Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 1.152
Filtrer
1.
Data Brief ; 57: 110932, 2024 Dec.
Article de Anglais | MEDLINE | ID: mdl-39381006

RÉSUMÉ

The microbial diversity of fermented rice beer and grape wine in Mizoram was explored using 16S metagenome analysis. The collected samples were marked as C1 and B1 for fermented rice beer and D1 for grape wine. Next-generation sequencing of the 16S rRNA (V3-V4 region) was performed using the Illumina NovoSeq 6000 platform. Operational taxonomic units (OTUs) were identified with QIIME2, and statistical analyses were performed using R packages. The metagenome of the three samples comprised 464,826 raw reads that represented 116,206,500 base pairs and were clustered into 336 OTUs. The phylum Firmicutes was predominant in C1 (55 %), B1 (53 %) and D1 (52 %), respectively and biosysnthesis, pyruvate fermentation to be abundant functions. By applying 16S metagenome analysis, this data provide insights in to the complex community of bacteria involved in the fermentation process and their potential roles and interactions.

2.
3 Biotech ; 14(11): 262, 2024 Nov.
Article de Anglais | MEDLINE | ID: mdl-39381023

RÉSUMÉ

In this study, high-throughput sequencing (HTS) technology was used to investigate the composition and diversity of endophytic bacteria and their effects on succinic acid biosynthesis in P. ternata tubers from three different geographical locations (MS, SL, and ZT). A total of 1777 amplicon sequence variants (ASVs) were annotated, and the diversity and composition of endophytic bacteria in P. ternata tubers were significantly different among different regions. The ZT samples presented the highest α diversity, and the Shannon diversity, richness, and Pielou evenness index were all ZT > MS > SL. Co-occurrence network analysis revealed that endophytic bacterial groups such as Stenotrophomonas, Pseudomonas, Mycobacterium, and Chryseomicrobium were key groups in the endophytic bacterial interaction network, indicating that they play a role in maintaining community stability. In addition, some endophytic bacteria were associated with the biosynthesis of succinic acid, a key bioactive compound in P. ternata. The succinate content was positively correlated with the genera Brevundimonas, Ensifer, Nocardioides, and Paenibacillus, while it was negatively correlated with the genera Lentimicrobium, Anaerovorax, and Pajaroellobacter. These findings highlight the key role of endophytic bacteria in regulating the efficacy of P. ternata. These findings provide key information for further elucidating the mechanism by which endophytic bacteria affect the synthesis of bioactive compounds.

3.
Animals (Basel) ; 14(18)2024 Sep 16.
Article de Anglais | MEDLINE | ID: mdl-39335278

RÉSUMÉ

Tritrichomonas foetus (T. foetus), the causative agent of bovine trichomoniasis, is an obligate protozoan parasite of the bovine reproductive tract and can be found on the penis, prepuce, and distal urethra of the bull and from the cranial vagina to the oviduct in the infected cow. To date, the microbiome of bulls infected with T. foetus has not been described. The objectives of this study were to (1) describe the preputial and penile microbiome of bulls chronically infected by T. foetus, (2) describe the seminal microbiome of T. foetus-infected bulls, and (3) evaluate different collection devices that could be used for sampling. Eleven bulls naturally infected with T. foetus were utilized for the collection of samples. Samples were obtained during the process of a routine breeding soundness exam utilizing either a dacron swab, pizzle stick, double-guarded swab, or semen collection. The preputial and seminal microbiome of T. foetus-infected bulls was dominated by bacterial members of the phyla Fusobacteriota, Firmicutes, Bacteroidota, Actinobacteria, and Campylobacterota. Semen collection yielded the most microbial diversity; however, there was no significant difference between the four methods (p ≥ 0.05). This study characterizes both the preputial and seminal microbial communities of bulls chronically infected by T. foetus.

4.
Front Microbiol ; 15: 1455891, 2024.
Article de Anglais | MEDLINE | ID: mdl-39345260

RÉSUMÉ

Although aboveground biodiversity has been extensively studied, the impact of nutrient enrichment on soil microbial populations remains unclear. Soil microorganisms serve as important indicators in shaping soil nutrient cycling processes and are typically sensitive to nutrient additions. For this, we employed a factorial combination design to examine the impact of nutrient additions on the composition and function of soil bacteria in a temperate steppe. Nitrogen addition promoted the growth of copiotrophic bacteria (Proteobacteria, Firmicutes, and Bacteroidota) but inhibited the growth of oligotrophic bacteria (Acidobacteria, Chloroflexi, and Verrucomicrobiota). Phosphorus addition alleviated phosphorus deficiency, resulting in a decrease in the abundance of phoD-harboring bacteria (Actinobacteria and Proteobacteria). Significant enhancement of soil bacterial alpha diversity was observed only in treatments with added phosphorus. Changes in NO3 --N, NH4 +-N, available phosphorus, and dissolved organic carbon resulting from nutrient addition may have a greater impact on microbial community structure than changes in soil pH caused by nitrogen addition. Moreover, nutrient addition may indirectly impact microbial ecological function by altering nutrient availability in the soil. In conclusion, our study suggests that soil nutrient availability, particularly available phosphorus, affects soil bacterial communities and potentially regulates the biogeochemical cycles of soil ecosystems.

5.
Microorganisms ; 12(9)2024 Sep 09.
Article de Anglais | MEDLINE | ID: mdl-39338541

RÉSUMÉ

To investigate the effect of 5-aminolevulinic acid (5-ALA) on in vitro rumen gas production, fermentation characteristics, and bacterial community profiles, five levels of 5-ALA (0, 100, 500, 1000, and 5000 mg/kg DM) were supplemented into a total mixed ration (concentrate/forage = 40:60) as substrate in an in vitro experiment. Results showed that as the supplementation level of 5-ALA increased, asymptotic gas production (b) decreased linearly and quadratically (p < 0.01) while the dry matter degradation rate increased quadratically (p < 0.01). Meanwhile, the propionate concentration of 72 h incubation fluid increased linearly (p = 0.03) and pH value increased linearly and quadratically (p < 0.01), while the concentrations of butyrate, isobutyrate, valerate, isovalerate, and NH3-N and the ratio of acetate/propionate (A/P) decreased linearly and quadratically (p < 0.05). There was no significant difference in any alpha diversity indices of bacterial communities among the various 5-ALA levels (p < 0.05). PCoA and PERMANOVA analysis revealed that the bacterial profiles showed a statistical difference between the treatment 5-ALA at 1000 mg/kg DM and the other levels except for 5000 mg/kg DM (p < 0.05). Taxonomic classification revealed a total of 18 and 173 bacterial taxa at the phylum and genus level with relative abundances higher than 0.01% in at least half of the samples, respectively. LEfse analysis revealed that 19 bacterial taxa were affected by 5-ALA levels. Correlation analysis showed that Actinobacteriota was positively correlated with the gas production parameter b, the ratio of A/P, and the concentration of butyrate, isovalerate, and NH3-N (p < 0.05) and negatively correlated with pH (p < 0.05). WPS-2 exhibited a negative correlation with the gas production parameter b, the ratio of A/P, and the concentration of butyrate, valerate, isobutyrate, isovalerate, and NH3-N (p < 0.05), along with a weaker positive correlation with pH (p = 0.04). The Bacteroidales BS11 gut group was negatively correlated with the concentration of propionate but positively correlated with gas production parameter b and the concentration of butyrate and NH3-N (p < 0.05). The Lachnospiraceae NK3A20 group was found to have a positive correlation with gas production parameter b, the ratio of A/P, and the concentration of butyrate, isobutyrate, isovalerate, valerate, total VFA, and NH3-N (p < 0.05), but a highly negative correlation with pH (p < 0.01). Differential metabolic pathways analysis suggested that metabolic pathways related to crude protein utilization, such as L-glutamate degradation VIII (to propanoate), L-tryptophan degradation IX, and urea cycle, increased with 5-ALA levels. In summary, including 5-ALA in the diet might improve energy and protein utilization by reducing the abundance of Actinobacteriota, the Bacteroidales BS11 gut group, the Lachnospiraceae NK3A20 group, and certain pathogenic bacteria and increasing the abundance of WPS-2.

6.
Microorganisms ; 12(9)2024 Sep 14.
Article de Anglais | MEDLINE | ID: mdl-39338568

RÉSUMÉ

To explore how microbial interactions within the rhizosphere influence the diversity and functional roles of bacterial communities, we isolated 21 bacterial strains from soil samples collected near Rocky Branch Creek on the University of South Carolina campus. Our findings revealed that a significant proportion of the isolated bacterial strains are lysogenic. Contrary to predictions of a narrow host range, most of the bacteriophages derived from these lysogenic bacteria demonstrated the ability to infect a broad range of bacterial strains. These results suggest that the bacterial community shares a complex phage community, creating an intricate web of interactions. This study enhances our understanding of the relationships between phages and their bacterial hosts in soil ecosystems, with implications for ecological balance and agricultural practices aimed at improving plant health through microbial management strategies.

7.
BMC Microbiol ; 24(1): 348, 2024 Sep 14.
Article de Anglais | MEDLINE | ID: mdl-39277721

RÉSUMÉ

BACKGROUND: Oligotrophy and hypereutrophy represent the two extremes of lake trophic states, and understanding the distribution of bacterial communities across these contrasting conditions is crucial for advancing aquatic microbial research. Despite the significance of these extreme trophic states, bacterial community characteristics and co-occurrence patterns in such environments have been scarcely interpreted. To bridge this knowledge gap, we collected 60 water samples from Lake Fuxian (oligotrophic) and Lake Xingyun (hypereutrophic) during different hydrological periods. RESULTS: Employing 16S rRNA gene sequencing, our findings revealed distinct community structures and metabolic potentials in bacterial communities of hypereutrophic and oligotrophic lake ecosystems. The hypereutrophic ecosystem exhibited higher bacterial α- and ß-diversity compared to the oligotrophic ecosystem. Actinobacteria dominated the oligotrophic Lake Fuxian, while Cyanobacteria, Proteobacteria, and Bacteroidetes were more prevalent in the hypereutrophic Lake Xingyun. Functions associated with methanol oxidation, methylotrophy, fermentation, aromatic compound degradation, nitrogen/nitrate respiration, and nitrogen/nitrate denitrification were enriched in the oligotrophic lake, underscoring the vital role of bacteria in carbon and nitrogen cycling. In contrast, functions related to ureolysis, human pathogens, animal parasites or symbionts, and phototrophy were enriched in the hypereutrophic lake, highlighting human activity-related disturbances and potential pathogenic risks. Co-occurrence network analysis unveiled a more complex and stable bacterial network in the hypereutrophic lake compared to the oligotrophic lake. CONCLUSION: Our study provides insights into the intricate relationships between trophic states and bacterial community structure, emphasizing significant differences in diversity, community composition, and network characteristics between extreme states of oligotrophy and hypereutrophy. Additionally, it explores the nuanced responses of bacterial communities to environmental conditions in these two contrasting trophic states.


Sujet(s)
Bactéries , Biodiversité , Lacs , Phylogenèse , ARN ribosomique 16S , Lacs/microbiologie , Bactéries/classification , Bactéries/génétique , Bactéries/isolement et purification , ARN ribosomique 16S/génétique , ADN bactérien/génétique , Microbiote/génétique , Écosystème , Microbiologie de l'eau , Chine , Azote/métabolisme , Analyse de séquence d'ADN
8.
J Hazard Mater ; 479: 135638, 2024 Nov 05.
Article de Anglais | MEDLINE | ID: mdl-39217937

RÉSUMÉ

Microplastics in aquatic ecosystems harbor numerous microorganisms, including pathogenic species. The ingestion of these microplastics by commercial fish poses a threat to the ecosystem and human livelihood. Coastal lagoons are highly vulnerable to microplastic and microbiological pollution, yet limited understanding of the risks complicates management. Here, we present the main bacterial groups, including potentially pathogenic species, identified on microplastics in waters, sediments, and commercial fish from Ciénaga Grande de Santa Marta (CGSM), the largest coastal lagoon in Colombia. DNA metabarcoding allowed identifying 1760 bacterial genera on microplastics, with Aeromonas and Acinetobacter as the most frequent and present in all three matrices. The greatest bacterial richness and diversity were recorded on microplastics from sediments, followed by waters and fish. Biochemical analyses yielded 19 species of potentially pathogenic culturable bacteria on microplastics. Aeromonas caviae was the most frequent and, along with Pantoea sp., was found on microplastics in all three matrices. Enterobacter roggenkampii and Pseudomonas fluorescens were also found on microplastics from waters and fish. We propose management strategies for an Early Warning System against microbiological and microplastic pollution risks in coastal lagoons, illustrated by CGSM. This includes forming inter-institutional alliances for research and monitoring, accompanied by strengthening governance and health infrastructures.


Sujet(s)
Bactéries , Sédiments géologiques , Microplastiques , Animaux , Sédiments géologiques/microbiologie , Bactéries/classification , Bactéries/génétique , Bactéries/isolement et purification , Poissons/microbiologie , Polluants chimiques de l'eau/analyse , Colombie , Surveillance de l'environnement , Microbiologie de l'eau , Eau de mer/microbiologie
9.
Sci Total Environ ; 954: 176302, 2024 Sep 17.
Article de Anglais | MEDLINE | ID: mdl-39293770

RÉSUMÉ

Restoration of mining sites is essential to ensure ecosystem services and biodiversity. One restoration strategy employed in arid and semi-arid zones is the use of organic amendments to establishment technosols. However, it is necessary to monitor the restoration progress in order to select appropriate amendments. This study monitored the effects of compost gardening, greenhouse horticulture and stabilized sewage sludge, and their blends. We focused on soil physical and chemical indicators and bacterial community structure and diversity during the 30 months after application. Organic amendments increased total organic carbon and nitrogen within six months, staying elevated compared to natural soils over 30 months. Electrical conductivity rose then stabilized, the pH slightly decreased but stayed alkaline, and water holding capacity improved in treated technosols. Bacterial diversity increased in amended technosols compared to control. Alpha diversity varied with treatment and time, peaking at 18 months. Technosols with plant compost showed reduced bacterial richness at 30 months, while those with sewage sludge and its mixtures maintained it. The bacterial community analysis showed significant differences among treatments and times, highlighting dominant phyla like Proteobacteria and Bacteroidetes. PCoA analysis showed clear separation of bacterial communities from treated, natural, and control soils, with notable differences between plant and sludge treatments. Soil variables such as TOC, TN, EC and water holding capacity explained more than 82 % of the variation in bacterial communities. Eighty-three indicator taxa were identified that explained the differences between the microbial communities of treated and untreated soils, highlighting the importance of taxa such as Pelagibacterium spp., Roseivirga spp. and Cellvibrio spp. in preserving soil health. In short, organic amendments improve soil properties and promote the diversity and stability of beneficial microbial communities in semi-arid mined soils, underlining their crucial role in the restoration and long-term maintenance of degraded soils.

10.
J Environ Manage ; 370: 122428, 2024 Sep 10.
Article de Anglais | MEDLINE | ID: mdl-39260281

RÉSUMÉ

Soil microbial diversity is crucial for regulating biogeochemical cycles, including soil carbon (C) dynamics and nutrient cycling. However, how climate, plants, and soil properties influence the microbiome in forests remains unclear, especially at the continental scale, hindering us to better understand forest C-climate change feedback. Here, we investigated the spatial patterns of microbial diversity across China's forests and explored the controlling factors of microbial ß diversity and network complexity. Our results showed that soil pH strongly influenced bacterial and fungal ß diversity compared to climate, soil nutrient and plant properties. To further investigate the environmental preference of the microbial networks, we classified the amplicon sequence variants (ASVs) into five groups ranging from acidic to alkaline soils. Co-occurrence network analysis revealed that the topological structure of the bacterial network (e.g., edge and degree) increased with pH and was negatively correlated with ß diversity but not for fungal diversity. Soil fungi exhibited higher ß diversity and network complexity (i.e., degree and betweenness) than bacteria in acidic soils (pH < 5.1), and vice versa in neutral and alkaline soils (pH > 5.5). Within the pH range of 5.1-5.5, the bacterial-fungal network displayed the highest network complexity with the lowest fungal ß diversity, and significant positive correlations were found between fungal ß diversity and soil properties. In addition, bacterial growth in acidic soil (pH < 5.5) showed positive correlations with acid phosphatase (AP), but negative ones with ß-1,4-glucosidase (BG), and vice versa in neutral and alkaline soils (pH > 5.5). Furthermore, 46 bacterial core species were identified, and their abundance had significant correlation with soil pH. These findings highlight the critical role of soil pH in driving soil microbial ß diversity across China's forests and reveal the effects of pH thresholds on changes in the soil microbial network and core species.

11.
Environ Res ; 263(Pt 1): 120028, 2024 Sep 20.
Article de Anglais | MEDLINE | ID: mdl-39307222

RÉSUMÉ

Bacteria are diverse and play important roles in biogeochemical cycling of aquatic ecosystems, but the global distribution patterns of bacterial communities in lake sediments across different climate zones are still obscure. Here we integrated the high-throughput sequencing data of 750 sediment samples from published literature to investigate the distribution of bacterial communities in different climate zones and the potential driving mechanisms. The obtained results indicated that the diversity and richness of bacterial community were notably higher in temperate and cold zones than those in other climate zones. In addition, the bacterial community composition varied significantly in different climate zones, which further led to changes in bacterial functional groups. Specifically, the relative abundance of nitrogen cycling functional groups in polar zones was notably higher compared to other climate zones. Regression analysis revealed that climate (mean annual precipitation, MAP; and mean annual temperature, MAT), vegetation, and geography together determined the diversity pattern of sediment bacterial community on a global scale. The results of partial least squares path modeling further demonstrated that climate was the most significant factor affecting the composition and diversity of bacterial communities, and MAP was the most important climate factor affecting the composition of bacteria community (R2 = 0.443, P < 0.001). It is worth noting that a strong positive correlation was observed between the abundance of the dominant bacterial group uncultured_f_Anaerolineaceae and the normalized difference vegetation index (NDVI; P < 0.001), suggesting that vegetation could affect bacterial community diversity by influencing dominant bacterial taxa. This study enhances our understanding of the global diversity patterns and biogeography of sediment bacteria.

12.
Microbiol Spectr ; : e0109324, 2024 Sep 23.
Article de Anglais | MEDLINE | ID: mdl-39311757

RÉSUMÉ

Bacterial contamination of raw diffusion juice poses unique challenges during the sugar extraction process. This study profiled bacterial communities by using full-length 16S rRNA amplicon sequencing and quantified the carbohydrate concentrations in raw diffusion juice samples received from sugar factory regions across the USA and Canada. Juice samples were collected at four time points during the 2021 and 2022 processing campaigns. Firmicutes was the dominant phylum from the raw diffusion juice samples collected during both campaigns and comprised 85.5% of total bacterial abundance. Lactic acid bacteria such as Leuconostoc and Lactobacillus were among the core genera which also dominated the bacterial community in raw diffusion juice. Positive correlations in the abundance of functionally and taxonomically related bacterial communities were identified. During the 2021 campaign, 44 bacterial genera were differentially abundant in raw diffusion juice extracted from sugarbeet roots in Periods 1 to 4. This number declined sixfold during the 2022 campaign to three genera. The concentration of raffinose in raw diffusion juice positively correlated to the relative abundance of Leuconostoc. Furthermore, an in vitro assay was performed to assess the growth dynamics of Leuconostoc mesenteroides in sucrose or raffinose-rich medium and observed the rapid consumption of both carbohydrates by this bacterium. This finding is important for deciphering microbial growth dynamics in raw diffusion juice that can be useful in minimizing sugar loss during the factory processing.IMPORTANCEFindings additionally provide baseline information that can be used to develop mitigation strategies that reduce losses due to microbial contamination of sucrose processing streams.

13.
Animals (Basel) ; 14(16)2024 Aug 16.
Article de Anglais | MEDLINE | ID: mdl-39199914

RÉSUMÉ

The gut microbiota is a diverse and complex population, and it has a key role in the host's health and adaptability to the environment. The present study investigated the fecal bacterial community of wild grazing (WG) and domestic grazing (DG) yaks on natural grazing pastures, analyzing the gut microbiota using 16S rRNA sequencing to assess bacterial diversity. A total of 48 yak fecal samples were selected from two different grazing habitats. The DG group had more crude proteins and non-fiber carbohydrates. The WG group had more OM, insoluble dietary fiber such as NDF, ADF, ether extract, and TC. There were 165 and 142 unique operational taxonomic units (OTUs) in the WG and DG groups, respectively. Shannon index analysis revealed a higher bacterial diversity in the WG group than in the DG group. At the phylum level, Firmicutes were the dominant bacterial taxa in both groups. The relative abundance of Firmicutes in the WG group was higher than in the DG group. At the family level, the WG group had a significantly higher abundance of Ruminococcaceae (p < 0.001) and Rikenellaceae (p < 0.001) than the DG group. The abundances of Alloprevotella and Succinivibrio were more pronounced in the DG group than in the WG group at the genus level. This study presents a novel understanding of the bacterial communities of ruminants and their potential applications for livestock production.

14.
Foods ; 13(16)2024 Aug 13.
Article de Anglais | MEDLINE | ID: mdl-39200450

RÉSUMÉ

This study was conducted to investigate the effect of inoculation with Exiguobacterium profundum FELA1 isolated from traditional shrimp paste and koji on the taste, flavor characteristics, and bacterial community of rapidly fermented shrimp paste. E-nose and e-tongue results showed higher levels of alcohols, aldehydes, and ketones, enhanced umami and richness, and reduced bitterness and astringency in samples of shrimp paste inoculated with fermentation (p < 0.05). Eighty-two volatile compounds were determined using headspace solid-phase microextraction and gas chromatography-mass spectrometry (HS-SPEM-GC-MS). The contents of 3-methyl-1-butanol, phenylethanol, isovaleraldehyde, and 2-nonanone in the inoculated samples were significantly increased (p < 0.05), resulting in pleasant odors such as almond, floral, and fruity. High-throughput sequencing results showed that the addition of koji and FELA1 changed the composition and abundance of bacteria and reduced the abundance of harmful bacteria. Spearman's correlation coefficient indicated that the alcohols, aldehydes, and ketones of the inoculated fermented samples showed a strong correlation (|ρ| > 0.6) with Virgibacillus and Exiguobacterium, which contributed to the formation of good flavor in the fast fermented shrimp paste. This study may offer new insights into the production of rapidly fermented shrimp paste with better taste and flavor.

15.
Metabolites ; 14(8)2024 Aug 17.
Article de Anglais | MEDLINE | ID: mdl-39195550

RÉSUMÉ

The increasing use of chemicals requires a better understanding of their presence and dynamics in the environment, as well as their impact on ecosystems. The aim of this study was to validate the first steps of an innovative multi-omics approach based on metabolomics and 16S metabarcoding data for analyses of the fate and impact of contaminants in Mediterranean lagoons. Semi-targeted analytical procedures for water and sediment matrices were implemented to assess chemical contamination of the lagoon: forty-six compounds were detected, 28 of which could be quantified in water (between 0.09 and 47.4 ng/L) and sediment (between 0.008 and 26.3 ng/g) samples using the UHPLC-MS/MS instrument. In addition, a non-targeted approach (UHPLC-HRMS) using four different sample preparation protocols based on solid/liquid extractions or an automated pressurized fluid extraction system (EDGE®) was carried out to determine the protocol with the best metabolome coverage, efficiency and reproducibility. Solid/liquid extraction using the solvent mixture acetonitrile/methanol (50/50) was evaluated as the best protocol. Microbial diversity in lagoon sediment was also measured after DNA extraction using five commercial extraction kits. Our study showed that the DNeasy PowerSoil Pro Qiagen kit (Promega, USA) was the most suitable for assessing microbial diversity in fresh sediment.

16.
Mol Biol Evol ; 41(9)2024 Sep 04.
Article de Anglais | MEDLINE | ID: mdl-39189989

RÉSUMÉ

Prolines cause ribosomes to stall during translation due to their rigid structure. This phenomenon occurs in all domains of life and is exacerbated at polyproline motifs. Such stalling can be eased by the elongation factor P (EF-P) in bacteria. We discovered a potential connection between the loss of ancestral EF-P, the appearance of horizontally transferred EF-P variants, and genomic signs of EF-P dysfunction. Horizontal transfer of the efp gene has occurred several times among bacteria and is associated with the loss of highly conserved polyproline motifs. In this study, we pinpoint cases of horizontal EF-P transfer among a diverse set of bacteria and examine genomic features associated with these events in the phyla Thermotogota and Planctomycetes. In these phyla, horizontal EF-P transfer is also associated with the loss of entire polyproline motif-containing proteins, whose expression is likely dependent on EF-P. In particular, three proteases (Lon, ClpC, and FtsH) and three tRNA synthetases (ValS, IleS1, and IleS2) appear highly sensitive to EF-P transfer. The conserved polyproline motifs within these proteins all reside within close proximity to ATP-binding-regions, some of which are crucial for their function. Our work shows that an ancient EF-P dysfunction has left genomic traces that persist to this day, although it remains unclear whether this dysfunction was strictly due to loss of ancestral EF-P or was related to the appearance of an exogenous variant. The latter possibility would imply that the process of "domesticating" a horizontally transferred efp gene can perturb the overall function of EF-P.


Sujet(s)
Évolution moléculaire , Transfert horizontal de gène , Facteurs élongation chaîne peptidique , Peptides , Protéome , Facteurs élongation chaîne peptidique/génétique , Facteurs élongation chaîne peptidique/métabolisme , Peptides/métabolisme , Peptides/génétique , Bactéries/génétique , Bactéries/métabolisme , Phylogenèse , Protéines bactériennes/génétique , Protéines bactériennes/métabolisme
17.
Environ Monit Assess ; 196(9): 828, 2024 Aug 21.
Article de Anglais | MEDLINE | ID: mdl-39164565

RÉSUMÉ

Globally, there is growing concern over the environmental contamination of coastal ecosystems caused by anthropogenic activities. Here,we performed a study to evaluate the degree of heavy metal contamination in 5 different sediment samples collected from five sites along the Southeastern coast of India. Additionally, the research aims to explore the potential ecological implications of heavy metal contamination on the bacterial diversity, a crucial factor in upholding a sustainable ecosystem. A total of  seven heavy metals, i.e., chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), mercury (Hg), cadmium (Cd) and arsenic (As), were assessed and quantified using inductively coupled plasma mass spectrometry. Targeted amplicon sequencing revealed that phylum Proteobacteria (36.9%) was the most dominating followed by Halobacterota (25.5%), Actinobacteriota (15%), Firmicutes (6.7%), Bacteroidota (4.0%), Thermoplasmatota (2.3%), Acidobacteriota (2.0%), Chloroflexi (1.6%), Planctomycetota (1.2%) and Crenarchaeota (1.1%). According to the alpha diversity estimate, lesser bacterial diversity was observed in areas with high pollution levels. Moreover, the physicochemical parameters of the sediments were analyzed. The contamination levels of the sediments were evaluated using the geo-accumulation index (Igeo), contamination factor (CF) and pollution loading index (PLI) to ascertain the comprehensive toxicity status of the sediments. The Igeo values revealed sediment pollution with metals such as Hg and Cd. The sediments obtained from the sampling site PU-01 showed the highest concentration of Hg pollution. Considering the ecotoxicological aspect, the estimated risk index (RI) values indicated a range from low to significant ecological risk.


Sujet(s)
Bactéries , Surveillance de l'environnement , Métaux lourds , Polluants chimiques de l'eau , Inde , Métaux lourds/analyse , Bactéries/classification , Bactéries/génétique , Bactéries/isolement et purification , Bactéries/effets des médicaments et des substances chimiques , Polluants chimiques de l'eau/analyse , Sédiments géologiques/microbiologie , Sédiments géologiques/composition chimique , Biodiversité
18.
Environ Pollut ; 360: 124648, 2024 Nov 01.
Article de Anglais | MEDLINE | ID: mdl-39095005

RÉSUMÉ

Treated sewage contains a large diversity of pathogens that can be transmitted to the environment and, directly or indirectly, infect humans through water use (i.e., consumption, bathing, or irrigation). In urban environments, wastewater normally flows into wastewater treatment plants (WWTPs), where it is subjected to different processes in order to eliminate the greatest amount of waste. However, there are inequalities among European countries concerning wastewater management. In this context, we evaluate the potential of freshwater mussels to improve water quality (i.e., reduce bacterial abundance) in rivers receiving primary, secondary, or tertiary sewage-treated effluents. Additionally, because freshwater mussels are declining at a global scale and empty niches are progressively occupied by non-native counterparts, we evaluate if depauperate communities and the Asian clams, Corbicula genus, can provide equivalent ecosystem services (i.e., water quality improvement by biofiltration) formerly provided by diverse native communities. For this, an analysis of the bacterial biodiversity of the samples filtered by the different bivalve communities was carried out. The experimental approach was performed by metabarcoding the 16S rRNA gene using Illumina technologies. According to the results obtained, secondary treatment processes were effective in reducing the bacterial diversity. Furthermore, the waters filtered by the bivalves presented a lower bacterial abundance for certain genera. Biofiltration differs, however, among species, with Corbicula reducing a large number of taxa much more efficiently than native freshwater mussels in both diverse and depauperated communities. These results are likely related to Corbicula being a generalist species in front of native mussels, which may be more selective. Considering it is not possible to eradicate Corbicula from European rivers, its filtering capacity should be considered when managing freshwater ecosystems.


Sujet(s)
Bactéries , Dépollution biologique de l'environnement , Bivalvia , Eau douce , Eaux d'égout , Animaux , Eaux d'égout/microbiologie , Bivalvia/microbiologie , Bactéries/génétique , Bactéries/métabolisme , Bactéries/classification , Eau douce/microbiologie , Élimination des déchets liquides/méthodes , ARN ribosomique 16S/génétique , Biodiversité , Corbicula , Eaux usées/microbiologie , Pollution de l'eau/statistiques et données numériques , Rivières/composition chimique , Rivières/microbiologie
19.
Environ Int ; 191: 108964, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39173234

RÉSUMÉ

Ecosystem multifunctionality reflects the capacity of ecosystems to simultaneously maintain multiple functions which are essential bases for human sustainable development. Whereas viruses are a major component of the soil microbiome that drive ecosystem functions across biomes, the relationships between soil viral diversity and ecosystem multifunctionality remain under-studied. To address this critical knowledge gap, we employed a combination of amplicon and metagenomic sequencing to assess prokaryotic, fungal and viral diversity, and to link viruses to putative hosts. We described the features of viruses and their potential hosts in 154 soil samples from 29 farmlands and 25 forests distributed across China. Although 4,460 and 5,207 viral populations (vOTUs) were found in the farmlands and forests respectively, the diversity of specific vOTUs rather than overall soil viral diversity was positively correlated with ecosystem multifunctionality in both ecosystem types. Furthermore, the diversity of these keystone vOTUs, despite being 10-100 times lower than prokaryotic or fungal diversity, was a better predictor of ecosystem multifunctionality and more strongly associated with the relative abundances of prokaryotic genes related to soil nutrient cycling. Gemmatimonadota and Actinobacteria dominated the host community of soil keystone viruses in the farmlands and forests respectively, but were either absent or showed a significantly lower relative abundance in that of soil non-keystone viruses. These findings provide novel insights into the regulators of ecosystem multifunctionality and have important implications for the management of ecosystem functioning.


Sujet(s)
Écosystème , Microbiologie du sol , Virus , Chine , Virus/génétique , Sol/composition chimique , Microbiote , Champignons/génétique , Forêts , Métagénomique , Biodiversité
20.
J Clin Tuberc Other Mycobact Dis ; 36: 100468, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-39171276

RÉSUMÉ

Background: Previous studies have demonstrated secondary microbial infection of Buruli ulcer (BUD) lesions before, during and after treatment. However, there is limited data on the bacterial diversity across treatment and their influence on clinical outcome. The present study aimed to investigate the relationship between bacterial diversity within BUD lesions and clinical outcome in affected individuals. Methods: We investigated the bacterial diversity within lesions of individuals with PCR confirmed BUD from 5 endemic districts within central Ghana. Samples were collected longitudinally from lesions over treatment period. Microbiological analyses including isolation of bacteria, and species identification were performed using the VITEK 2 compact. Results: Out of 36 participants included, 80.5 % presented with ulcers on the lower limbs. Higher bacterial diversity was observed in ulcers compared to other clinical forms of BUD. There was a significant association between bacterial diversity and clinical outcome (p = 0.002). ESBL producing bacteria and MRSA were isolated in slow healing BUD lesions. Conclusion: Higher diversity of secondary organisms colonizing BUD lesions may have an impact on clinical outcome in affected individuals. There is the need for the development of treatment guidelines for simultaneous management of M. ulcerans and other potential pathogens within lesions to improve clinical outcome.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE