Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 441
Filtrer
1.
Bioresour Technol ; 412: 131403, 2024 Aug 31.
Article de Anglais | MEDLINE | ID: mdl-39222859

RÉSUMÉ

The cyclohexane organic acid 3-dehydroshikimate (DHS) has potent antioxidant activity and is widely utilised in chemical and pharmaceutical industries. However, its production requires a long fermentation with a suboptimal yield and low productivity, and a disproportionate growth-to-production ratio impedes the upscaling of DHS synthesis in microbial cell factories. To overcome these limitations, competing and degradation pathways were knocked-out and key enzymes were balanced in an engineered Escherichia coli production strain, resulting in 12.2 g/L DHS. Furthermore, to achieve equilibrium between cell growth and DHS production, a CRISPRi-based temperature-responsive multi-component repressor system was developed to dynamically control the expression of critical genes (pykF and aroE), resulting in a 30-fold increase in DHS titer. After 33 h fermentation in 5 L bioreactor, the DHS titer, productivity and yield reached 94.2 g/L, 2.8 g/L/h and 55 % glucose conversion, respectively. The results provided valuable insight into the production of DHS and its derivatives.

2.
Int J Biol Macromol ; 279(Pt 2): 135239, 2024 Aug 30.
Article de Anglais | MEDLINE | ID: mdl-39218175

RÉSUMÉ

There are lots of gene editing tools for targeting genome sequences. Some are almost known, and most are a complete mystery and undiscovered. CRISPR/Cas editing tools have brought about a major revolution in medicine. Researchers have shown that CRISPR can modify DNA much more accurately, economically and easily than previous methods. CRISPR has proven itself effective for the deletion, replacement and insertion of DNA fragments into cell types, tissues and organisms. Recently, combining CRISPR/Cas with factors (transcription factors/repressors, exonucleases, endonucleases, transposons, caspase, fluorescent proteins, oxidoreductive enzymes, DNA/RNA polymerases), and elements (aptamers, barcodes, fluorescent probes, Trigger) have provided genome, transcriptome, proteome and epigenome modification. These modules are being investigated for cancer prevention and therapy and this review focuses on such innovative combinations that hopefully will become a clinical reality in the near future.

3.
Prog Mol Biol Transl Sci ; 208: 185-209, 2024.
Article de Anglais | MEDLINE | ID: mdl-39266182

RÉSUMÉ

The CRISPR-Cas9 method has revolutionized the gene editing. Epigenetic changes, including DNA methylation, RNA modification, and changes in histone proteins, have been intensively studied and found to play a key role in the pathogenesis of human diseases. CRISPR-While the utility of DNA and chromatin modifications, known as epigenetics, is well understood, the functional significance of various alterations of RNA nucleotides has recently gained attention. Recent advancements in improving CRISPR-based epigenetic modifications has resulted in the availability of a powerful source that can selectively modify DNA, allowing for the maintenance of epigenetic memory over several cell divisions. Accurate identification of DNA methylation at specific locations is crucial for the prompt detection of cancer and other diseases, as DNA methylation is strongly correlated to the onset as well as the advancement of such conditions. Genetic or epigenetic perturbations can disrupt the regulation of imprinted genes, resulting in the development of diseases. When histone code editors and DNA de-/ methyltransferases are coupled with catalytically inactive Cas9 (dCas9), and CRISPRa and CRISPRi, they demonstrate excellent efficacy in editing the epigenome of eukaryotic cells. Advancing and optimizing the extracellular delivery platform can, hence, further facilitate the manipulation of CRISPR-Cas9 gene editing technique in upcoming clinical studies. The current chapter focuses on how the CRISP/ Cas9 system provides an avenue for the epigenetic modifications and its employability for human benefit.


Sujet(s)
Systèmes CRISPR-Cas , Épigenèse génétique , Humains , Systèmes CRISPR-Cas/génétique , Animaux , Édition de gène/méthodes , Méthylation de l'ADN/génétique
4.
bioRxiv ; 2024 Jul 27.
Article de Anglais | MEDLINE | ID: mdl-39091800

RÉSUMÉ

Single-cell CRISPR screens link genetic perturbations to transcriptional states, but high-throughput methods connecting these induced changes to their regulatory foundations are limited. Here we introduce Multiome Perturb-seq, extending single-cell CRISPR screens to simultaneously measure perturbation-induced changes in gene expression and chromatin accessibility. We apply Multiome Perturb-seq in a CRISPRi screen of 13 chromatin remodelers in human RPE-1 cells, achieving efficient assignment of sgRNA identities to single nuclei via an improved method for capturing barcode transcripts from nuclear RNA. We organize expression and accessibility measurements into coherent programs describing the integrated effects of perturbations on cell state, finding that ARID1A and SUZ12 knockdowns induce programs enriched for developmental features. Pseudotime analysis of perturbations connects accessibility changes to changes in gene expression, highlighting the value of multimodal profiling. Overall, our method provides a scalable and simply implemented system to dissect the regulatory logic underpinning cell state.

5.
Microbiology (Reading) ; 170(8)2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-39115544

RÉSUMÉ

Synergistic interactions between chemical inhibitors, whilst informative, can be difficult to interpret, as chemical inhibitors can often have multiple targets, many of which can be unknown. Here, using multiplexed transcriptional repression, we have validated that the simultaneous repression of glutamate racemase and alanine racemase has a synergistic interaction in Mycobacterium tuberculosis. This confirms prior observations from chemical interaction studies and highlights the potential of targeting multiple enzymes involved in mycobacterial cell wall synthesis.


Sujet(s)
Alanine racemase , Amino-acid isomerases , Mycobacterium tuberculosis , Mycobacterium tuberculosis/génétique , Mycobacterium tuberculosis/enzymologie , Mycobacterium tuberculosis/effets des médicaments et des substances chimiques , Amino-acid isomerases/génétique , Amino-acid isomerases/métabolisme , Alanine racemase/génétique , Alanine racemase/métabolisme , Régulation de l'expression des gènes bactériens , Transcription génétique , Protéines bactériennes/génétique , Protéines bactériennes/métabolisme , Antienzymes/pharmacologie , Paroi cellulaire/métabolisme , Paroi cellulaire/génétique
6.
bioRxiv ; 2024 Aug 16.
Article de Anglais | MEDLINE | ID: mdl-39185233

RÉSUMÉ

Understanding bacterial gene function remains a major biological challenge. Double-mutant genetic interaction (GI) analysis addresses this challenge by uncovering the functional partners of targeted genes, allowing us to associate genes of unknown function with novel pathways and unravel connections between well-studied pathways, but is difficult to implement at the genome-scale. Here, we develop and use double-CRISPRi to systematically quantify genetic interactions at scale in the Bacillus subtilis envelope, including essential genes. We discover > 1000 known and novel genetic interactions. Our analysis pipeline and experimental follow-ups reveal the distinct roles of paralogous genes such as the mreB and mbl actin homologs, and identify new genes involved in the well-studied process of cell division. Overall, our study provides valuable insights into gene function and demonstrates the utility of double-CRISPRi for high-throughput dissection of bacterial gene networks, providing a blueprint for future studies in diverse bacterial species.

7.
Cancers (Basel) ; 16(15)2024 Jul 31.
Article de Anglais | MEDLINE | ID: mdl-39123456

RÉSUMÉ

During the metagenomics era, high-throughput sequencing efforts both in mice and humans indicate that non-coding RNAs (ncRNAs) constitute a significant fraction of the transcribed genome. During the past decades, the regulatory role of these non-coding transcripts along with their interactions with other molecules have been extensively characterized. However, the study of long non-coding RNAs (lncRNAs), an ncRNA regulatory class with transcript lengths that exceed 200 nucleotides, revealed that certain non-coding transcripts are transcriptional "by-products", while their loci exert their downstream regulatory functions through RNA-independent mechanisms. Such mechanisms include, but are not limited to, chromatin interactions and complex promoter-enhancer competition schemes that involve the underlying ncRNA locus with or without its nascent transcription, mediating significant or even exclusive roles in the regulation of downstream target genes in mammals. Interestingly, such RNA-independent mechanisms often drive pathological manifestations, including oncogenesis. In this review, we summarize selective examples of lncRNAs that regulate target genes independently of their produced transcripts.

8.
Microbiol Spectr ; : e0060224, 2024 Aug 20.
Article de Anglais | MEDLINE | ID: mdl-39162514

RÉSUMÉ

The dCas9-based Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) interference (CRISPRi) gene regulation technique requires two components: a catalytically inactive Cas9 protein (dCas9) and a single-guide RNA that targets the gene of interest. This system is commonly activated by expressing dCas9 through an inducible gene promoter, but these inducers may affect cellular physiology, and accessibility and permeability of the inducer are limited in relevant model systems. Here, we have developed an alternative approach for CRISPRi activation in the clinical isolate Staphylococcus aureus USA300 LAC, where dCas9 was expressed through endogenous virulence gene promoters (vgp); coagulase, autolysin, or fibronectin-binding protein A. Additionally, we integrated a fluorescent reporter gene into the vgp-CRISPRi system to monitor the activity of the dcas9-controlling promoter. Testing the efficacy of vgp-CRISPRi by inducing growth arrest (when targeting penicillin-binding protein 1), downregulating target gene expression, or blocking coagulase-dependent coagulation of blood plasma, we provide a proof-of-concept demonstration that the virulence gene promoter-driven CRISPRi system is functional in S. aureus.IMPORTANCEThe presented inducer-free, endogenous virulence gene promoter-induced, dCas9-based Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) interference (CRISPRi system addresses several shortcomings related to the use of inducer-dependent systems such as effects on cell physiology or limitations in permeability, and it avoids the high, putatively toxic levels of dCas9 in CRISPRi systems controlled by strong, constitutive promoters.

9.
bioRxiv ; 2024 Jul 31.
Article de Anglais | MEDLINE | ID: mdl-39131273

RÉSUMÉ

Autism spectrum disorder (ASD) commonly co-occurs with congenital heart disease (CHD), but the molecular mechanisms underlying this comorbidity remain unknown. Given that children with CHD come to clinical attention by the newborn period, understanding which CHD variants carry ASD risk could provide an opportunity to identify and treat individuals at high risk for developing ASD far before the typical age of diagnosis. Therefore, it is critical to delineate the subset of CHD genes most likely to increase the risk of ASD. However, to date there is relatively limited overlap between high confidence ASD and CHD genes, suggesting that alternative strategies for prioritizing CHD genes are necessary. Recent studies have shown that ASD gene perturbations commonly dysregulate neural progenitor cell (NPC) biology. Thus, we hypothesized that CHD genes that disrupt neurogenesis are more likely to carry risk for ASD. Hence, we performed an in vitro pooled CRISPR interference (CRISPRi) screen to identify CHD genes that disrupt NPC biology similarly to ASD genes. Overall, we identified 45 CHD genes that strongly impact proliferation and/or survival of NPCs. Moreover, we observed that a cluster of physically interacting ASD and CHD genes are enriched for ciliary biology. Studying seven of these genes with evidence of shared risk (CEP290, CHD4, KMT2E, NSD1, OFD1, RFX3, TAOK1), we observe that perturbation significantly impacts primary cilia formation in vitro. While in vivo investigation of TAOK1 reveals a previously unappreciated role for the gene in motile cilia formation and heart development, supporting its prediction as a CHD risk gene. Together, our findings highlight a set of CHD risk genes that may carry risk for ASD and underscore the role of cilia in shared ASD and CHD biology.

10.
Cell Rep ; 43(8): 114640, 2024 Aug 27.
Article de Anglais | MEDLINE | ID: mdl-39163202

RÉSUMÉ

Functional enhancer annotation is critical for understanding tissue-specific transcriptional regulation and prioritizing disease-associated non-coding variants. However, unbiased enhancer discovery in disease-relevant contexts remains challenging. To identify enhancers pertinent to diabetes, we conducted a CRISPR interference (CRISPRi) screen in the human pluripotent stem cell (hPSC) pancreatic differentiation system. Among the enhancers identified, we focused on an enhancer we named ONECUT1e-664kb, ∼664 kb from the ONECUT1 promoter. Previous studies have linked ONECUT1 coding mutations to pancreatic hypoplasia and neonatal diabetes. We found that homozygous deletion of ONECUT1e-664kb in hPSCs leads to a near-complete loss of ONECUT1 expression and impaired pancreatic differentiation. ONECUT1e-664kb contains a type 2 diabetes-associated variant (rs528350911) disrupting a GATA motif. Introducing the risk variant into hPSCs reduced binding of key pancreatic transcription factors (GATA4, GATA6, and FOXA2), supporting its causal role in diabetes. This work highlights the utility of unbiased enhancer discovery in disease-relevant settings for understanding monogenic and complex disease.


Sujet(s)
Différenciation cellulaire , Éléments activateurs (génétique) , Pancréas , Humains , Éléments activateurs (génétique)/génétique , Différenciation cellulaire/génétique , Pancréas/métabolisme , Pancréas/anatomopathologie , Diabète de type 2/génétique , Diabète de type 2/métabolisme , Diabète de type 2/anatomopathologie , Clustered regularly interspaced short palindromic repeats/génétique , Cellules souches pluripotentes/métabolisme , Systèmes CRISPR-Cas/génétique , Facteur de transcription GATA-6/métabolisme , Facteur de transcription GATA-6/génétique
11.
Virology ; 597: 110169, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-38996611

RÉSUMÉ

Bacteriophage ϕX174 is a small icosahedral virus of the Microviridae with a rapid replication cycle. Previously, we found that in ϕX174 infections of Escherichia coli, the most highly upregulated host proteins are two small heat shock proteins, IbpA and IbpB, belonging to the HSP20 family, which is a universally conserved group of stress-induced molecular chaperones that prevent irreversible aggregation of proteins. Heat shock proteins were found to protect against ϕX174 lysis, but IbpA/B have not been studied. In this work, we disrupted the ibpA and ibpB genes and measured the effects on ϕX174 replication. We found that in contrast to other E. coli heat shock proteins, they are not necessary for ϕX174 replication; moreover, their absence has no discernible effect on ϕX174 fecundity. These results suggest IbpA/B upregulation is a response to ϕX174 protein expression but does not play a role in phage replication, and they are not Microviridae host factors.


Sujet(s)
Protéines Escherichia coli , Escherichia coli , Réplication virale , Escherichia coli/virologie , Escherichia coli/métabolisme , Escherichia coli/génétique , Protéines Escherichia coli/métabolisme , Protéines Escherichia coli/génétique , Bactériophage phi X-174/génétique , Bactériophage phi X-174/physiologie , Bactériophage phi X-174/métabolisme , Petites protéines du choc thermique/métabolisme , Petites protéines du choc thermique/génétique , Protéines du choc thermique
12.
ACS Synth Biol ; 13(8): 2480-2491, 2024 Aug 16.
Article de Anglais | MEDLINE | ID: mdl-39083228

RÉSUMÉ

The CRISPR-based regulation tools enable fine-tuning of gene transcription, showing potential in areas of biomanufacturing and live therapeutics. However, the cell toxicity and PAM specificity of existing CRISPR-based regulation systems limit their broad application. The development of new and less-toxic CRISPR-controlled expression systems remains highly desirable for expanding the application scope of CRISPR-based tools. Here, we reconstituted the type I CRISPR-Cas system from Escherichia coli to finely tune gene expression in Bacillus subtilis. Through engineering the 5' untranslated region (UTR) of mRNAs of cas genes, we remarkably improved the efficacy of the type I CRISPRi system. The improved type I CRISPRi system was applied in engineering the D-pantothenic acid (DPA)-producing B. subtilis, which was generated by strengthening the metabolic flux toward ß-alanine and (R)-pantoate via enhancing expression of key enzymes at both transcriptional and translational levels. Through controlling the expression of pdhA with the CRISPRi system for fine-tuning the metabolic flux toward DPA and the TCA cycle, we elevated the DPA titer to 0.88 g/L in shake flasks and 12.81 g/L in fed-batch fermentations without the addition of the precursor ß-alanine. The type I CRISPRi system and the strategy for fine-tuning metabolic flux reported here not only enrich the CRISPR toolbox in B. subtilis and facilitate DPA production through microbial fermentation but also provide a paradigm for programming important organisms to produce value-added chemicals with cheap raw materials.


Sujet(s)
Bacillus subtilis , Systèmes CRISPR-Cas , Escherichia coli , Génie métabolique , Acide pantothénique , Bacillus subtilis/génétique , Bacillus subtilis/métabolisme , Systèmes CRISPR-Cas/génétique , Génie métabolique/méthodes , Escherichia coli/génétique , Escherichia coli/métabolisme , Acide pantothénique/métabolisme , Clustered regularly interspaced short palindromic repeats/génétique , Régions 5' non traduites/génétique , Régulation de l'expression des gènes bactériens
13.
mBio ; 15(8): e0084024, 2024 Aug 14.
Article de Anglais | MEDLINE | ID: mdl-38953375

RÉSUMÉ

While genome-wide transposon mutagenesis screens have identified numerous essential genes in the significant human pathogen Streptococcus pyogenes (group A Streptococcus or GAS), many of their functions remain elusive. This knowledge gap is attributed in part to the limited molecular toolbox for controlling GAS gene expression and the bacterium's poor genetic transformability. CRISPR interference (CRISPRi), using catalytically inactive GAS Cas9 (dCas9), is a powerful approach to specifically repress gene expression in both bacteria and eukaryotes, but ironically, it has never been harnessed for controlled gene expression in GAS. In this study, we present a highly transformable and fully virulent serotype M1T1 GAS strain and introduce a doxycycline-inducible CRISPRi system for efficient repression of bacterial gene expression. We demonstrate highly efficient, oligo-based single guide RNA cloning directly to GAS, enabling the construction of a gene knockdown strain in just 2 days, in contrast to the several weeks typically required. The system is shown to be titratable and functional both in vitro and in vivo using a murine model of GAS infection. Furthermore, we provide direct in vivo evidence that the expression of the conserved cell division gene ftsZ is essential for GAS virulence, highlighting its promise as a target for emerging FtsZ inhibitors. Finally, we introduce SpyBrowse (https://veeninglab.com/SpyBrowse), a comprehensive and user-friendly online resource for visually inspecting and exploring GAS genetic features. The tools and methodologies described in this work are poised to facilitate fundamental research in GAS, contribute to vaccine development, and aid in the discovery of antibiotic targets. IMPORTANCE: While group A Streptococcus (GAS) remains a predominant cause of bacterial infections worldwide, there are limited genetic tools available to study its basic cell biology. Here, we bridge this gap by creating a highly transformable, fully virulent M1T1 GAS strain. In addition, we established a tight and titratable doxycycline-inducible system and developed CRISPR interference (CRISPRi) for controlled gene expression in GAS. We show that CRISPRi is functional in vivo in a mouse infection model. Additionally, we present SpyBrowse, an intuitive and accessible genome browser (https://veeninglab.com/SpyBrowse). Overall, this work overcomes significant technical challenges of working with GAS and, together with SpyBrowse, represents a valuable resource for researchers in the GAS field.


Sujet(s)
Systèmes CRISPR-Cas , Infections à streptocoques , Streptococcus pyogenes , Streptococcus pyogenes/génétique , Streptococcus pyogenes/pathogénicité , Animaux , Souris , Infections à streptocoques/microbiologie , Virulence/génétique , Régulation de l'expression des gènes bactériens , Modèles animaux de maladie humaine , Femelle , Protéines bactériennes/génétique , Protéines bactériennes/métabolisme
14.
N Biotechnol ; 83: 110-120, 2024 Nov 25.
Article de Anglais | MEDLINE | ID: mdl-38960022

RÉSUMÉ

The methylotrophic yeast Komagataella phaffii is a popular host system for the pharmaceutical and biotechnological production of recombinant proteins. CRISPR-Cas9 and its derivative CRISPR interference (CRISPRi) offer a promising avenue to further enhance and exploit the full capabilities of this host. MAD7 and its catalytically inactive variant "dead" MAD7 (dMAD7) represent an interesting alternative to established CRISPR-Cas9 systems and are free to use for industrial and academic research. CRISPRi utilizing dMAD7 does not introduce double-strand breaks but only binds to the DNA to regulate gene expression. Here, we report the first use of dMAD7 in K. phaffii to regulate the expression of the enhanced green fluorescent protein (eGFP). A reduction of eGFP fluorescence level (up to 88 %) was achieved in random integration experiments using dMAD7 plasmids. Integration loci/events of investigated strains were assessed through whole genome sequencing. Additionally, RNA-sequencing experiments corroborated the whole genome sequencing results and showed a significantly reduced expression of eGFP in strains containing a dMAD7 plasmid, among others. Our findings conclusively demonstrate the utility of dMAD7 in K. phaffii through successfully regulating eGFP expression.


Sujet(s)
Protéines à fluorescence verte , Saccharomycetales , Saccharomycetales/génétique , Saccharomycetales/métabolisme , Protéines à fluorescence verte/métabolisme , Protéines à fluorescence verte/génétique , Systèmes CRISPR-Cas , Régulation de l'expression des gènes fongiques , Protéines fongiques/génétique , Protéines fongiques/métabolisme , Plasmides/génétique , Plasmides/métabolisme
15.
Antimicrob Agents Chemother ; 68(8): e0026124, 2024 Aug 07.
Article de Anglais | MEDLINE | ID: mdl-39037241

RÉSUMÉ

Efflux of antibiotics is an important survival strategy in bacteria. Mycobacterium tuberculosis has approximately sixty efflux pumps, but little is known about the role of each pump or the substrates they efflux. The putative efflux pump, EfpA, is a member of the major facilitator superfamily and has been shown to be essential by saturation transposon mutagenesis studies. It has been implicated in the efflux of isoniazid (INH), which is a first-line drug used to treat tuberculosis (TB). This is supported by evidence from transcriptional profiling showing that efpA is induced in response to INH exposure. However, its roles in the physiology and adaptation of M. tuberculosis to antibiotics have yet to be determined. In this study, we describe the repression of efpA in M. tuberculosis, using CRISPR interference (CRISPRi) to knockdown the expression of this essential gene and the direct effect of this on the ability of M. tuberculosis to survive exposure to INH over a 45-day time course. We determined that wild-type levels of efpA were required for recovery of M. tuberculosis following INH exposure and that, after 45 days of INH exposure, only a few viable colonies were recoverable from efpA-repressed M. tuberculosis. We conclude that EfpA is required for recovery of M. tuberculosis following INH exposure, which could reduce the efficacy of INH in vivo, and that EfpA may have a role in the development of resistance during drug therapy.


Sujet(s)
Antituberculeux , Protéines bactériennes , Isoniazide , Mycobacterium tuberculosis , Isoniazide/pharmacologie , Mycobacterium tuberculosis/effets des médicaments et des substances chimiques , Mycobacterium tuberculosis/génétique , Mycobacterium tuberculosis/croissance et développement , Antituberculeux/pharmacologie , Protéines bactériennes/génétique , Protéines bactériennes/métabolisme , Tests de sensibilité microbienne , Protéines de transport membranaire/génétique , Protéines de transport membranaire/métabolisme , Régulation de l'expression des gènes bactériens/effets des médicaments et des substances chimiques
16.
Methods Mol Biol ; 2833: 23-33, 2024.
Article de Anglais | MEDLINE | ID: mdl-38949697

RÉSUMÉ

Mycobacterium tuberculosis is the main causative agent of tuberculosis (TB)-an ancient yet widespread global infectious disease to which 1.6 million people lost their lives in 2021. Antimicrobial resistance (AMR) has been an ongoing crisis for decades; 4.95 million deaths were associated with antibiotic resistance in 2019. While AMR is a multi-faceted problem, drug discovery is an urgent part of the solution and is at the forefront of modern research.The landscape of drug discovery for TB has undoubtedly been transformed by the development of high-throughput gene-silencing techniques that enable interrogation of every gene in the genome, and their relative contribution to fitness, virulence, and AMR. A recent advance in this area is CRISPR interference (CRISPRi). The application of this technique to antimicrobial susceptibility testing (AST) is the subject of ongoing research in basic science.CRISPRi technology can be used in conjunction with the high-throughput SPOT-culture growth inhibition assay (HT-SPOTi) to rapidly evaluate and assess gene essentiality including non-essential, conditionally essential (by using appropriate culture conditions), and essential genes. In addition, the HT-SPOTi method can develop drug susceptibility and drug resistance profiles.This technology is further useful for drug discovery groups who have designed target-based inhibitors rationally and wish to validate the primary mechanisms of their novel compounds' antibiotic action against the proposed target.


Sujet(s)
Découverte de médicament , Extinction de l'expression des gènes , Tests de sensibilité microbienne , Mycobacterium tuberculosis , Tests de sensibilité microbienne/méthodes , Mycobacterium tuberculosis/effets des médicaments et des substances chimiques , Mycobacterium tuberculosis/génétique , Découverte de médicament/méthodes , Humains , Systèmes CRISPR-Cas , Antituberculeux/pharmacologie , Antibactériens/pharmacologie , Tests de criblage à haut débit/méthodes , Résistance bactérienne aux médicaments/génétique , Tuberculose/microbiologie , Tuberculose/traitement médicamenteux
17.
Front Microbiol ; 15: 1400434, 2024.
Article de Anglais | MEDLINE | ID: mdl-38966389

RÉSUMÉ

Escherichia coli produces extracellular vesicles called outer membrane vesicles. In this study, we investigated the mechanism underlying the hypervesiculation of deletion mutant ΔrodZ of E. coli. RodZ forms supramolecular complexes with actin protein MreB and peptidoglycan (PG) synthase, and plays an important role in determining the cell shape. Because mreB is an essential gene, an expression-repressed strain (mreB R3) was constructed using CRISPRi, in which the expression of mreB decreased to 20% of that in the wild-type (WT) strain. In shaken-flask culture, the ΔrodZ strain produced >50 times more vesicles than the WT strain. The mreB-repressed strain mreB R3 showed eightfold higher vesicle production than the WT. ΔrodZ and mreB R3 cells were observed using quick-freeze replica electron microscopy. As reported in previous studies, ΔrodZ cells were spherical (WT cells are rod-shaped). Some ΔrodZ cells (around 7% in total) had aberrant surface structures, such as budding vesicles and dented surfaces, or curved patterns on the surface. Holes in the PG layer and an increased cell volume were observed for ΔrodZ and mreB R3 cells compared with the WT. In conditions of osmotic support using sucrose, the OD660 value of the ΔrodZ strain increased significantly, and vesicle production decreased drastically, compared with those in the absence of sucrose. This study first clarified that vesicle production by the E. coli ΔrodZ strain is promoted by surface budding and a burst of cells that became osmotically sensitive because of their incomplete PG structure.

18.
Adv Sci (Weinh) ; : e2404313, 2024 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-38952047

RÉSUMÉ

Bacillus subtilis is an industrially important microorganism that is often used as a microbial cell factory for the production of recombinant proteins due to its food safety, rapid growth, and powerful secretory capacity. However, the lack of data on functional genes related to recombinant protein production has hindered the further development of B. subtilis cell factories. Here, a strategy combining genome-wide CRISPRi screening and targeted CRISPRa activation to enhance recombinant protein expression is proposed. First, a CRISPRi library covering a total of 4225 coding genes (99.7%) in the B. subtilis genome and built the corresponding high-throughput screening methods is constructed. Twelve key genes for recombinant protein expression are identified, including targets without relevant functional annotations. Meanwhile, the transcription of recombinant protein genes by CRISPRa is up-regulated. These screened or selected genes can be easily applied to metabolic engineering by constructing sgRNA arrays. The relationship between differential pathways and recombinant protein expression in engineered strains by transcriptome analysis is also revealed. High-density fermentation and generalisability validation results prove the reliability of the strategy. This method can be extended to other industrial hosts to support functional gene annotation and the design of novel cell factories.

19.
BMC Med Genomics ; 17(1): 185, 2024 Jul 12.
Article de Anglais | MEDLINE | ID: mdl-38997781

RÉSUMÉ

BACKGROUND: Although genome-wide association studies (GWAS) have identified multiple regions conferring genetic risk for juvenile idiopathic arthritis (JIA), we are still faced with the task of identifying the single nucleotide polymorphisms (SNPs) on the disease haplotypes that exert the biological effects that confer risk. Until we identify the risk-driving variants, identifying the genes influenced by these variants, and therefore translating genetic information to improved clinical care, will remain an insurmountable task. We used a function-based approach for identifying causal variant candidates and the target genes on JIA risk haplotypes. METHODS: We used a massively parallel reporter assay (MPRA) in myeloid K562 cells to query the effects of 5,226 SNPs in non-coding regions on JIA risk haplotypes for their ability to alter gene expression when compared to the common allele. The assay relies on 180 bp oligonucleotide reporters ("oligos") in which the allele of interest is flanked by its cognate genomic sequence. Barcodes were added randomly by PCR to each oligo to achieve > 20 barcodes per oligo to provide a quantitative read-out of gene expression for each allele. Assays were performed in both unstimulated K562 cells and cells stimulated overnight with interferon gamma (IFNg). As proof of concept, we then used CRISPRi to demonstrate the feasibility of identifying the genes regulated by enhancers harboring expression-altering SNPs. RESULTS: We identified 553 expression-altering SNPs in unstimulated K562 cells and an additional 490 in cells stimulated with IFNg. We further filtered the SNPs to identify those plausibly situated within functional chromatin, using open chromatin and H3K27ac ChIPseq peaks in unstimulated cells and open chromatin plus H3K4me1 in stimulated cells. These procedures yielded 42 unique SNPs (total = 84) for each set. Using CRISPRi, we demonstrated that enhancers harboring MPRA-screened variants in the TRAF1 and LNPEP/ERAP2 loci regulated multiple genes, suggesting complex influences of disease-driving variants. CONCLUSION: Using MPRA and CRISPRi, JIA risk haplotypes can be queried to identify plausible candidates for disease-driving variants. Once these candidate variants are identified, target genes can be identified using CRISPRi informed by the 3D chromatin structures that encompass the risk haplotypes.


Sujet(s)
Arthrite juvénile , Prédisposition génétique à une maladie , Haplotypes , Polymorphisme de nucléotide simple , Humains , Arthrite juvénile/génétique , Cellules K562 , Étude d'association pangénomique
20.
Stem Cell Res Ther ; 15(1): 218, 2024 Jul 19.
Article de Anglais | MEDLINE | ID: mdl-39026343

RÉSUMÉ

Due to the rapid development of stem cell technology, there have been tremendous advances in molecular biological and pathological research, cell therapy as well as organoid technologies over the past decades. Advances in genome editing technology, particularly the discovery of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-related protein 9 (Cas9), have further facilitated the rapid development of stem cell researches. The CRISPR-Cas9 technology now goes beyond creating single gene editing to enable the inhibition or activation of endogenous gene loci by fusing inhibitory (CRISPRi) or activating (CRISPRa) domains with deactivated Cas9 proteins (dCas9). These tools have been utilized in genome-scale CRISPRi/a screen to recognize hereditary modifiers that are synergistic or opposing to malady mutations in an orderly and fair manner, thereby identifying illness mechanisms and discovering novel restorative targets to accelerate medicinal discovery investigation. However, the application of this technique is still relatively rare in stem cell research. There are numerous specialized challenges in applying large-scale useful genomics approaches to differentiated stem cell populations. Here, we present the first comprehensive review on CRISPR-based functional genomics screening in the field of stem cells, as well as practical considerations implemented in a range of scenarios, and exploration of the insights of CRISPR-based screen into cell fates, disease mechanisms and cell treatments in stem cell models. This review will broadly benefit scientists, engineers and medical practitioners in the areas of stem cell research.


Sujet(s)
Systèmes CRISPR-Cas , Édition de gène , Cellules souches , Humains , Édition de gène/méthodes , Cellules souches/métabolisme , Cellules souches/cytologie , Animaux
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE