage-dépendant NAV1.2/génétique , Néocortex/métabolisme , Cellules pyramidales/physiologie
13.
J Neurosci ; 44(7)2024 Feb 14.
Article de Anglais | MEDLINE | ID: mdl-38123997

RÉSUMÉ

Neurons typically generate action potentials at their axon initial segment based on the integration of synaptic inputs. In many neurons, the axon extends from the soma, equally weighting dendritic inputs. A notable exception is found in a subset of hippocampal pyramidal cells where the axon emerges from a basal dendrite. This structure allows these axon-carrying dendrites (AcDs) a privileged input route. We found that in male mice, such cells in the CA1 region receive stronger excitatory input from the contralateral CA3, compared with those with somatic axon origins. This is supported by a higher count of putative synapses from contralateral CA3 on the AcD. These findings, combined with prior observations of their distinct role in sharp-wave ripple firing, suggest a key role of this neuron subset in coordinating bi-hemispheric hippocampal activity during memory-centric oscillations.


Sujet(s)
Hippocampe , Cellules pyramidales , Mâle , Souris , Animaux , Cellules pyramidales/physiologie , Hippocampe/physiologie , Neurones/physiologie , Dendrites/physiologie , Potentiels d'action/physiologie , Synapses/physiologie , Région CA1 de l'hippocampe/physiologie
14.
Cell ; 186(26): 5766-5783.e25, 2023 12 21.
Article de Anglais | MEDLINE | ID: mdl-38134874

RÉSUMÉ

The enhanced cognitive abilities characterizing the human species result from specialized features of neurons and circuits. Here, we report that the hominid-specific gene LRRC37B encodes a receptor expressed in human cortical pyramidal neurons (CPNs) and selectively localized to the axon initial segment (AIS), the subcellular compartment triggering action potentials. Ectopic expression of LRRC37B in mouse CPNs in vivo leads to reduced intrinsic excitability, a distinctive feature of some classes of human CPNs. Molecularly, LRRC37B binds to the secreted ligand FGF13A and to the voltage-gated sodium channel (Nav) ß-subunit SCN1B. LRRC37B concentrates inhibitory effects of FGF13A on Nav channel function, thereby reducing excitability, specifically at the AIS level. Electrophysiological recordings in adult human cortical slices reveal lower neuronal excitability in human CPNs expressing LRRC37B. LRRC37B thus acts as a species-specific modifier of human neuron excitability, linking human genome and cell evolution, with important implications for human brain function and diseases.


Sujet(s)
Neurones , Cellules pyramidales , Canaux sodiques voltage-dépendants , Animaux , Humains , Souris , Potentiels d'action/physiologie , Axones/métabolisme , Neurones/métabolisme , Canaux sodiques voltage-dépendants/génétique , Canaux sodiques voltage-dépendants/métabolisme
16.
Int J Mol Sci ; 24(22)2023 Nov 17.
Article de Anglais | MEDLINE | ID: mdl-38003639

RÉSUMÉ

A murine osmotic demyelinating syndrome (ODS) model was developed through chronic hyponatremia, induced by desmopressin subcutaneous implants, followed by precipitous sodium restoration. The thalamic ventral posterolateral (VPL) and ventral posteromedial (VPM) relay nuclei were the most demyelinated regions where neuroglial damage could be evidenced without immune response. This report showed that following chronic hyponatremia, 12 h and 48 h time lapses after rebalancing osmolarity, amid the ODS-degraded outskirts, some resilient neuronal cell bodies built up primary cilium and axon hillock regions that extended into axon initial segments (AIS) where ADP-ribosylation factor-like protein 13B (ARL13B)-immunolabeled rod-like shape content was revealed. These AIS-labeled shaft lengths appeared proportional with the distance of neuronal cell bodies away from the ODS damaged epicenter and time lapses after correction of hyponatremia. Fine structure examination verified these neuron abundant transcriptions and translation regions marked by the ARL13B labeling associated with cell neurotubules and their complex cytoskeletal macromolecular architecture. This necessitated energetic transport to organize and restore those AIS away from the damaged ODS core demyelinated zone in the murine model. These labeled structures could substantiate how thalamic neuron resilience occurred as possible steps of a healing course out of ODS.


Sujet(s)
Segment initial de l'axone , Maladies démyélinisantes , Hyponatrémie , Animaux , Souris , Facteurs d'ADP-ribosylation/métabolisme , Cils vibratiles/métabolisme , Neurones/métabolisme , Maladies démyélinisantes/métabolisme
17.
Cell Rep ; 42(12): 113509, 2023 12 26.
Article de Anglais | MEDLINE | ID: mdl-38019651

RÉSUMÉ

Dysregulated neuronal excitability is a hallmark of amyotrophic lateral sclerosis (ALS). We sought to investigate how functional changes to the axon initial segment (AIS), the site of action potential generation, could impact neuronal excitability in ALS human induced pluripotent stem cell (hiPSC) motor neurons. We find that early TDP-43 and C9orf72 hiPSC motor neurons show an increase in the length of the AIS and impaired activity-dependent AIS plasticity that is linked to abnormal homeostatic regulation of neuronal activity and intrinsic hyperexcitability. In turn, these hyperactive neurons drive increased spontaneous myofiber contractions of in vitro hiPSC motor units. In contrast, late hiPSC and postmortem ALS motor neurons show AIS shortening, and hiPSC motor neurons progress to hypoexcitability. At a molecular level, aberrant expression of the AIS master scaffolding protein ankyrin-G and AIS-specific voltage-gated sodium channels mirror these dynamic changes in AIS function and excitability. Our results point toward the AIS as an important site of dysfunction in ALS motor neurons.


Sujet(s)
Sclérose latérale amyotrophique , Segment initial de l'axone , Cellules souches pluripotentes induites , Humains , Segment initial de l'axone/métabolisme , Sclérose latérale amyotrophique/métabolisme , Cellules souches pluripotentes induites/métabolisme , Motoneurones/métabolisme , Potentiels d'action/physiologie
18.
J Pharmacol Sci ; 153(3): 175-182, 2023 Nov.
Article de Anglais | MEDLINE | ID: mdl-37770159

RÉSUMÉ

We previously found that pituitary adenylate cyclase-activating polypeptide (PACAP)-deficient (PACAP-/-) mice exhibit dendritic spine morphology impairment and neurodevelopmental disorder (NDD)-like behaviors such as hyperactivity, increased novelty-seeking behavior, and deficient pre-pulse inhibition. Recent studies have indicated that rodent models of NDDs (e.g., attention-deficit hyperactivity disorder (ADHD) and autism spectrum disorder) show abnormalities in the axon initial segment (AIS). Here, we revealed that PACAP-/- mice exhibited a longer AIS length in layer 2/3 pyramidal neurons of the primary somatosensory barrel field compared with wild-type control mice. Further, we previously showed that a single injection of atomoxetine, an ADHD drug, improved hyperactivity in PACAP-/- mice. In this study, we found that repeated treatments of atomoxetine significantly improved AIS abnormality along with hyperactivity in PACAP-/- mice. These results suggest that AIS abnormalities are associated with NDDs-like behaviors in PACAP-/- mice. Thus, improvement in AIS abnormalities will be a novel drug therapy for NDDs.

19.
Adv Sci (Weinh) ; 10(29): e2302035, 2023 10.
Article de Anglais | MEDLINE | ID: mdl-37594721

RÉSUMÉ

In tauopathy conditions, such as Alzheimer's disease (AD), highly soluble and natively unfolded tau polymerizes into an insoluble filament; however, the mechanistic details of this process remain unclear. In the brains of AD patients, only a minor segment of tau forms ß-helix-stacked protofilaments, while its flanking regions form disordered fuzzy coats. Here, it is demonstrated that the tau AD nucleation core (tau-AC) sufficiently induced self-aggregation and recruited full-length tau to filaments. Unexpectedly, phospho-mimetic forms of tau-AC (at Ser324 or Ser356) show markedly reduced oligomerization and seeding propensities. Biophysical analysis reveal that the N-terminus of tau-AC facilitates the fibrillization kinetics as a nucleation motif, which becomes sterically shielded through phosphorylation-induced conformational changes in tau-AC. Tau-AC oligomers are efficiently internalized into cells via endocytosis and induced endogenous tau aggregation. In primary hippocampal neurons, tau-AC impaired axon initial segment plasticity upon chronic depolarization and is mislocalized to the somatodendritic compartments. Furthermore, it is observed significantly impaired memory retrieval in mice intrahippocampally injected with tau-AC fibrils, which corresponds to the neuropathological staining and neuronal loss in the brain. These findings identify tau-AC species as a key neuropathological driver in AD, suggesting novel strategies for therapeutic intervention.


Sujet(s)
Maladie d'Alzheimer , Souris , Humains , Animaux , Protéines tau/métabolisme , Encéphale/métabolisme , Neurones/métabolisme , Phosphorylation
20.
J Neurosci ; 43(37): 6357-6368, 2023 09 13.
Article de Anglais | MEDLINE | ID: mdl-37596053

RÉSUMÉ

Neurons are remarkably polarized structures: dendrites spread and branch to receive synaptic inputs while a single axon extends and transmits action potentials (APs) to downstream targets. Neuronal polarity is maintained by the axon initial segment (AIS), a region between the soma and axon proper that is also the site of action potential (AP) generation. This polarization between dendrites and axons extends to inhibitory neurotransmission. In adulthood, the neurotransmitter GABA hyperpolarizes dendrites but instead depolarizes axons. These differences in function collide at the AIS. Multiple studies have shown that GABAergic signaling in this region can share properties of either the mature axon or mature dendrite, and that these properties evolve over a protracted period encompassing periadolescent development. Here, we explored how developmental changes in GABAergic signaling affect AP initiation. We show that GABA at the axon initial segment inhibits action potential initiation in layer (L)2/3 pyramidal neurons in prefrontal cortex from mice of either sex across GABA reversal potentials observed in periadolescence. These actions occur largely through current shunts generated by GABAA receptors and changes in voltage-gated channel properties that affected the number of channels that could be recruited for AP electrogenesis. These results suggest that GABAergic neurons targeting the axon initial segment provide an inhibitory "veto" across the range of GABA polarity observed in normal adolescent development, regardless of GABAergic synapse reversal potential.Significance Statement GABA receptors are a major class of neurotransmitter receptors in the brain. Typically, GABA receptors inhibit neurons by allowing influx of negatively charged chloride ions into the cell. However, there are cases where local chloride concentrations promote chloride efflux through GABA receptors. Such conditions exist early in development in neocortical pyramidal cell axon initial segments (AISs), where action potentials (APs) initiate. Here, we examined how chloride efflux in early development interacts with mechanisms that support action potential initiation. We find that this efflux, despite moving membrane potential closer to action potential threshold, is nevertheless inhibitory. Thus, GABA at the axon initial segment is likely to be inhibitory for action potential initiation independent of whether chloride flows out or into neurons via these receptors.


Sujet(s)
Segment initial de l'axone , Animaux , Souris , Potentiels d'action , Chlorures , Neurones GABAergiques , Récepteurs GABA-A , Acide gamma-amino-butyrique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE