Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
J Genet Eng Biotechnol ; 18(1): 43, 2020 Aug 20.
Article de Anglais | MEDLINE | ID: mdl-32816164

RÉSUMÉ

BACKGROUND: In the current research, we have developed silver and iron nanoparticles of isolated proanthocynidin (PAC) from grape seed by green synthesis and evaluated for antimicrobial, antioxidant activity and in vitro cytotoxicity against colon cancer cell lines. RESULTS: One percent solution of isolated proanthocynidin in water was vigorously mixed with 1% silver nitrate and 1% ferric chloride solution and kept for 4 h, to yield PACAgNP and PACFeNP. The synthesized nanoparticles were characterized by UV, FTIR, XRD, and SEM analysis and evaluated for antimicrobial potential against selected microbes. Moreover, the synthesized nanoparticles were studied for DPPH assay and in vitro cytotoxicity using colon cancer cell lines COLO320DM and HT29 (MTT, SRB, and Trypan blue assay). UV spectroscopy confirmed the development of nanoparticles. SEM analysis showed that the particles were aggregated in the size range of 50 to 100 nm. Antimicrobial potential was found to be less against Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli, whereas cytotoxicity of PACAgNP and PACFeNP against COLO320DM and HT29 exhibited promising results as compared to the pure PAC. PACAgNP and PACFeNP exhibited 20.83 ± 0.33% and 18.06 ± 0.60% inhibition, respectively, against DPPH radical, whereas pure PAC showed 16.79 ± 0.32% inhibition and standard (ascorbic acid) exhibited 98.73 ± 0.18% inhibition of DPPH radical. CONCLUSION: The silver and iron nanoparticles were successfully developed by green synthesis method using isolated proanthocynidin which is economical and eco-friendly. The use of metal nanoparticles may open up a new opportunity for anticancer therapies to minimize the toxic effects of available anticancer drugs specifically in targeting specific site.

2.
Oncotarget ; 7(46): 75603-75615, 2016 11 15.
Article de Anglais | MEDLINE | ID: mdl-27689329

RÉSUMÉ

In patients with rectal prolapse is the prevalence of colorectal cancer increased, suggesting that a colorectal tumor may induce rectal prolapse. Establishment of tumor xenografts in immunodeficient mice after orthotopic inoculations of human colorectal cancer cells into the caecal wall is a widely used approach for the study of human colorectal cancer progression and preclinical evaluation of therapeutics. Remarkably, 70% of young mice carrying a COLO320DM caecal tumor showed symptoms of intussusception of the large bowel associated with intestinal lumen obstruction and rectal prolapse. The quantity of the COLO320DM bioluminescent signal of the first three weeks post-inoculation predicts prolapse in young mice. Rectal prolapse was not observed in adult mice carrying a COLO320DM caecal tumor or young mice carrying a HT29 caecal tumor. In contrast to HT29 tumors, which showed local invasion and metastasis, COLO320DM tumors demonstrated a non-invasive tumor with pushing borders without presence of metastasis. In conclusion, rectal prolapse can be linked to a non-invasive, space-occupying COLO320DM tumor in the gastrointestinal tract of young immunodeficient mice. These data reveal a model that can clarify the association of patients showing rectal prolapse with colorectal cancer.


Sujet(s)
Tumeurs colorectales/métabolisme , Tumeurs colorectales/anatomopathologie , Prolapsus rectal/étiologie , Facteurs âges , Animaux , Lignée cellulaire tumorale , Modèles animaux de maladie humaine , Femelle , Hétérogreffes , Humains , Souris , Adulte d'âge moyen , Prolapsus rectal/diagnostic , Charge tumorale
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...