Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 8.291
Filtrer
1.
Noncoding RNA Res ; 10: 1-15, 2025 Feb.
Article de Anglais | MEDLINE | ID: mdl-39296640

RÉSUMÉ

Cancer progression results from the dysregulation of molecular pathways, each with unique features that can either promote or inhibit tumor growth. The complexity of carcinogenesis makes it challenging for researchers to target all pathways in cancer therapy, emphasizing the importance of focusing on specific pathways for targeted treatment. One such pathway is the PI3K/Akt pathway, which is often overexpressed in cancer. As tumor cells progress, the expression of PI3K/Akt increases, further driving cancer advancement. This study aims to explore how ncRNAs regulate the expression of PI3K/Akt. NcRNAs are found in both the cytoplasm and nucleus, and their functions vary depending on their location. They can bind to the promoters of PI3K or Akt, either reducing or increasing their expression, thus influencing tumorigenesis. The ncRNA/PI3K/Akt axis plays a crucial role in determining cell proliferation, metastasis, epithelial-mesenchymal transition (EMT), and even chemoresistance and radioresistance in human cancers. Anti-tumor compounds can target ncRNAs to modulate the PI3K/Akt axis. Moreover, ncRNAs can regulate the PI3K/Akt pathway both directly and indirectly.

2.
Biomaterials ; 313: 122801, 2025 Feb.
Article de Anglais | MEDLINE | ID: mdl-39236630

RÉSUMÉ

Chemoimmunotherapy is an emerging paradigm in the clinic for treating several malignant diseases, such as non-small cell lung cancer, breast cancer, and large B-cell lymphoma. However, the efficacy of this strategy is still restricted by serious adverse events and a high therapeutic termination rate, presumably due to the lack of tumor-targeted distribution of both chemotherapeutic and immunotherapeutic agents. Targeted drug delivery has the potential to address this issue. Among the most promising nanocarriers in clinical translation, liposomes have drawn great attention in cancer chemoimmunotherapy in recent years. Liposomes-enabled cancer chemoimmunotherapy has made significant progress in clinics, with impressive therapeutic outcomes. This review summarizes the latest preclinical and clinical progress in liposome-enabled cancer chemoimmunotherapy and discusses the challenges and future directions of this field.


Sujet(s)
Immunothérapie , Liposomes , Tumeurs , Liposomes/composition chimique , Humains , Immunothérapie/méthodes , Animaux , Tumeurs/thérapie , Tumeurs/traitement médicamenteux , Systèmes de délivrance de médicaments/méthodes , Antinéoplasiques/usage thérapeutique , Antinéoplasiques/administration et posologie
3.
Biomaterials ; 313: 122805, 2025 Feb.
Article de Anglais | MEDLINE | ID: mdl-39250865

RÉSUMÉ

Copper (Cu), an essential micronutrient with redox properties, plays a pivotal role in a wide array of pathological and physiological processes across virtually all cell types. Maintaining an optimal copper concentration is critical for cellular survival: insufficient copper levels disrupt respiration and metabolism, while excess copper compromises cell viability, potentially leading to cell death. Similarly, in the context of cancer, copper exhibits a dual role: appropriate amount of copper can promote tumor progression and be an accomplice, yet beyond befitting level, copper can bring about multiple types of cell death, including autophagy, apoptosis, ferroptosis, immunogenic cell death, pyroptosis, and cuproptosis. These forms of cell death are beneficial against cancer progression; however, achieving precise copper regulation within tumors remains a significant challenge in the pursuit of effective cancer therapies. The emergence of nanodrug delivery systems, distinguished by their precise targeting, controlled release, high payload capacity, and the ability to co-deliver multiple agents, has revitalized interest in exploiting copper's precise regulatory capabilities. Nevertheless, there remains a dearth of comprehensive review of copper's bidirectional effects on tumorigenesis and the role of copper-based nanomaterials in modulating tumor progression. This paper aims to address this gap by elucidating the complex role in cancer biology and highlighting its potential as a therapeutic target. Through an exploration of copper's dualistic nature and the application of nanotechnology, this review seeks to offer novel insights and guide future research in advancing cancer treatment.


Sujet(s)
Cuivre , Nanostructures , Tumeurs , Cuivre/composition chimique , Humains , Animaux , Nanostructures/composition chimique , Tumeurs/traitement médicamenteux , Tumeurs/anatomopathologie , Tumeurs/métabolisme , Mort cellulaire/effets des médicaments et des substances chimiques
4.
Biomaterials ; 312: 122722, 2025 Jan.
Article de Anglais | MEDLINE | ID: mdl-39096841

RÉSUMÉ

Ferroptosis, a recently identified form of cell death, holds promise for cancer therapy, but concerns persist regarding its uncontrolled actions and potential side effects. Here, we present a semiconducting polymer nanoprodrug (SPNpro) featuring an innovative ferroptosis prodrug (DHU-CBA7) to induce sono-activatable ferroptosis for tumor-specific therapy. DHU-CBA7 prodrug incorporate methylene blue, ferrocene and urea bond, which can selectively and specifically respond to singlet oxygen (1O2) to turn on ferroptosis action via rapidly cleaving the urea bonds. DHU-CBA7 prodrug and a semiconducting polymer are self-assembled with an amphiphilic polymer to construct SPNpro. Ultrasound irradiation of SPNpro leads to the production of 1O2 via sonodynamic therapy (SDT) of the semiconducting polymer, and the generated 1O2 activated DHU-CBA7 prodrug to achieve sono-activatable ferroptosis. Consequently, SPNpro combine SDT with the controlled ferroptosis to effectively cure 4T1 tumors covered by 2-cm tissue with a tumor inhibition efficacy as high as 100 %, and also completely restrain tumor metastases. This study introduces a novel sono-activatable prodrug strategy for regulating ferroptosis, allowing for precise cancer therapy.


Sujet(s)
Ferroptose , Souris de lignée BALB C , Polymères , Promédicaments , Semiconducteurs , Ferroptose/effets des médicaments et des substances chimiques , Promédicaments/pharmacologie , Promédicaments/composition chimique , Promédicaments/usage thérapeutique , Animaux , Polymères/composition chimique , Femelle , Lignée cellulaire tumorale , Souris , Ultrasonothérapie/méthodes , Nanoparticules/composition chimique , Humains , Antinéoplasiques/pharmacologie , Antinéoplasiques/usage thérapeutique , Antinéoplasiques/composition chimique , Oxygène singulet/métabolisme
5.
Noncoding RNA Res ; 10: 98-115, 2025 Feb.
Article de Anglais | MEDLINE | ID: mdl-39351450

RÉSUMÉ

The complex interplay of epigenetic factors is essential in regulating the hallmarks of cancer and orchestrating intricate molecular interactions during tumor progression. Circular RNAs (circRNAs), known for their covalently closed loop structures, are non-coding RNA molecules exceptionally resistant to enzymatic degradation, which enhances their stability and regulatory functions in cancer. Similarly, microRNAs (miRNAs) are endogenous non-coding RNAs with linear structures that regulate cellular biological processes akin to circRNAs. Both miRNAs and circRNAs exhibit aberrant expressions in various cancers. Notably, circRNAs can function as sponges for miRNAs, influencing their activity. The circRNA/miRNA interaction plays a pivotal role in the regulation of cancer progression, including in brain, gastrointestinal, gynecological, and urological cancers, influencing key processes such as proliferation, apoptosis, invasion, autophagy, epithelial-mesenchymal transition (EMT), and more. Additionally, this interaction impacts the response of tumor cells to radiotherapy and chemotherapy and contributes to immune evasion, a significant challenge in cancer therapy. Both circRNAs and miRNAs hold potential as biomarkers for cancer prognosis and diagnosis. In this review, we delve into the circRNA-miRNA circuit within human cancers, emphasizing their role in regulating cancer hallmarks and treatment responses. This discussion aims to provide insights for future research to better understand their functions and potentially guide targeted treatments for cancer patients using circRNA/miRNA-based strategies.

6.
Methods Mol Biol ; 2855: 195-207, 2025.
Article de Anglais | MEDLINE | ID: mdl-39354310

RÉSUMÉ

Short- and medium-chain fatty acids (SMCFA) are monocarboxylic acids with a carbon chain length of 1-12 carbon atoms. They are mainly produced in humans by the gut microbiota, play crucial metabolic roles, are vital for intestinal health, and have multifaceted impact on immune and neurological functions. Accurate detection and quantification of SMCFA in different human biofluids is achieved using 3-nitro phenylhydrazine (3-NPH) derivatization of the free fatty acids followed by reverse phase liquid chromatography (RPLC) separation and detection by tandem mass spectrometry (MS/MS). Here, we describe the simultaneous measurement of 14 SMCFA and lactate in detail. All 3-NPH-SMCFA-hydrazones are separated in less than 5 min with an 8-min total run time (injection-to-injection). Linear dynamic range over 0.1-500 µM is achieved for most SCFAs, while it is 0.05-100 µM for MCFAs. Validation of the procedure depicts good linearity (R2 > 0.98) and repeatability (CV ≤ 20%). The lower limit of detection (LLOD) is 10-30 nM. The lower limit of quantification (LLOQ) is 50-100 nM for most analytes, while it is 0.5 µM for acetate. In conclusion, the method offers several benefits compared to alternative methods regarding throughput, selectivity, sensitivity, and robustness.


Sujet(s)
Chromatographie en phase inverse , Spectrométrie de masse en tandem , Spectrométrie de masse en tandem/méthodes , Humains , Chromatographie en phase inverse/méthodes , Acides gras volatils/analyse , Tests de criblage à haut débit/méthodes , Limite de détection , Acides gras/analyse , Acides gras/composition chimique , Reproductibilité des résultats
7.
Bioact Mater ; 43: 255-272, 2025 Jan.
Article de Anglais | MEDLINE | ID: mdl-39386219

RÉSUMÉ

Both ß-catenin and STAT3 drive colorectal cancer (CRC) growth, progression, and immune evasion, and their co-overexpression is strongly associated with a poor prognosis. However, current small molecule inhibitors have limited efficacy due to the reciprocal feedback activation between STAT3 and ß-catenin. Inspired by the PROteolysis TArgeting Chimera (PROTAC), a promising pharmacological modality for the selective degradation of proteins, we developed a strategy of nanoengineered peptide PROTACs (NP-PROTACs) to degrade both ß-catenin and STAT3 effectively. The NP-PROTACs were engineered by coupling the peptide PROTACs with DSPE-PEG via disulfide bonds and self-assembled into nanoparticles. Notably, the dual degradation of ß-catenin and STAT3 mediated by NP-PROTACs led to a synergistic antitumor effect compared to single-target treatment. Moreover, NP-PROTACs treatment enhanced CD103+ dendritic cell infiltration and T-cell cytotoxicity, alleviating the immunosuppressive microenvironment induced by ß-catenin/STAT3 in CRC. These results highlight the potential of NP-PROTACs in facilitating the simultaneous degradation of two pathogenic proteins, thereby providing a novel avenue for cancer therapy.

8.
Pharm Nanotechnol ; 2024 Sep 27.
Article de Anglais | MEDLINE | ID: mdl-39350418

RÉSUMÉ

Women are impacted by the extremely common cancer known as cervical cancer worldwide. Although preventive vaccines for cervical cancer are successful, treatment of cervical cancer is far less satisfactory because of multidrug resistance and side effects. There is an increasing need for alternative treatment modalities due to the rather aggressive and non-specific nature of conventional chemotherapeutics. With the advent of new technologies, scientists are working harder to create novel drug delivery strategies for chemotherapy of cervical cancer. Metal nanoparticles, and particularly silver nanoparticles, are a relatively new class with a lot of promise in the field of cancer biology. Nanoparticle therapeutics are attractive platforms for clinically relevant drug development because of their powerful anti-cancer properties, correspondingly attenuated side effects, and cancer-specific targeting. In this review, we provide an overview of the most recent uses of nanotechnology, particularly silver nanostructures, in the diagnosis and treatment of cervical cancer. The salient features of silver nanoparticle-based therapeutic concepts that are novel, viable, and attainable are emphasized in this review, along with those that pose a significant obstacle to their progress toward clinical application.

9.
Nano Lett ; 2024 Oct 01.
Article de Anglais | MEDLINE | ID: mdl-39352718

RÉSUMÉ

The design and synthesis of nanomedicines capable of regulating programmed cell death patterns to enhance antitumor efficacy remain significant challenges in cancer therapy. In this study, we developed intelligent DNA nanospheres (NS) capable of distinguishing tiny pH changes between different endosomal compartments to regulate pyroptosis or apoptosis. These NS are self-assembled from two multifunctional DNA modules, enabling tumor targeting, acid-responsive disassembly, and photodynamic therapy (PDT) activation. By modifying the embedded i-motif sequence, the NS can be activated in early endosomes (EE) or lysosomes (Ly), producing singlet oxygen (1O2) at specific locations under laser irradiation. Our results demonstrate that EE-activated PDT induces gasdermin-E-mediated pyroptosis in tumor cells, enhancing antitumor efficacy and reducing systemic toxicity compared to Ly-activated apoptosis. This study offers new insights into the design of endosome-activated nanomedicines, advancing the biomedical applications of targeted cancer therapy.

10.
BMC Biotechnol ; 24(1): 70, 2024 Sep 30.
Article de Anglais | MEDLINE | ID: mdl-39350177

RÉSUMÉ

This work aimed to fabricate a Cloisite 30B-incorporated carboxymethyl cellulose graft copolymer of acrylic acid and itaconic acid hydrogel (Hyd) via a free radical polymerization method for controlled release of Sunitinib malate anticancer drug. The synthesized samples were characterized by FTIR, XRD, TEM, and SEM-dot mapping analyses. The encapsulation efficiency of Hyd and Hyd/Cloisite 30B (6 wt%) was 81 and 93%, respectively, showing the effectiveness of Cloisite 30B in drug loading. An in vitro drug release study showed that drug release from all samples in a buffer solution with pH 7.4 was higher than in a buffer solution with pH 5.5. During 240 min, the cumulative drug release from Hyd/Cloisite 30B (94.97% at pH 7.4) is lower than Hyd (53.71% at pH 7.4). Also, drug-loaded Hyd/Cloisite 30B (6 wt%) demonstrated better antibacterial activity towards S. Aureus bacteria and E. Coli. High anticancer activity of Hyd/Cloisite 30B against MCF-7 human breast cancer cells was shown by the MTT assay, with a MCF-7 cell viability of 23.82 ± 1.23% after 72-hour incubation. Our results suggest that Hyd/Cloisite 30B could be used as a pH-controlled carrier to deliver anticancer Sunitinib malate.


Sujet(s)
Carboxyméthylcellulose de sodium , Vecteurs de médicaments , Hydrogels , Indoles , Nanocomposites , Pyrroles , Succinates , Sunitinib , Sunitinib/composition chimique , Sunitinib/pharmacologie , Humains , Concentration en ions d'hydrogène , Succinates/composition chimique , Succinates/pharmacologie , Carboxyméthylcellulose de sodium/composition chimique , Hydrogels/composition chimique , Indoles/composition chimique , Indoles/pharmacologie , Nanocomposites/composition chimique , Pyrroles/composition chimique , Pyrroles/pharmacologie , Vecteurs de médicaments/composition chimique , Cellules MCF-7 , Antinéoplasiques/pharmacologie , Antinéoplasiques/composition chimique , Résines acryliques/composition chimique , Administration par voie orale , Antibactériens/pharmacologie , Antibactériens/composition chimique , Antibactériens/administration et posologie , Libération de médicament , Staphylococcus aureus/effets des médicaments et des substances chimiques , Escherichia coli/effets des médicaments et des substances chimiques , Survie cellulaire/effets des médicaments et des substances chimiques
11.
J Transl Med ; 22(1): 879, 2024 Sep 30.
Article de Anglais | MEDLINE | ID: mdl-39350207

RÉSUMÉ

Hydrogels are promising candidates for the delivery of therapeutics in the treatment of human cancers. Regarding to the biocomaptiiblity, high drug and encapsulation efficacy and adjustable physico-chemical features, the hydrogels have been widely utilized for the delivery of chemotherapy drugs. Doxorubicin (DOX) is one of the most common chemotherapy drugs used in cancer therapy through impairing topoisomerase II function and increasing oxidative damage. However, the tumor cells have developed resistance into DOX-mediated cytotoxic impacts, requiring the delivery systems to increase internalization and anti-cancer activity of this drug. The hydrogels can deliver DOX in a sustained manner to maximize its anti-cancer activity, improving cancer elimination and reduction in side effects and drug resistance. The natural-based hydrogels such as chitosan, alginate and gelatin hydrogels have shown favourable biocompatibility and degradability in DOX delivery for tumor suppression. The hydrogels are able to co-deliver DOX with other drugs or genes to enhance drug sensitivity and mediate polychemotherapy, synergistically suppressing cancer progression. The incorporation of nanoparticles in the structure of hydrogels can improve the sustained release of DOX and enhancing intracellular internalization, accelerating DOX's cytotoxicity. Furthermore, the stimuli-responsive hydrogels including pH-, redox- and thermo-sensitive platforms are able to improve the specific release of DOX at the tumor site. The DOX-loaded hydrogels can be further employed in the clinic for the treatment of cancer patients and improving efficacy of chemotherapy.


Sujet(s)
Doxorubicine , Libération de médicament , Hydrogels , Tumeurs , Doxorubicine/pharmacologie , Doxorubicine/usage thérapeutique , Doxorubicine/composition chimique , Humains , Hydrogels/composition chimique , Tumeurs/traitement médicamenteux , Animaux , Systèmes de délivrance de médicaments
12.
Mol Ther Oncol ; 32(4): 200871, 2024 Dec 19.
Article de Anglais | MEDLINE | ID: mdl-39351073

RÉSUMÉ

Some cancer types including bladder, cervical, and uterine cancers are characterized by frequent mutations in EP300 that encode histone acetyltransferase p300. This enzyme can act both as a tumor suppressor and oncogene. In this review, we describe the role of p300 in cancer initiation and progression regarding EP300 aberrations that have been identified in TGCA Pan-Cancer Atlas studies and we also discuss possible anticancer strategies that target EP300 mutated cancers. Copy number alterations, truncating mutations, and abnormal EP300 transcriptions that affect p300 abundance and activity are associated with several pathological features such as tumor grading, metastases, and patient survival. Elevated EP300 correlates with a higher mRNA level of other epigenetic factors and chromatin remodeling enzymes that co-operate with p300 in creating permissive conditions for malignant transformation, tumor growth and metastases. The status of EP300 expression can be considered as a prognostic marker for anticancer immunotherapy efficacy, as EP300 mutations are followed by an increased expression of PDL-1.HAT activators such as CTB or YF2 can be applied for p300-deficient patients, whereas the natural and synthetic inhibitors of p300 activity, as well as dual HAT/bromodomain inhibitors and the PROTAC degradation of p300, may serve as strategies in the fight against p300-fueled cancers.

13.
Explor Target Antitumor Ther ; 5(5): 1074-1099, 2024.
Article de Anglais | MEDLINE | ID: mdl-39351437

RÉSUMÉ

Cancer remains a concern after years of research in this field. Conventional therapies such as chemotherapy, radiation, and surgery are available for cancer treatment, but they are characterized by various side effects. There are several immunological challenges that make it difficult for the immune system and conventional therapies to treat cancer. Some of these challenges include heterogeneity, resistance to medicines, and cancer relapse. Even advanced treatments like immune checkpoint inhibitors (ICIs), which revolutionized cancer treatment, have associated toxicity and resistance further necessitate the exploration of alternative therapies. Anticancer peptides (ACPs) offer promising potential as cancer-fighting agents and address challenges such as treatment resistance, tumor heterogeneity, and metastasis. Although these peptides exist as components of the defense system in various plants, animals, fungi, etc., but can also be created synthetically and used as a new treatment measure. These peptides possess properties that make them appealing for cancer therapy, such as apoptosis induction, inhibition of angiogenesis, and cell membrane breakdown with low toxicity. Their capacity to specifically target cancer cells selectively holds promise for enhancing treatment environments as well as improving patients' quality of life. This review provides detailed insights into the different prospects of ACPs, including their characterization, use as immunomodulatory agents in cancer treatment, and their mechanistic details after addressing various immunological challenges in existing cancer treatment strategies. In conclusion, ACPs have promising potential as novel cancer therapeutics due to their target specificity and fewer side effects than conventional therapies.

14.
Explor Target Antitumor Ther ; 5(5): 1135-1154, 2024.
Article de Anglais | MEDLINE | ID: mdl-39351439

RÉSUMÉ

Bladder cancer is a leading cancer type in men. The complexity of treatment in late-stage bladder cancer after systemic spread through the lymphatic system highlights the importance of modulating disease-free progression as early as possible in cancer staging. With current therapies relying on previous standards, such as platinum-based chemotherapeutics and immunomodulation with Bacillus Calmette-Guerin, researchers, and clinicians are looking for targeted therapies to stop bladder cancer at its source early in progression. A new era of molecular therapies that target specific features upregulated in bladder cancer cell lines is surfacing, which may be able to provide clinicians and patients with better control of disease progression. Here, we discuss multiple emerging therapies including immune checkpoint inhibitors of the programmed cell death protein 1 (PD-1)/programmed death ligand 1 (PD-L1) pathway, antibody-drug conjugates, modulation of the phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) cell proliferation pathway, chimeric antigen receptor T-cell therapy, and fibroblast growth factor receptor targeting. Together, these modern treatments provide potentially promising results for bladder cancer patients with the possibility of increasing remission and survival rates.

15.
Cell Biol Int ; 2024 Oct 04.
Article de Anglais | MEDLINE | ID: mdl-39364680

RÉSUMÉ

Since suppressor/enhancer of Lin-12-like (SEL1L) was cloned in 1997, various pieces of evidence from lower species suggest it plays a significant role in protein degradation via the ubiquitin-proteasome system. The relevance of SEL1L in many aspects of malignant transformation and tumorigenic events has been the subject of research, which has shown compelling in vitro and in vivo findings relating its altered expression to changes in tumor aggressiveness. The Endoplasmic Reticulum (ER) in tumor cells is crucial for preserving cellular proteostasis by inducing the unfolded protein response (UPR), a stress response. A crucial component of the UPR is ER-associated degradation (ERAD), which guards against ER stress-induced apoptosis and the removal of unfolded or misfolded proteins by the ubiquitin-proteasome system. As a protein stabilizer of HMG-CoA reductase degradation protein 1 (HRD1), one of the main components of ERAD, SEL1L plays an important role in ER homeostasis. Notably, the expression levels of these two proteins fluctuate independently in various cancer types, yet changes in their expression affect the levels of other associated proteins during cancer pathogenesis. Recent studies have also outlined the function of SEL1L in cancer medication resistance. This review explores the value of targeting SEL1L as a novel treatment approach for cancer, focusing on the molecular processes of SEL1L and its involvement in cancer etiology.

16.
Clin Exp Med ; 24(1): 235, 2024 Oct 03.
Article de Anglais | MEDLINE | ID: mdl-39361163

RÉSUMÉ

Hypoxia is one of the defining characteristics of the tumor microenvironment (TME) in solid cancers. It has a major impact on the growth and spread of malignant cells as well as their resistance to common treatments like radiation and chemotherapy. Here, we explore the complex functions of hypoxia in the TME and investigate its effects on angiogenesis, immunological evasion, and cancer cell metabolism. For prognostic and therapeutic reasons, hypoxia identification is critical, and recent developments in imaging and molecular methods have enhanced our capacity to precisely locate underoxygenated areas inside tumors. Furthermore, targeted therapies that take advantage of hypoxia provide a potential new direction in the treatment of cancer. Therapeutic approaches that specifically target hypoxic conditions in tumors without causing adverse effects are being led by hypoxia-targeted nanocarriers and hypoxia-activated prodrugs (HAPs). This review provides an extensive overview of this dynamic and clinically significant area of oncology research by synthesizing current knowledge about the mechanisms of hypoxia in cancer, highlighting state-of-the-art detection methodologies, and assessing the potential and efficacy of hypoxia-targeted therapies.


Sujet(s)
Tumeurs , Hypoxie tumorale , Microenvironnement tumoral , Humains , Microenvironnement tumoral/effets des médicaments et des substances chimiques , Tumeurs/traitement médicamenteux , Tumeurs/anatomopathologie , Néovascularisation pathologique
17.
Bioresour Bioprocess ; 11(1): 93, 2024 Oct 03.
Article de Anglais | MEDLINE | ID: mdl-39361208

RÉSUMÉ

Despite breakthroughs in the development of cancer diagnosis and therapy, most current therapeutic approaches lack precise specificity and sensitivity, resulting in damage to healthy cells. Selective delivery of anti-cancer agents is thus an important goal of cancer therapy. Scorpion venom (SV) and/or body parts have been used since early civilizations for medicinal purposes, and in cultures, SV is still applied to the treatment of several diseases including cancer. SV contains numerous active micro and macromolecules with diverse pharmacological effects. These include potent anti-microbial, anti-viral, anti-inflammatory, and anti-cancer properties. This review focuses on the recent advances of SV-derived peptides as promising anti-cancer agents and their diagnostic and therapeutic potential applications in cancers such as glioma, breast cancer, prostate cancer, and colon cancer. Well-characterized SV-derived peptides are thus needed to serve as potent and selective adjuvant therapy for cancer, to significantly enhance the patients' survival and wellbeing.

18.
Saudi Med J ; 45(10): 1007-1019, 2024 Oct.
Article de Anglais | MEDLINE | ID: mdl-39379118

RÉSUMÉ

Acute myeloid leukemia (AML) is an aggressive leukemic malignancy that affects myeloid lineage progenitors. Relapsed or refractory AML patients continue to have poor prognoses, necessitating the development of novel therapy alternatives. Adoptive T-cell therapy with chimeric antigen receptors (CARs) is an intriguing possibility in the field of leukemia treatment. Chimeric antigen receptor T-cell therapy is now being tested in clinical trials (mostly in phase I and phase II) using AML targets including CD33, CD123, and CLL-1. Preliminary data showed promising results. However, due to the cellular and molecular heterogeneity of AML and the co-expression of some AML targets on hematopoietic stem cells, these clinical investigations have shown substantial "on-target off-tumor" toxicities, indicating that more research is required. In this review, the latest significant breakthroughs in AML CAR T cell therapy are presented. Furthermore, the limitations of CAR T-cell technology and future directions to overcome these challenges are discussed.


Sujet(s)
Immunothérapie adoptive , Leucémie aigüe myéloïde , Récepteurs chimériques pour l'antigène , Humains , Leucémie aigüe myéloïde/thérapie , Leucémie aigüe myéloïde/immunologie , Récepteurs chimériques pour l'antigène/immunologie , Immunothérapie adoptive/méthodes , Lymphocytes T/immunologie , Lymphocytes T/transplantation
19.
Int Immunopharmacol ; 143(Pt 1): 113356, 2024 Oct 08.
Article de Anglais | MEDLINE | ID: mdl-39383786

RÉSUMÉ

Recent research has found that ferroptosis is the most prevalent type of programmed cell death in glioma tissues and is associated with malignant progression, poor prognosis, and exacerbated immune suppression in glioblastoma (GBM). In recent years, nuclear receptor coactivator 4 (NCOA4) has been identified as a key protein in ferroptosis, but its expression in GBM tissues remains unclear. We observed an intriguing phenomenon where the expression pattern of NCOA4 was opposite in GBM tissues compared to three GBM cell lines (U87-MG, U251, and LN229), with NCOA4 expression being elevated in brain tissue but decreased in the GBM cells. This observation was further confirmed through bioinformatics analysis and experiments. Based on this finding, we hypothesize that immune cells in GBM tissues may exhibit more pronounced signs of iron depletion compared to tumor cells, which could contribute to the therapeutic resistance of GBM. The increase in NCOA4 observed in tumor tissues does not necessarily reflect increased ferroptosis in tumor cells but might indicate increased ferroptosis in non-tumor cells. This point should be considered when evaluating the efficacy of inducing ferroptosis via NCOA4 in GBM research. This observation could potentially impact the proposed strategy of inducing iron depletion as a treatment for GBM. We recognize the importance of this finding for guiding future GBM research and believe it warrants further investigation. This phenomenon may also be present in other types of tumors.

20.
Adv Drug Deliv Rev ; : 115458, 2024 Oct 07.
Article de Anglais | MEDLINE | ID: mdl-39383997

RÉSUMÉ

Emerging studies have disclosed the pivotal role of cancer-associated microbiota in supporting cancer development, progression and dissemination, with the in-depth comprehending of tumor microenvironment. In particular, certain invasive bacteria that hide in various cells within the tumor tissues can render assistance to tumor growth and invasion through intricate mechanisms implicated in multiple branches of cancer biology. Thus, tumor-resident intracellular microbes are anticipated as next-generation targets for oncotherapy. This review is intended to delve into these internalized bacteria-driven cancer-promoting mechanisms and explore diversified antimicrobial therapeutic strategies to counteract the detrimental impact caused by these intruders, thereby improving therapeutic benefit of antineoplastic therapy.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE