Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 6 de 6
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Glob Chang Biol ; 29(8): 2067-2091, 2023 04.
Article de Anglais | MEDLINE | ID: mdl-36655298

RÉSUMÉ

Soil enzymes are crucial in mediating ecosystems' responses to environmental drivers, so that the comprehension of their sensitivity to drivers of global change can help make predictions of future scenarios and design tailored interventions of biomanipulation. Drivers of global change usually act in combination of two or more, and indirect effects of one driver acting through modification of another one often occur, yet most of both manipulative and meta-analysis studies available tend to focus on the direct effect of one single driver on the activity of specific soil enzymes. One of the biggest challenges is, therefore, represented by the difficulty in assessing the interactions between different drivers, due to the complexity of disentangling the single direct effects from the indirect and combined ones. In this review, after elucidating the general mechanisms of soil enzyme production and activity regulation, we display the state-of-the-art knowledge on direct, indirect and combined effects of the main drivers of global change on soil enzyme activities, identify gaps in knowledge and challenges from research, plus we analyse how this can reverberate in the future of biomanipulation techniques for the improvement of ecosystem services. We conclude that qualitative but not quantitative outcomes can be predicted for some interactions such as warming + drought or warming + CO2 , while for other ones, the results are controversial: future basic research will have to center on this holistic approach. A general trend toward the overall increase of soil enzyme activities and acceleration of biogeochemical cycles will persist, until an inflection will be caused by factors such as future shifts in microbial communities and changes in carbon use efficiency. Applied research will develop toward the refinement of "in situ" analytical systems for the study of soil enzyme activities and the support of bioengineering for the better tailoring of interventions of biomanipulation.


Sujet(s)
Écosystème , Microbiote , Changement climatique , Sol , Microbiologie du sol , Sécheresses
3.
Glob Chang Biol ; 26(10): 5734-5753, 2020 Oct.
Article de Anglais | MEDLINE | ID: mdl-32594557

RÉSUMÉ

Elevated atmospheric carbon dioxide (eCO2 ) is predicted to increase growth rates of forest trees. The extent to which increased growth translates to changes in biomass is dependent on the turnover time of the carbon, and thus tree mortality rates. Size- or age-dependent mortality combined with increased growth rates could result in either decreased carbon turnover from a speeding up of tree life cycles, or increased biomass from trees reaching larger sizes, respectively. However, most vegetation models currently lack any representation of size- or age-dependent mortality and the effect of eCO2 on changes in biomass and carbon turnover times is thus a major source of uncertainty in predictions of future vegetation dynamics. Using a reduced-complexity form of the vegetation demographic model the Functionally Assembled Terrestrial Ecosystem Simulator to simulate an idealised tropical forest, we find increases in biomass despite reductions in carbon turnover time in both size- and age-dependent mortality scenarios in response to a hypothetical eCO2 -driven 25% increase in woody net primary productivity (wNPP). Carbon turnover times decreased by 9.6% in size-dependent mortality scenarios due to a speeding up of tree life cycles, but also by 2.0% when mortality was age-dependent, as larger crowns led to increased light competition. Increases in aboveground biomass (AGB) were much larger when mortality was age-dependent (24.3%) compared with size-dependent (13.4%) as trees reached larger sizes before death. In simulations with a constant background mortality rate, carbon turnover time decreased by 2.1% and AGB increased by 24.0%, however, absolute values of AGB and carbon turnover were higher than in either size- or age-dependent mortality scenario. The extent to which AGB increases and carbon turnover decreases will thus depend on the mechanisms of large tree mortality: if increased size itself results in elevated mortality rates, then this could reduce by about half the increase in AGB relative to the increase in wNPP.


Sujet(s)
Dioxyde de carbone , Écosystème , Biomasse , Forêts , Modèles théoriques , Arbres
4.
Ecol Lett ; 21(10): 1552-1560, 2018 10.
Article de Anglais | MEDLINE | ID: mdl-30125446

RÉSUMÉ

The mechanisms governing tree drought mortality and recovery remain a subject of inquiry and active debate given their role in the terrestrial carbon cycle and their concomitant impact on climate change. Counter-intuitively, many trees do not die during the drought itself. Indeed, observations globally have documented that trees often grow for several years after drought before mortality. A combination of meta-analysis and tree physiological models demonstrate that optimal carbon allocation after drought explains observed patterns of delayed tree mortality and provides a predictive recovery framework. Specifically, post-drought, trees attempt to repair water transport tissue and achieve positive carbon balance through regrowing drought-damaged xylem. Furthermore, the number of years of xylem regrowth required to recover function increases with tree size, explaining why drought mortality increases with size. These results indicate that tree resilience to drought-kill may increase in the future, provided that CO2 fertilisation facilitates more rapid xylem regrowth.


Sujet(s)
Sécheresses , Arbres , Carbone , Forêts , Arbres/physiologie , Eau , Xylème
5.
Glob Chang Biol ; 24(7): 2791-2809, 2018 07.
Article de Anglais | MEDLINE | ID: mdl-29485759

RÉSUMÉ

Land use contributes to environmental change, but is also influenced by such changes. Climate and atmospheric carbon dioxide (CO2 ) levels' changes alter agricultural crop productivity, plant water requirements and irrigation water availability. The global food system needs to respond and adapt to these changes, for example, by altering agricultural practices, including the crop types or intensity of management, or shifting cultivated areas within and between countries. As impacts and associated adaptation responses are spatially specific, understanding the land use adaptation to environmental changes requires crop productivity representations that capture spatial variations. The impact of variation in management practices, including fertiliser and irrigation rates, also needs to be considered. To date, models of global land use have selected agricultural expansion or intensification levels using relatively aggregate spatial representations, typically at a regional level, that are not able to characterise the details of these spatially differentiated responses. Here, we show results from a novel global modelling approach using more detailed biophysically derived yield responses to inputs with greater spatial specificity than previously possible. The approach couples a dynamic global vegetative model (LPJ-GUESS) with a new land use and food system model (PLUMv2), with results benchmarked against historical land use change from 1970. Land use outcomes to 2100 were explored, suggesting that increased intensity of climate forcing reduces the inputs required for food production, due to the fertilisation and enhanced water use efficiency effects of elevated atmospheric CO2 concentrations, but requiring substantial shifts in the global and local patterns of production. The results suggest that adaptation in the global agriculture and food system has substantial capacity to diminish the negative impacts and gain greater benefits from positive outcomes of climate change. Consequently, agricultural expansion and intensification may be lower than found in previous studies where spatial details and processes consideration were more constrained.


Sujet(s)
Agriculture/méthodes , Dioxyde de carbone , Changement climatique , Atmosphère , Produits agricoles , Modèles biologiques , Eau
6.
New Phytol ; 203(3): 883-99, 2014 Aug.
Article de Anglais | MEDLINE | ID: mdl-24844873

RÉSUMÉ

Elevated atmospheric CO2 concentration (eCO2) has the potential to increase vegetation carbon storage if increased net primary production causes increased long-lived biomass. Model predictions of eCO2 effects on vegetation carbon storage depend on how allocation and turnover processes are represented. We used data from two temperate forest free-air CO2 enrichment (FACE) experiments to evaluate representations of allocation and turnover in 11 ecosystem models. Observed eCO2 effects on allocation were dynamic. Allocation schemes based on functional relationships among biomass fractions that vary with resource availability were best able to capture the general features of the observations. Allocation schemes based on constant fractions or resource limitations performed less well, with some models having unintended outcomes. Few models represent turnover processes mechanistically and there was wide variation in predictions of tissue lifespan. Consequently, models did not perform well at predicting eCO2 effects on vegetation carbon storage. Our recommendations to reduce uncertainty include: use of allocation schemes constrained by biomass fractions; careful testing of allocation schemes; and synthesis of allocation and turnover data in terms of model parameters. Data from intensively studied ecosystem manipulation experiments are invaluable for constraining models and we recommend that such experiments should attempt to fully quantify carbon, water and nutrient budgets.


Sujet(s)
Air/analyse , Dioxyde de carbone/analyse , Carbone/analyse , Écosystème , Forêts , Modèles théoriques , Arbres/composition chimique , Biomasse , Simulation numérique , Bois/physiologie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE