Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 44
Filtrer
1.
ACS Biomater Sci Eng ; 10(7): 4437-4451, 2024 Jul 08.
Article de Anglais | MEDLINE | ID: mdl-38885017

RÉSUMÉ

Osteoarthritis (OA) is a chronic joint disease characterized by cartilage imbalance and disruption of cartilage extracellular matrix secretion. Identifying key genes that regulate cartilage differentiation and developing effective therapeutic strategies to restore their expression is crucial. In a previous study, we observed a significant correlation between the expression of the gene encoding casein kinase-2 interacting protein-1 (CKIP-1) in the cartilage of OA patients and OA severity scores, suggesting its potential involvement in OA development. To test this hypothesis, we synthesized a chondrocyte affinity plasmid, liposomes CKIP-1, to enhance CKIP-1 expression in chondrocytes. Our results demonstrated that injection of CAP-Lipos-CKIP-1 plasmid significantly improved OA joint destruction and restored joint motor function by enhancing cartilage extracellular matrix (ECM) secretion. Histological and cytological analyses confirmed that CKIP-1 maintains altered the phosphorylation of the signal transduction molecule SMAD2/3 of the transforming growth factor-ß (TGF-ß) pathway by promoting the phosphorylation of the 8T, 416S sit. Taken together, this work highlights a novel approach for the precise modulation of chondrocyte phenotype from an inflammatory to a noninflammatory state for the treatment of OA and may be broadly applicable to patients suffering from other arthritic diseases.


Sujet(s)
Chondrocytes , Homéostasie , Liposomes , Arthrose , Chondrocytes/métabolisme , Arthrose/thérapie , Arthrose/anatomopathologie , Arthrose/métabolisme , Liposomes/composition chimique , Humains , Animaux , Protéines de transport/métabolisme , Protéines de transport/génétique , Mâle , Phosphorylation , Cartilage articulaire/métabolisme , Cartilage articulaire/anatomopathologie , Facteur de croissance transformant bêta/métabolisme , Matrice extracellulaire/métabolisme , Protéine Smad-3/métabolisme , Protéine Smad-3/génétique , Transduction du signal , Plasmides/génétique , Nanoparticules/composition chimique , Nanoparticules/usage thérapeutique , Protéine Smad2/métabolisme , Protéines et peptides de signalisation intracellulaire/métabolisme , Protéines et peptides de signalisation intracellulaire/génétique
2.
Mol Biomed ; 5(1): 23, 2024 06 14.
Article de Anglais | MEDLINE | ID: mdl-38871861

RÉSUMÉ

Sleep deprivation (SD) has emerged as a critical concern impacting human health, leading to significant damage to the cardiovascular system. However, the underlying mechanisms are still unclear, and the development of targeted drugs is lagging. Here, we used mice to explore the effects of prolonged SD on cardiac structure and function. Echocardiography analysis revealed that cardiac function was significantly decreased in mice after five weeks of SD. Real-time quantitative PCR (RT-q-PCR) and Masson staining analysis showed that cardiac remodeling marker gene Anp (atrial natriuretic peptide) and fibrosis were increased, Elisa assay of serum showed that the levels of creatine kinase (CK), creatine kinase-MB (CK-MB), ANP, brain natriuretic peptide (BNP) and cardiac troponin T (cTn-T) were increased after SD, suggesting that cardiac remodeling and injury occurred. Transcript sequencing analysis indicated that genes involved in the regulation of calcium signaling pathway, dilated cardiomyopathy, and cardiac muscle contraction were changed after SD. Accordingly, Western blotting analysis demonstrated that the cardiac-contraction associated CaMKK2/AMPK/cTNI pathway was inhibited. Since our preliminary research has confirmed the vital role of Casein Kinase-2 -Interacting Protein-1 (CKIP-1, also known as PLEKHO1) in cardiac remodeling regulation. Here, we found the levels of the 3' untranslated region of Ckip-1 (Ckip-1 3'UTR) decreased, while the coding sequence of Ckip-1 (Ckip-1 CDS) remained unchanged after SD. Significantly, adenovirus-mediated overexpression of Ckip-1 3'UTR alleviated SD-induced cardiac dysfunction and remodeling by activating CaMKK2/AMPK/cTNI pathway, which proposed the therapeutic potential of Ckip-1 3'UTR in treating SD-induced heart disease.


Sujet(s)
Régions 3' non traduites , AMP-Activated Protein Kinases , Calcium-Calmodulin-Dependent Protein Kinase Kinase , Transduction du signal , Privation de sommeil , Animaux , Mâle , Souris , Régions 3' non traduites/génétique , AMP-Activated Protein Kinases/métabolisme , AMP-Activated Protein Kinases/génétique , Calcium-Calmodulin-Dependent Protein Kinase Kinase/métabolisme , Calcium-Calmodulin-Dependent Protein Kinase Kinase/génétique , Protéines de transport/génétique , Protéines de transport/métabolisme , Souris de lignée C57BL , Myocarde/métabolisme , Myocarde/anatomopathologie , Privation de sommeil/génétique , Privation de sommeil/métabolisme , Privation de sommeil/complications , Troponine I/métabolisme , Troponine I/génétique
3.
Acta Diabetol ; 61(1): 43-52, 2024 Jan.
Article de Anglais | MEDLINE | ID: mdl-37668684

RÉSUMÉ

AIMS: Type 2 diabetes mellitus (T2DM) and hypertension are common high-incidence diseases, closely related, and have common pathogenic basis such as oxidative stress. Casein kinase 2 interacting protein-1 (CKIP-1) and low-density lipoprotein receptor (LOX-1) are considered to be important factors affect the level of oxidative stress in the body. The main purpose of this study was to explore the relationship between CKIP-1 (rs6693817 A > T, rs2306235 C > G) and LOX-1 (rs1050283 G > A, rs11053646 C > G) polymorphisms and the risk of hypertension and diabetes, and try to find new candidate genes for diabetes and diabetes with hypertension etiology in Chinese population. METHODS: 574 T2DM patients and 597 controls frequently matched by age and sex were selected for genotyping of CKIP-1 (rs6693817 A > T, rs2306235 C > G) and LOX-1 gene (rs1050283 G > A, rs11053646 C > G). Logistic regression was used to analyze the correlation between different genotypes and the risk of T2DM and T2DM with hypertension, and the results were expressed as odds ratio (OR) and 95% confidence interval (95% CI). RESULTS: We found that the risk of T2DM in the AA + AT genotype of rs6693817 was higher than that in the TT genotype in Chinese population (OR = 1.318, 95%CI: 1.011-1.717, P = 0.041), and the difference was still significant after adjustment (OR = 1.370, 95%CI: 1.043-1.799, Padjusted = 0.024), the difference of heterozygotes (AT vs TT: OR = 1.374, 95%CI: 1.026-1.840, Padjusted = 0.033) was statistically significant. But after Bonferroni correction, the significance of the above sites disappeared. And rs6693817 was associated with the risk of T2DM combined with hypertension before and after adjustment in dominant model (OR = 1.424, 95% CI: 1.038-1.954, P = 0.028; OR = 1.460, 95% CI: 1.057-2.015, Padjusted = 0.021, respectively) and in heterozygote model (OR = 1.499, 95% CI: 1.069-2.102, P = 0.019; OR = 1.562, 95% CI: 1.106-2.207, Padjusted = 0.011, respectively). However, only the statistical significance of the heterozygous model remained after Bonferroni correction. rs2306235, rs1050283 and rs11053646 were not significantly correlated with T2DM and T2DM combined with hypertension risk (P > 0.05). CONCLUSIONS: The results suggest that CKIP-1 rs6693817 is related to the susceptibility of Chinese people to T2DM with hypertension, providing a new genetic target for the treatment of diabetes with hypertension with in the future.


Sujet(s)
Diabète de type 2 , Peuples d'Asie de l'Est , Hypertension artérielle , Adulte , Humains , Études cas-témoins , Chine/épidémiologie , Diabète de type 2/épidémiologie , Diabète de type 2/génétique , Diabète de type 2/anatomopathologie , Peuples d'Asie de l'Est/génétique , Prédisposition génétique à une maladie , Génotype , Polymorphisme de nucléotide simple , Récepteurs éboueurs de classe E/génétique , Hypertension artérielle/épidémiologie , Hypertension artérielle/génétique
4.
Inflammation ; 46(5): 1997-2010, 2023 Oct.
Article de Anglais | MEDLINE | ID: mdl-37351817

RÉSUMÉ

As a chronic inflammatory disease, periodontitis involves many biological processes including autophagy. At the same time, casein kinase 2 interacting protein-1 (CKIP-1) was reported to play a role in regulation of inflammation. But whether CKIP-1 and autophagy interact in periodontitis remains unclear. In this paper, our research team verified the levels of CKIP-1 expression and autophagy increase in the periodontal tissues of a ligature-induced periodontitis mouse model. And this result was also confirmed in Porphyromonas gingivalis (Pg)-induced human gingival fibroblasts (HGF) and human periodontal ligament cells (PDLC). We also showed the autophagy level in periodontal tissues is higher in Ckip-1 knockout (KO) mice than wild type (WT). At the same time, CKIP-1 knockdown lentivirus was used in PDLC and HGF, and it was found that silencing CKIP-1 significantly activated autophagy. Unfortunately, the regulatory role of autophagy in periodontitis is still unclear. Then, the autophagy agonist Rapamycin and inhibitor 3-MA were used in a periodontitis mouse model to investigate periodontal tissue destruction. We found the inflammation in periodontal tissue was reduced when autophagy activated. All these conclusions have been verified both in vivo and in vitro experiments. Finally, our research proved that silencing CKIP-1 reduces the expression of inflammatory cytokines in Pg-induced PDLC and HGF by regulating autophagy. Overall, a new role for CKIP-1 in regulating periodontal tissue inflammation was demonstrated in our study, and it is possible to treat periodontitis by targeting the CKIP-1 gene.


Sujet(s)
Inflammation , Parodontite , Souris , Animaux , Humains , Inflammation/métabolisme , Parodontite/métabolisme , Gencive/métabolisme , Cytokines/métabolisme , Porphyromonas gingivalis/métabolisme , Autophagie , Protéines de transport/métabolisme
5.
Biochem Pharmacol ; 206: 115339, 2022 12.
Article de Anglais | MEDLINE | ID: mdl-36347273

RÉSUMÉ

Renal chronic inflammation is an important hallmark of diabetic renal fibrosis. Casein kinase 2 interacting protein 1 (CKIP-1) performs a nephroprotective role in the pathogenesis of diabetic nephropathy (DN), which is dramatically decreased in diabetic kidneys. However, whether CKIP-1 regulates inflammation to ameliorate renal fibrosis remains unclear and it is interesting to clarify the degradation mechanism of CKIP-1. Here, we identified CKIP-1 expression was down-regulated in diabetic kidneys and knockout (KO) of CKIP-1 increased c-Jun expression and extra cellular matrix (ECM) in kidneys of normal mice, and knockout (KO) of CKIP-1 further exacerbated renal inflammatory fibrosis in diabetic mice. Moreover, the activated Src kinase interacted with CKIP-1 at Lys252 and increased K48 linked polyubiquitination and proteasome degradation of CKIP-1 in HG induced GMCs and diabetic kidneys. Mechanistically, Src facilitating the binding of c-Cbl with CKIP-1 by promoting the phosphorylation of c-Cbl, thereby increasing Cbl-mediated ubiquitination of CKIP-1 to down-regulate CKIP-1 protein expression. Thus, our study highlighted the anti-inflammation role of CKIP-1 and clarified the mechanism of CKIP-1 degradation in DN.


Sujet(s)
Diabète expérimental , Néphropathies diabétiques , Souris , Animaux , Protéines de transport/métabolisme , Transduction du signal , Néphropathies diabétiques/métabolisme , Fibrose , Ubiquitination , Inflammation
6.
Front Pharmacol ; 13: 994995, 2022.
Article de Anglais | MEDLINE | ID: mdl-36304155

RÉSUMÉ

Background: Sea buckthorn (SBT) is a traditional Chinese medicine (TCM), rich in calcium, phosphorus, and vitamins, which can potentially prevent and treat osteoporosis. However, no research has been conducted to confirm these hypotheses. QiangGuYin (QGY) is a TCM compound used to treat osteoporosis. There is a need to investigate whether SBT enhances QGY efficacy. Objectives: The aim of this study was to explore whether SBT enhances QGY efficacy by inhibiting CKIP-1 and Notum expression through the Wnt/ß-catenin pathway. The study also aimed to explore the active components of SBT. Methods: Experimental animals were divided into control, model, QGY, SBT, SBT + Eucommia ulmoides (EU), and SBT + QGY groups. After treatment, bone morphometric parameters, such as estrogen, PINP, and S-CTX levels, and Notum, CKIP-1, and ß-catenin expression were examined. Screening of SBT active components was conducted by molecular docking to obtain small molecules that bind Notum and CKIP-1. Results: The results showed that all the drug groups could elevate the estrogen, PINP, and S-CTX levels, improve femoral bone morphometric parameters, inhibit Notum and CKIP-1 expression, and promote ß-catenin expression. The effect of SBT + EU and SBT + QGY was superior to the others. Molecular docking identified that SBT contains seven small molecules (folic acid, rhein, quercetin, kaempferol, mandenol, isorhamnetin, and ent-epicatechin) with potential effects on CKIP-1 and Notum. Conclusion: SBT improves bone morphometric performance in PMOP rats by inhibiting CKIP-1 and Notum expression, increasing estrogen levels, and activating the Wnt/ß-catenin signaling pathway. Furthermore, SBT enhances the properties of QGY. Folic acid, rhein, quercetin, kaempferol, mandenol, isorhamnetin, and ent-epicatechin are the most likely active ingredients of SBT. These results provide insight into the pharmacological mechanisms of SBT in treating osteoporosis.

7.
Biomater Adv ; 137: 212864, 2022 Jun.
Article de Anglais | MEDLINE | ID: mdl-35929282

RÉSUMÉ

Osseointegration between implants and bone tissue lays the foundation for the long-term stability of implants. The incorporation of a porous structure and local slow release of siRNA to silence casein kinase-2 interacting protein-1 (CKIP-1), a downregulator of bone formation, is expected to promote osseointegration. Here, porous implants with a porous outer layer and dense inner core were prepared by metal coinjection molding (MIM). Mg-doped calcium phosphate nanoparticles (CaPNPs)-grafted arginine-glycine-aspartate cell adhesion sequence (RGD) and transcribed activator (TAT) (MCPRT)/CKIP-1 siRNA complex and polylysine (PLL) were coated onto the surface of the porous implants by layer-by-layer (LBL) self-deposition. The in vitro results showed that the MCPRT-siRNA coating promoted MG63 cell adhesion and proliferation, enhanced the protein expressions (ALP and OC) and bone formation-related gene expression (OPN, OC and COL-1α) in vitro. The in vivo results demonstrated that the porous structure enhanced bone ingrowth and that the local slow release of MCPRT-siRNA accelerated new bone formation at the early stage. The porous structure coupled with local CKIP-1 siRNA delivery constitutes a promising approach to achieve faster and stronger osseointegration for dental implants.


Sujet(s)
Ostéo-intégration , Titane , Matériaux revêtus, biocompatibles/pharmacologie , Porosité , Petit ARN interférent/génétique , Titane/pharmacologie
8.
Aging (Albany NY) ; 14(2): 892-906, 2022 01 24.
Article de Anglais | MEDLINE | ID: mdl-35073518

RÉSUMÉ

Osteoporosis is a systemic bone disease characterized by decreased bone mass and deterioration of bone microstructure, which leads to increased bone fragility and increased risk of fractures. Casein kinase 2 interacting protein 1 (CKIP-1, also known as PLEKHO1) is involved in the biological process of bone formation, differentiation and apoptosis, and is a negative regulator of bone formation. QiangGuYin (QGY) is a famous TCM formula that has been widely used in China for the clinical treatment of postmenopausal osteoporosis for decades, but the effect in regulating CKIP-1 on osteoporosis is not fully understood. This study aimed to explore the potential mechanism of CKIP-1 participating in autophagy in bone cells through the AKT/mTOR signaling pathway and the regulatory effect of QGY. The results in vivo showed that QGY treatment can significantly improve the bone quality of osteoporotic rats, down-regulate the expression of CKIP-1, LC3II/I and RANKL, and up-regulated the expression of p62, p-AKT/AKT, p-mTOR/mTOR, RUNX2 and OPG. It is worth noting that the results in vitro confirmed that CKIP-1 interacts with AKT. By up-regulating the expression of Atg5 and down-regulating the p62, the level of LC3 (autophagosome) is increased, and the cells osteogenesis and differentiation are inhibited. QGY inhibits the combination of CKIP-1 and AKT in osteoblasts, activates the AKT/mTOR signaling pathway, inhibits autophagy, and promotes cell differentiation, thereby exerting an anti-osteoporosis effect. Therefore, QGY targeting CKIP-1 to regulate the AKT/mTOR-autophagy signaling pathway may represent a promising drug candidate for the treatment of osteoporosis.


Sujet(s)
Ostéoporose , Protéines proto-oncogènes c-akt , Animaux , Autophagie , Ostéoporose/traitement médicamenteux , Protéines proto-oncogènes c-akt/métabolisme , Rats , Transduction du signal , Sérine-thréonine kinases TOR/métabolisme
9.
Regen Med ; 16(9): 847-859, 2021 09.
Article de Anglais | MEDLINE | ID: mdl-34498492

RÉSUMÉ

Background: Osteogenesis greatly depends on the differentiation of bone marrow mesenchymal stem cells (BMSCs). CKIP-1 is considered to be a negative regulator of BMSCs. Methods: We established a CKIP-1 knockout mouse model, then isolated and cultured BMSCs from wild-type and knockout groups. Results: Our data demonstrated that CKIP-1 knockout significantly increased bone structure in the experimental mouse model and enhanced BMSC proliferation. CKIP-1 knockout contributed to osteoblastic and adipogenic differentiation. Furthermore, CKIP-1 regulated osteogenesis in BMSCs via the MAPK signaling pathway, and BMSCs from the CKIP-1 knockout mice were effective in repairing the skull defect null mice. Conclusion: Our results concluded that silencing of CKIP-1 promoted osteogenesis in experimental mice and increased BMSCs differentiation via upregulation of the MAPK signaling pathway.


Sujet(s)
Cellules souches mésenchymateuses , Ostéogenèse , Animaux , Cellules de la moelle osseuse , Os et tissu osseux , Protéines de transport , Différenciation cellulaire , Cellules cultivées , Souris
10.
Eur Heart J ; 42(36): 3786-3799, 2021 09 21.
Article de Anglais | MEDLINE | ID: mdl-34347073

RÉSUMÉ

AIMS: 3' untranslated region (3' UTR) of mRNA is more conserved than other non-coding sequences in vertebrate genomes, and its sequence space has substantially expanded during the evolution of higher organisms, which substantiates their significance in biological regulation. However, the independent role of 3' UTR in cardiovascular disease was largely unknown. METHODS AND RESULTS: Using bioinformatics, RNA fluorescent in situ hybridization and quantitative real-time polymerase chain reaction, we found that 3' UTR and coding sequence regions of Ckip-1 mRNA exhibited diverse expression and localization in cardiomyocytes. We generated cardiac-specific Ckip-1 3' UTR overexpression mice under wild type and casein kinase 2 interacting protein-1 (CKIP-1) knockout background. Cardiac remodelling was assessed by histological, echocardiography, and molecular analyses at 4 weeks after transverse aortic constriction (TAC) surgery. The results showed that cardiac Ckip-1 3' UTR significantly inhibited TAC-induced cardiac hypertrophy independent of CKIP-1 protein. To determine the mechanism of Ckip-1 3' UTR in cardiac hypertrophy, we performed transcriptome and metabolomics analyses, RNA immunoprecipitation, biotin-based RNA pull-down, and reporter gene assays. We found that Ckip-1 3' UTR promoted fatty acid metabolism through AMPK-PPARα-CPT1b axis, leading to its protection against pathological cardiac hypertrophy. Moreover, Ckip-1 3' UTR RNA therapy using adeno-associated virus obviously alleviates cardiac hypertrophy and improves heart function. CONCLUSIONS: These findings disclose that Ckip-1 3' UTR inhibits cardiac hypertrophy independently of its cognate protein. Ckip-1 3' UTR is an effective RNA-based therapy tool for treating cardiac hypertrophy and heart failure.


Sujet(s)
Cardiomégalie , Défaillance cardiaque , Régions 3' non traduites/génétique , Animaux , Cardiomégalie/génétique , Cardiomégalie/prévention et contrôle , Protéines de transport , Défaillance cardiaque/génétique , Hybridation fluorescente in situ , Souris , Souris de lignée C57BL , Myocytes cardiaques
11.
Front Physiol ; 12: 678863, 2021.
Article de Anglais | MEDLINE | ID: mdl-34211403

RÉSUMÉ

Different kinds of mechanical stimuli acting on the heart lead to different myocardial phenotypes. Physiological stress, such as exercise, leads to adaptive cardiac hypertrophy, which is characterized by a normal cardiac structure and improved cardiac function. Pathological stress, such as sustained cardiac pressure overload, causes maladaptive cardiac remodeling and, eventually, heart failure. Casein kinase-2 interacting protein-1 (CKIP-1) is an important regulator of pathological cardiac remodeling. However, the role of CKIP-1 in physiological cardiac hypertrophy is unknown. We subjected wild-type (WT) mice to a swimming exercise program for 21 days, which caused an increase in myocardial CKIP-1 protein and mRNA expression. We then subjected CKIP-1 knockout (KO) mice and myocardial-specific CKIP-1-overexpressing mice to the 21-day swimming exercise program. Histological and echocardiography analyses revealed that CKIP-1 KO mice underwent pathological cardiac remodeling after swimming, whereas the CKIP-1-overexpressing mice had a similar cardiac phenotype to the WT controls. Histone deacetylase 4 (HDAC4) is a key molecule in the signaling cascade associated with pathological hypertrophy; the phosphorylation levels of HDAC4 were markedly higher in CKIP-1 KO mouse hearts after the swimming exercise program. The phosphorylation levels of HDAC4 did not change after swimming in the hearts of CKIP-1-overexpressing or WT mice. Our results indicate that swimming, a mechanical stress that leads to physiological hypertrophy, triggers pathological cardiac remodeling in CKIP-1 KO mice. CKIP-1 is necessary for physiological cardiac hypertrophy in vivo, and for modulating the phosphorylation level of HDAC4 after physiological stress. Genetically engineering CKIP-1 expression affected heart health in response to exercise.

12.
Exp Ther Med ; 21(4): 342, 2021 Apr.
Article de Anglais | MEDLINE | ID: mdl-33732315

RÉSUMÉ

Casein kinase-2 interaction protein-1 (Ckip-1) is a negative regulator of bone formation. The identification of novel Ckip-1-related targets and their associated signaling pathways that regulate mesenchymal stem cell (MSC) osteogenic differentiation is required. The present study aimed to evaluate the effects of Ckip-1 knockdown on C3H10T1/2 MSC proliferation and osteogenic differentiation, and to explore the role of the canonical Wnt-signaling receptor Lrp5. Ckip-1-knockdown (shCkip-1), Ckip-1-overexpression (Ckip-1) and their corresponding control [shCtrl and empty vector (EV), respectively] cell groups were used in the present study. Immunofluorescence localization of Ckip-1 was observed. The expression of the key molecules of the canonical Wnt signaling pathway was examined in C3H10T1/2 cells following osteogenic induction. Moreover, the effects of Lrp5 knockdown in the presence or absence of Ckip-1 knockdown were examined on C3H10T1/2 cell proliferation and osteogenic differentiation. The results indicated an increase in cell proliferation and osteogenic differentiation in the shCkip-1 group compared with the shCtrl group. The expression levels of LDL receptor related protein 5 (Lrp5), lymphoid enhancer binding factor 1 (Lef1) and transcription factor 1 in C3H10T1/2 cells were significantly increased in shCkip-1 cells following 7-day osteoinduction compared with shCtrl cells. Moreover, the involvement of Lrp5 in shCkip-1-induced osteogenic differentiation of C3H10T1/2 cells was further verified. The results indicated that Ckip-1 reduced C3H10T1/2 MSC proliferation and osteogenic differentiation via the canonical Wnt-signaling receptor Lrp5, which is essential for the improvement of bone tissue engineering.

13.
Cytotechnology ; 73(1): 79-90, 2021 Feb.
Article de Anglais | MEDLINE | ID: mdl-33505116

RÉSUMÉ

MicroRNA (miRNA) is an endogenous regulatory small molecule RNA. Growing evidence shows that miRNA plays an important regulatory role in gene expression. Although miRNA is a more intensive regulatory noncoding RNA in recent years, few studies have investigated the regulation of targeting genes involved in bone repair. Meanwhile, as a negative bone regulator, previous studies showed that casein kinase 2-interacting protein 1 (CKIP-1) is closely associated with bone formation and regeneration. However, the gene knockout method may not be suitable for clinical application. Therefore, it was hypothesized that miRNA molecules can inhibit the expression of CKIP-1 and ultimately promote the osteogenesis process. The present study revealed that let-7i-5p plays an important role in the process of fracture healing by inhibiting the expression of CKIP-1. Related research provides a novel gene target for fracture healing. SUPPLEMENTARY INFORMATION: The online version of this article (10.1007/s10616-020-00444-1) contains supplementary material, which is available to authorized users.

14.
Front Cell Dev Biol ; 9: 796902, 2021.
Article de Anglais | MEDLINE | ID: mdl-35186951

RÉSUMÉ

Microgravity prominently affected cardiovascular health, which was the gravity-dependent physical factor. Deep space exploration had been increasing in frequency, but heart function was susceptible to conspicuous damage and cardiac mass declined in weightlessness. Understanding of the etiology of cardiac atrophy exposed to microgravity currently remains limited. The 3'-untranslated region (UTR) of casein kinase-2 interacting protein-1 (Ckip-1) was a pivotal mediator in pressure overload-induced cardiac remodeling. However, the role of Ckip-1 3'-UTR in the heart during microgravity was unknown. We analyzed Ckip-1 mRNA 3'-UTR and coding sequence (CDS) expression levels in ground-based analogs such as mice hindlimb unloading (HU) and rhesus monkey head-down bed rest model. Ckip-1 3'-UTR had transcribed levels in the opposite change trend with cognate CDS expression in the hearts. We then subjected wild-type (WT) mice and cardiac-specific Ckip-1 3'-UTR-overexpressing mice to hindlimb unloading for 28 days. Our results uncovered that Ckip-1 3'-UTR remarkably attenuated cardiac dysfunction and mass loss in simulated microgravity environments. Mechanistically, Ckip-1 3'-UTR inhibited lipid accumulation and elevated fatty acid oxidation-related gene expression in the hearts through targeting calcium/calmodulin-dependent kinase 2 (CaMKK2) and activation of the AMPK-PPARα-CPT1b signaling pathway. These findings demonstrated Ckip-1 3'-UTR was an important regulator in atrophic heart growth after simulated microgravity.

15.
Pharmacol Res ; 163: 105333, 2021 01.
Article de Anglais | MEDLINE | ID: mdl-33276097

RÉSUMÉ

We previously reported that both Cx43 and CKIP-1 attenuated diabetic renal fibrosis via the activation of Nrf2 signaling pathway. However, whether CKIP-1, a scaffold protein, participates in regulating the activation of Nrf2 signaling pathway by Cx43 remains to be elucidated. In this study, the effect of adenovirus-mediated Cx43 overexpression on renal fibrosis in CKIP-1-/- diabetic mice was investigated. We found that overexpression of Cx43 could significantly alleviate renal fibrosis by activating the Nrf2 pathway in diabetic mice, but have no obvious effect in CKIP-1-/- diabetic mice. Cx43 overexpressed plasmid and CKIP-1 small interfering RNA were simultaneously transfected into glomerular mesangial cells and the result demonstrated that the effect of activation of Nrf2 signaling pathway by Cx43 was blocked by CKIP-1 depletion. The interaction between Cx43 and CKIP-1 was analyzed by immunofluorescence and immunoprecipitation assays. We found that Cx43 interacted with CKIP-1, and the interaction was weakened by high glucose treatment. Moreover, Cx43 regulated the expression of CKIP-1 and the interaction of CKIP-1 with Nrf2 via Cx43 carboxyl terminus (CT) domain, thereby activating Nrf2 signaling pathway. According to the results, we preliminary infer that CKIP-1 acts downstream to CX43 on the activation of Nrf2 signaling pathway to protect from renal fibrosis in diabetes, the mechanism of which might be related to the interaction of CKIP-1 with Nrf2 through Cx43 CT. Our study provides further experimental basis for targeting the Cx43-CKIP-1-Nrf2 axis to resist diabetic renal fibrosis.


Sujet(s)
Protéines de transport/métabolisme , Connexine 43/métabolisme , Diabète expérimental/métabolisme , Néphropathies diabétiques/métabolisme , Facteur-2 apparenté à NF-E2/métabolisme , Animaux , Protéines de transport/génétique , Cellules cultivées , Connexine 43/génétique , Diabète expérimental/anatomopathologie , Néphropathies diabétiques/anatomopathologie , Néphropathies diabétiques/prévention et contrôle , Fibrose , Peroxyde d'hydrogène/métabolisme , Rein/métabolisme , Rein/anatomopathologie , Mâle , Cellules mésangiales/métabolisme , Souris de lignée C57BL , Souris knockout , Rat Sprague-Dawley , Transduction du signal , Superoxydes/métabolisme
16.
Exp Cell Res ; 397(1): 112341, 2020 12 01.
Article de Anglais | MEDLINE | ID: mdl-33191205

RÉSUMÉ

Nonalcoholic fatty liver disease (NAFLD), which is characterized by aberrant accumulation of intrahepatic triglycerides and lipid droplets (LDs) in the liver cells, is becoming increasingly prevalent at an alarming rate worldwide. LDs can be consumed by either hydrolysis or autophagy, which is shown to be of importance in the regulation of hepatic lipid metabolism. We have shown that deficiency of pleckstrin homology domain-containing casein kinase 2 interacting protein-1 (CKIP-1), a scaffold protein that interacts with various proteins in multiple signal pathways, in mice aggravates high-fat diet induced fatty liver. However, its underlying mechanisms remain largely unknown. In this study, we found that the mRNA and protein levels of CKIP-1 decreased dramatically in steatotic HepG2 cells induced by oleic acid (OA) treatment. Coincidently, hepatic autophagy was also dynamically regulated in steatotic HepG2 cells. In addition, overexpression of CKIP-1 activated autophagy by suppression of Akt/mTOR signaling, which in turn reduced lipid accumulation. Moreover, these phenomena were reversed in CKIP-1-shRNA transfected steatotic hepatocytes. To further evaluate the potential role of CKIP-1 in autophagy, we determined the level of autophagy related proteins in CKIP-1 knockout mice. These results supported our findings in vitro. In summary, we found CKIP-1 to be a positive regulator of hepatic autophagy and a promising therapeutic target for treatment of NAFLD.


Sujet(s)
Autophagie , Protéines de transport/physiologie , Stéatose hépatique/anatomopathologie , Hépatocytes/anatomopathologie , Protéines proto-oncogènes c-akt/antagonistes et inhibiteurs , Transduction du signal , Sérine-thréonine kinases TOR/antagonistes et inhibiteurs , Animaux , Stéatose hépatique/étiologie , Stéatose hépatique/métabolisme , Cellules HepG2 , Hépatocytes/métabolisme , Humains , Souris , Souris de lignée C57BL , Souris knockout , Protéines proto-oncogènes c-akt/génétique , Protéines proto-oncogènes c-akt/métabolisme , Sérine-thréonine kinases TOR/génétique , Sérine-thréonine kinases TOR/métabolisme
17.
Mol Med Rep ; 22(2): 1169-1178, 2020 08.
Article de Anglais | MEDLINE | ID: mdl-32626993

RÉSUMÉ

Maxillofacial bone defects caused by multiple factors, including congenital deformations and tumors, have become a research focus in the field of oral medicine. Bone tissue engineering is increasingly regarded as a potential approach for maxillofacial bone repair. Mesenchymal stem cells (MSCs) with different origins display various biological characteristics. The aim of the present study was to investigate the effects of casein kinase­2 interaction protein­1 (CKIP­1) on MSCs, including femoral bone marrow­derived MSCs (BMMSCs) and orofacial bone­derived MSCs (OMSCs), isolated from the femoral and orofacial bones of wild­type (WT) and CKIP­1 knockout (KO) mice. MSCs were isolated using collagenase II and the main biological characteristics, including proliferation, apoptosis and osteogenic differentiation, were investigated. Subcutaneous transplantation of MSCs in mice was also performed to assess ectopic bone formation. MTT and clone formation assay results indicated that cell proliferation in the KO group was increased compared with the WT group, and OMSCs exhibited significantly increased levels of proliferation compared with BMMSCs. However, the proportion of apoptotic cells was not significantly different between CKIP­1 KO OMSCs and BMMSCs. Furthermore, it was revealed that osteogenic differentiation was increased in CKIP­1 KO MSCs compared with WT MSCs, particularly in OMSCs. Consistent with the in vitro results, enhanced ectopic bone formation was observed in CKIP­1 KO mice compared with WT mice, particularly in OMSCs compared with BMMSCs. In conclusion, the present results indicated that OMSCs may have a superior sensitivity to CKIP­1 in promoting osteogenesis compared with BMMSCs; therefore, CKIP­1 KO in OMSCs may serve as an efficient strategy for maxillofacial bone repair.


Sujet(s)
Protéines de transport/physiologie , Fémur/cytologie , Mandibule/cytologie , Cellules souches mésenchymateuses/cytologie , Ostéogenèse , Ingénierie tissulaire/méthodes , Animaux , Apoptose , Différenciation cellulaire , Prolifération cellulaire , Cellules cultivées , Mâle , Souris , Souris de lignée C57BL , Souris knockout , Souris nude
18.
Int Urol Nephrol ; 52(1): 97-106, 2020 Jan.
Article de Anglais | MEDLINE | ID: mdl-31542883

RÉSUMÉ

OBJECTIVE: There are less scar formations in some wounds after wound repair. Our earlier study had shown that the amount of collagen fibers in canine prostatic urethra wound were less than in bladder neck wound after 2-µm laser resection of the prostate (TmLRP) and partial bladder neck mucosa at 4 weeks. The purpose of this study was to observe the amount of scar tissue and characterize the probable causes of "less scar healing" in prostatic urethra wound. METHODS: A total of 12 healthy adult male crossbred canines underwent resection of prostate and partial bladder neck mucosa using 2-µm laser. The prostatic urethra and bladder neck wound specimens were harvested at 3, 4, 8 and 12 weeks after operation, respectively. The histopathologic characteristics were observed by hematoxylin and eosin(HE)staining, and the expression of transforming growth factor-ß1 (TGF-ß1) and casein kinase-2 interacting protein-1 (CKIP-1) were examined by immunohistochemistry in prostatic urethra and bladder neck wound, respectively. Overexpressed CKIP-1 human prostate epithelial cells (BPH-1 cells) were established and the expression of TGF-ß1 was detected by Western blotting. Furthermore, a non-contact co-culture system of BPH-1 cells and human fibroblast (HFF-1) cells was used to observe the effects of BPH-1 cell and their high CKIP-1 levels on the expression of TGF-ß1 in HFF-1 in vitro. RESULTS: The histology showed that there were a large number of prostatic epithelium and a small amount of scar tissue in prostatic urethra wound, while no epithelial cells and more scar tissue in bladder neck wound at 4, 8 and 12 weeks after repair. There were a higher expression level of TGF-ß1 in prostate epithelial cells and fibroblasts and a lower expression level of CKIP-1 in prostate epithelial cells at 3 weeks after surgery in prostatic urethral wound. Compared to week 3, the TGF-ß1 expression decreased both in prostate epithelial cells and fibroblasts at 4, 8 and 12 weeks in prostatic urethral wound (p < 0.05 or p < 0.01). The CKIP-1 expression increased in prostate epithelial cells at 4, 8 and 12 weeks compared to 3 weeks in prostatic urethra wound (p < 0.01). A higher TGF-ß1 expression level of fibroblasts was observed in bladder neck wound at 3 weeks. And there was no significant change in the expression of TGF-ß1 of fibroblasts in 3, 4, 8 and 12 weeks after operation in bladder neck wound. Both the prostate urethra and bladder neck wound fibroblasts showed weak expression of CKIP-1 and there was no significant change in 3, 4, 8 and 12 weeks. The vitro experiments showed that the TGF-ß1 expression in BPH-1 cells with CKIP-1 overexpression decreased 25% compared with control group (p < 0.05). Furthermore, the expression of TGF-ß1 in HFF-1 cells of co-cultured group decreased by 20% compared with Control group (p < 0.05); the expression of TGF-ß1 in HFF-1 cells of overexpression co-culture group were reduced by 15% compared with co-cultured group (p < 0.01). CONCLUSIONS: A large number of prostate epithelial cells in prostatic urethra wound may be one of the causes of less formation of scar tissue after repair. The prostate epithelial cells might reduce expression level of TGF-ß1 by raising CKIP-1 expression and inhibit expression of TGF-ß1 in peripheral fibroblasts at remodeling stage to reduce the excessive proliferation of fibrous cells and the excessive scar formation.


Sujet(s)
Cicatrice/étiologie , Cellules épithéliales/métabolisme , Protéines et peptides de signalisation intracellulaire/métabolisme , Prostatectomie/effets indésirables , Facteur de croissance transformant bêta-1/métabolisme , Cicatrisation de plaie/physiologie , Animaux , Techniques de culture cellulaire , Cicatrice/métabolisme , Cicatrice/anatomopathologie , Chiens , Cellules épithéliales/anatomopathologie , Fibroblastes/métabolisme , Fibroblastes/anatomopathologie , Humains , Mâle , Urètre/chirurgie
19.
Eur J Pharmacol ; 865: 172748, 2019 Dec 15.
Article de Anglais | MEDLINE | ID: mdl-31655030

RÉSUMÉ

To test the hypothesis that the flavonoid compound, fisetin, protects macrophages from lipid accumulation and senescence through regulation of casein kinase 2-interacting protein-1 (CKIP-1)/REGγ (11S regulatory particles, 28 kDa proteasome activator, proteasome activator subunit 3) signaling. RAW264.7 macrophage cells were exposed to 100 µg/ml oxidized low-density lipoprotein (ox-LDL) with or without 20 µg/ml fisetin for 24 h. Cell viability was detected by CCK-8 after 1 h. Intracellular lipid accumulation was measured using Oil Red O staining. Total cholesterol (TC) and free cholesterol (FC) contents were measured using assay kits, and cell senescence was inferred by ß-gal staining. Protein expression levels of CKIP-1, REGγ, organic cation transporter 1 (Oct-1), lectin-like oxidized LDL receptor-1 (LOX-1), tumor suppressor protein p53 (p53), cell cycle regulatory protein p21 (p21), and multiple tumor suppressor-1 (p16) were detected by immunofluorescence and confirmed by Western blot. Stimulating RAW264.7 macrophage cells with 100 µg/ml ox-LDL for 24 h induced the formation of foam cells, increased intracellular lipid accumulation, increased TC and FC content, and promoted cell senescence. Furthermore, cells induced with 100 µg/ml ox-LDL for 24 h showed decreased CKIP-1 and REGγ protein, while the expressions of Oct-1, LOX-1, p53, p21 and p16 were increased. In contrast, treatment with 20 µg/ml fisetin reversed 100 µg/ml ox-LDL effects to increase cell viability, and decrease ß-gal staining, intracellular lipid levels and TC and FC levels. These beneficial effects were associated with increased CKIP-1 and REGγ and decreased Oct-1, LOX-1, p53, p21, and p16 protein expression. Results indicated that fisetin limited ox-LDL-mediated lipid accumulation and senescence in RAW264.7 macrophage-derived foam cells. The mechanism underlying these effects may involve regulation of CKIP-1/REGγ signaling.


Sujet(s)
Autoantigènes/métabolisme , Protéines de transport/métabolisme , Flavonoïdes/pharmacologie , Cellules spumeuses/effets des médicaments et des substances chimiques , Lipoprotéines LDL/métabolisme , Proteasome endopeptidase complex/métabolisme , Animaux , Vieillissement de la cellule/effets des médicaments et des substances chimiques , Flavonols , Cellules spumeuses/métabolisme , Métabolisme lipidique/effets des médicaments et des substances chimiques , Souris , Cellules RAW 264.7 , Transduction du signal/effets des médicaments et des substances chimiques
20.
Cell Biosci ; 9: 67, 2019.
Article de Anglais | MEDLINE | ID: mdl-31462987

RÉSUMÉ

PURPOSE: The aim of this study was to investigate the underlying mechanisms of diabetic retinopathy (DR) development. METHODS: Real-Time qPCR was used to detect Casein kinase 2 interacting protein-1 (CKIP-1) and Nuclear factor E2-related factor 2 (Nrf2) mRNA levels. Western Blot was employed to detect protein levels. Malondialdehyde (MDA) assay kit, superoxide dismutase (SOD) kit and glutathione peroxidase (GSH-Px) kit were used to evaluate oxidative stress in high-glucose treated human retinal endothelial cells (HRECs). Calcein-AM/propidium iodide (PI) double stain kit was employed to detect cell apoptosis. Enzyme-linked ImmunoSorbent Assay (ELISA) was used to detect inflammation associated cytokines secretion. Co-immunoprecipitation (CO-IP) was performed to investigate the interactions between CKIP-1 and Nrf2. Luciferase reporter gene system was used to detect the transcriptional activity of Nrf2. RESULTS: CKIP-1 was significantly downregulated in either DR tissues or high-glucose treated HRECs comparing to the Control groups. Besides, high-glucose (25 mM) inhibited HRECs viability and induced oxidative stress, inflammation associated cytokines (TNF-α, IL-6 and IL-1ß) secretion and cell apoptosis, which were all reversed by synergistically overexpressing CKIP-1 and aggravated by knocking down CKIP-1. Of note, we found that overexpressed CKIP-1 activated Nrf2/ARE signaling pathway and increased its downstream targets including HO-1, NQO-1, γGCS and SOD in high-glucose treated HRECs. Further results also showed that CKIP-1 regulated cell viability, oxidative stress, inflammation and apoptosis in high-glucose treated HRECs by activating Nrf2/ARE signaling pathway. CONCLUSION: We concluded that overexpressed CKIP-1 alleviated DR progression by activating Nrf2/ARE signaling pathway.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE