Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 15.362
Filtrer
1.
Biomaterials ; 313: 122805, 2025 Feb.
Article de Anglais | MEDLINE | ID: mdl-39250865

RÉSUMÉ

Copper (Cu), an essential micronutrient with redox properties, plays a pivotal role in a wide array of pathological and physiological processes across virtually all cell types. Maintaining an optimal copper concentration is critical for cellular survival: insufficient copper levels disrupt respiration and metabolism, while excess copper compromises cell viability, potentially leading to cell death. Similarly, in the context of cancer, copper exhibits a dual role: appropriate amount of copper can promote tumor progression and be an accomplice, yet beyond befitting level, copper can bring about multiple types of cell death, including autophagy, apoptosis, ferroptosis, immunogenic cell death, pyroptosis, and cuproptosis. These forms of cell death are beneficial against cancer progression; however, achieving precise copper regulation within tumors remains a significant challenge in the pursuit of effective cancer therapies. The emergence of nanodrug delivery systems, distinguished by their precise targeting, controlled release, high payload capacity, and the ability to co-deliver multiple agents, has revitalized interest in exploiting copper's precise regulatory capabilities. Nevertheless, there remains a dearth of comprehensive review of copper's bidirectional effects on tumorigenesis and the role of copper-based nanomaterials in modulating tumor progression. This paper aims to address this gap by elucidating the complex role in cancer biology and highlighting its potential as a therapeutic target. Through an exploration of copper's dualistic nature and the application of nanotechnology, this review seeks to offer novel insights and guide future research in advancing cancer treatment.


Sujet(s)
Cuivre , Nanostructures , Tumeurs , Cuivre/composition chimique , Humains , Animaux , Nanostructures/composition chimique , Tumeurs/traitement médicamenteux , Tumeurs/anatomopathologie , Tumeurs/métabolisme , Mort cellulaire/effets des médicaments et des substances chimiques
2.
Sci Rep ; 14(1): 22976, 2024 10 03.
Article de Anglais | MEDLINE | ID: mdl-39363008

RÉSUMÉ

Bladder cancer is the fourth most common malignancy in men with poor prognosis. Programmed cell death (PCD) exerts crucial functions in many biological processes and immunotherapy responses of cancers. Cell death signature (CDS) is novel gene signature comprehensively considering the characteristics of 15 patterns of programmed cell death, which could affect the prognosis and immunotherapy benefits of cancer patients. Integrative machine learning procedure including 10 algorithms was conducted to construct a prognostic CDS using TCGA, GSE13507, GSE31684, GSE32984 and GSE48276 datasets. Immunophenoscore, intratumor heterogeneity (ITH), tumor immune dysfunction and exclusion (TIDE) score and five immunotherapy cohorts were used to evaluate the predictive value of CDS in immunotherapy response. The prognostic CDS constructed by StepCox[backward] + Ridge algorithms was regarded as the optimal prognostic model. The CDS had a stable and powerful performance in predicting overall survival of bladder cancer patients with the AUCs at 3-year, 5-year, and 7-year ROC of 0.740, 0.763 and 0.820 in TCGA cohort. Moreover, CDS score acted as an independent risk factor for overall survival rate of bladder cancer patients. Low CDS score had a higher abundance of immuno-activated cells, higher PD1&CTLA4 immunophenoscore, higher TMB score, lower TIDE score, lower immune escape score, lower ITH score, lower cancer-related hallmarks score in bladder cancer. The CDS score was higher in non-responders in pan-cancer patients receiving immunotherapy. Our study constructed a novel prognostic CDS, which could serve as an indicator for predicting the prognosis in postoperative bladder cancer cases and immunotherapy benefits in pan-cancer. Low CDS score indicated a better prognosis and immunotherapy benefits.


Sujet(s)
Immunothérapie , Tumeurs de la vessie urinaire , Humains , Tumeurs de la vessie urinaire/immunologie , Tumeurs de la vessie urinaire/génétique , Tumeurs de la vessie urinaire/thérapie , Tumeurs de la vessie urinaire/anatomopathologie , Tumeurs de la vessie urinaire/mortalité , Immunothérapie/méthodes , Pronostic , Mâle , Marqueurs biologiques tumoraux , Femelle , Apprentissage machine , Régulation de l'expression des gènes tumoraux , Adulte d'âge moyen , Apoptose
3.
J Cardiothorac Surg ; 19(1): 569, 2024 Oct 01.
Article de Anglais | MEDLINE | ID: mdl-39354528

RÉSUMÉ

OBJECTIVE: This study aimed to develop a prognostic cell death index (CDI) based on the expression of genes related with various types of programmed cell death (PCD), and to assess its clinical relevance in lung squamous cell carcinoma (LUSC). METHODS: PCD-related genes were gathered and analyzed in silico using the transcriptomic data from the LUSC cohorts of The Cancer Genome Atlas (TCGA) and Clinical Proteomic Tumor Analysis Consortium (CPTAC). Differentially expressed PCD genes were analyzed, and a prognostic model was subsequently constructed. CDI scores were calculated for each patient, and their correlations with clinical features, survival outcomes, tumor mutation burden, gene clusters, and tumor microenvironment were investigated. Unsupervised consensus clustering was performed based on CDI model genes. Furthermore, the correlation of CDI for sensitivity of targeted drugs, chemotherapy efficacy, and immunotherapy responses was assessed. RESULTS: Based on 351 differentially expressed PCD genes in LUSC, a CDI signature comprising FGA, GAB2, JUN, and CDKN2A was identified. High CDI scores were significantly associated with poor survival outcomes (p < 0.05). Unsupervised clustering revealed three distinct patient subsets with varying survival rates. CDKN2A exhibited significantly different mutation patterns between patients with high and low CDI scores (p < 0.01). High CDI scores were also linked to increased immune cell infiltration of specific subsets and altered expression of immune-related genes. Patients with high-CDI showed reduced sensitivity to several chemotherapeutic drugs and a higher Tumor Immune Dysfunction and Exclusion (TIDE) score, indicating potential resistance to immunotherapy. CONCLUSION: The CDI signature based on PCD genes offers valuable prognostic insights into LUSC, reflecting molecular heterogeneity, immune microenvironment associations, and potential therapeutic challenges. The CDI holds potential clinical utility in predicting treatment responses and guiding the selection of appropriate therapies for patients with LUSC. Future studies are warranted to further validate the prognostic value of CDI in combination with clinical factors and to explore its application across diverse patient cohorts.


Sujet(s)
Carcinome épidermoïde , Tumeurs du poumon , Humains , Tumeurs du poumon/génétique , Tumeurs du poumon/anatomopathologie , Tumeurs du poumon/mortalité , Pronostic , Carcinome épidermoïde/génétique , Carcinome épidermoïde/anatomopathologie , Mâle , Femelle , Microenvironnement tumoral/génétique , Microenvironnement tumoral/immunologie , Marqueurs biologiques tumoraux/génétique , Adulte d'âge moyen , Régulation de l'expression des gènes tumoraux , Sujet âgé , Apoptose/génétique , Transcriptome
4.
Sci Rep ; 14(1): 22872, 2024 10 02.
Article de Anglais | MEDLINE | ID: mdl-39358546

RÉSUMÉ

Melanoma is a highly malignant form of skin cancer that typically originates from abnormal melanocytes. Despite significant advances in treating metastatic melanoma with immune checkpoint blockade (ICB) therapy, a substantial number of patients do not respond to this treatment and face risks of recurrence and metastasis. This study collected data from multiple datasets, including cohorts from Riaz et al., Gide et al., MGH, and Abril-Rodriguez et al., focusing on on-treatment samples during ICB therapy. We used the single-sample gene set enrichment analysis (ssGSEA) method to calculate immunogenic cell death scores (ICDS) and employed an elastic network algorithm to construct a model predicting ICB efficacy. By analyzing 18 ICD gene signatures, we identified 9 key ICD gene signatures that effectively predict ICB treatment response for on-treatment metastatic melanoma specimens. Results showed that patients with high ICD scores had significantly higher response rates to ICB therapy compared to those with low ICD scores. ROC analysis demonstrated that the AUC values for both the training and validation sets were around 0.8, indicating good predictive performance. Additionally, survival analysis revealed that patients with high ICD scores had longer progression-free survival (PFS). This study used an elastic network algorithm to identify 9 ICD gene signatures related to the immune response in metastatic melanoma. These gene features can not only predict the efficacy of ICB therapy but also provide references for clinical decision-making. The results indicate that ICD plays an important role in metastatic melanoma immunotherapy and that expressing ICD signatures can more accurately predict ICB treatment response and prognosis for on-treatment metastatic melanoma specimens, thus providing a basis for personalized treatment.


Sujet(s)
Inhibiteurs de points de contrôle immunitaires , Mort cellulaire immunogène , Mélanome , Humains , Mélanome/traitement médicamenteux , Mélanome/mortalité , Mélanome/anatomopathologie , Mélanome/immunologie , Mélanome/génétique , Inhibiteurs de points de contrôle immunitaires/usage thérapeutique , Inhibiteurs de points de contrôle immunitaires/pharmacologie , Mort cellulaire immunogène/effets des médicaments et des substances chimiques , Tumeurs cutanées/traitement médicamenteux , Tumeurs cutanées/anatomopathologie , Tumeurs cutanées/mortalité , Tumeurs cutanées/immunologie , Tumeurs cutanées/génétique , Métastase tumorale , Analyse de profil d'expression de gènes , Marqueurs biologiques tumoraux/génétique , Régulation de l'expression des gènes tumoraux , Transcriptome , Pronostic
5.
Front Pharmacol ; 15: 1425955, 2024.
Article de Anglais | MEDLINE | ID: mdl-39359249

RÉSUMÉ

Diabetes mellitus, a chronic metabolic disorder, can result in serious tissue and organ damage due to long-term metabolic dysfunction, leading to various complications. Therefore, exploring the pathogenesis of diabetic complications and developing effective prevention and treatment drugs is crucial. The role of ferroptosis in diabetic complications has emerged as a significant area of research in recent years. Ferroptosis, a recently discovered form of regulated cell death closely linked to iron metabolism imbalance and lipid peroxidation, has garnered increasing attention in studies exploring the potential role of natural products in its regulation. This review provides an overview of the mechanisms underlying ferroptosis, outlines detection methods, and synthesizes information from natural product databases. It also summarizes current research on how natural products may regulate ferroptosis in diabetic complications. Studies have shown that these products can modulate the ferroptosis process by influencing iron ion balance and combating oxidative stress. This highlights the potential of natural products in treating diabetic complications by regulating ferroptosis, offering a new strategy for managing such complications.

6.
Nagoya J Med Sci ; 86(3): 452-463, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-39355355

RÉSUMÉ

The presence of anti-thyroid antibodies (ATAs) is a biomarker for the development of thyroid dysfunction induced by anti-programmed cell death-1 antibodies (PD-1-Abs). While patients with thyroid dysfunction reportedly showed better overall survival (OS), it remains unknown if ATAs at baseline can predict OS. Therefore, in this study, we examined the association of ATAs at baseline with OS in non-small cell lung cancer (NSCLC) patients with different levels of programmed cell death-1 ligand 1 (PD-L1) positivity associated with PD-1-Ab treatment efficacy. A total of 81 NSCLC patients treated with PD-1-Abs were evaluated for ATAs at baseline and prospectively for OS. Among the 81 patients, 49 and 32 patients had ≥50% (group A) and <50% (group B) PD-L1 positivity, respectively. Median OS did not differ significantly between patients with (n = 13) and without (n = 36) ATAs at baseline in group A. In contrast, median OS was significantly longer in patients with (n = 10) versus without (n = 22) ATAs at baseline in group B (not reached vs 378 days, respectively; 95% CI, 182 to 574 days, p = 0.049). These findings suggest that the presence of ATAs at baseline is a biomarker to predict better treatment efficacy of PD-1-Abs in NSCLC patients with low PD-L1 positivity, while the difference in OS in those with high PD-L1 positivity may be masked by increased tumor expression of PD-L1.


Sujet(s)
Autoanticorps , Carcinome pulmonaire non à petites cellules , Tumeurs du poumon , Humains , Carcinome pulmonaire non à petites cellules/traitement médicamenteux , Carcinome pulmonaire non à petites cellules/mortalité , Carcinome pulmonaire non à petites cellules/immunologie , Carcinome pulmonaire non à petites cellules/anatomopathologie , Mâle , Femelle , Autoanticorps/sang , Tumeurs du poumon/traitement médicamenteux , Tumeurs du poumon/mortalité , Tumeurs du poumon/immunologie , Sujet âgé , Adulte d'âge moyen , Études prospectives , Antigène CD274/antagonistes et inhibiteurs , Récepteur-1 de mort cellulaire programmée/antagonistes et inhibiteurs , Glande thyroide/immunologie , Glande thyroide/anatomopathologie , Sujet âgé de 80 ans ou plus , Inhibiteurs de points de contrôle immunitaires/usage thérapeutique
7.
Nagoya J Med Sci ; 86(3): 497-506, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-39355357

RÉSUMÉ

Head and neck squamous cell carcinoma (HNSCC) has a low five-year survival rate because of its high rate of recurrence and metastasis. After surgical resection or radiation, the main treatments for HNSCC, patients sometimes experience functional or aesthetic disorders. Therefore, there is a great demand for the development of non-surgical treatment strategies to improve clinical outcomes and patients' quality of life. One such non-surgical treatment is mild hyperthermia (mHT). Many studies have investigated combination treatments with mHT and immune checkpoint inhibitors in preclinical settings. However, there have been no detailed reports on the effects of mHT on immune checkpoint molecules. Here, we investigated the effects of mHT on the tumor microenvironment (TME), particularly on programmed cell death receptor-1 (PD-1)/programmed cell death ligand-1 (PD-L1), in SCCVII cells and a squamous cell carcinoma mouse model. First, we found that PD-L1 mRNA levels and surface PD-L1 expression significantly increased after mHT. Second, a single tumor model was used to determine the effect of HT on the TME. mHT enhanced the accumulation of CD4+ and CD8+ T cells, elevated PD-L1 expression in the TME, and decreased the PD-1 positive rate of CD4+ T cells. Finally, using a bilateral tumor model, we found that anti-PD-L1 monotherapy and combination therapy resulted in longer survival than the isotype control or mHT monotherapy. Moreover, the combination therapy resulted in a significantly higher survival rate than anti-PD-L1 monotherapy. In conclusion, our findings elucidate changes in PD-L1 expression in the TME and strengthen the rationale for mHT and PD-L1 blockade combination therapy.


Sujet(s)
Antigène CD274 , Inhibiteurs de points de contrôle immunitaires , Microenvironnement tumoral , Animaux , Microenvironnement tumoral/effets des médicaments et des substances chimiques , Antigène CD274/métabolisme , Antigène CD274/antagonistes et inhibiteurs , Souris , Lignée cellulaire tumorale , Inhibiteurs de points de contrôle immunitaires/usage thérapeutique , Inhibiteurs de points de contrôle immunitaires/pharmacologie , Régulation positive/effets des médicaments et des substances chimiques , Carcinome épidermoïde/métabolisme , Carcinome épidermoïde/traitement médicamenteux , Carcinome épidermoïde/anatomopathologie , Hyperthermie provoquée/méthodes , Carcinome épidermoïde de la tête et du cou/métabolisme , Carcinome épidermoïde de la tête et du cou/immunologie , Carcinome épidermoïde de la tête et du cou/traitement médicamenteux , Carcinome épidermoïde de la tête et du cou/anatomopathologie , Carcinome épidermoïde de la tête et du cou/thérapie , Modèles animaux de maladie humaine
8.
Article de Anglais | MEDLINE | ID: mdl-39356986

RÉSUMÉ

Immunotherapy has fundamentally transformed the clinical cancer treatment landscape; however, achieving intricate and multifaceted modulation of the immune systems remains challenging. Here, a multipathway coordination of immunogenic cell death (ICD), autophagy, and indoleamine 2,3-dioxygenase-1 (IDO1) was achieved by a biomimetic nano-immunomodulator assembled from a chemotherapeutic agent (doxorubicin, DOX), small interfering RNA (siRNA) molecules targeting IDO1 (siIDO1), and the zeolitic imidazolate framework-8 (ZIF-8). After being camouflaged with a macrophage membrane, the biomimetic nanosystem, named mRDZ, enriched in tumors, which allowed synergistic actions of its components within tumor cells. The chemotherapeutic intervention led to a compensatory upregulation in the expression of IDO1, consequently exerting an inhibitory effect on the reactive oxygen species (ROS) and autophagic responses triggered by DOX and ZIF-8. Precise gene silencing of IDO1 by siIDO1 alleviated its suppressive influence, thereby facilitating increased ROS production and improved autophagy, ultimately bolstering tumor immunogenicity. mRDZ exhibited strong capability to boost potent local and systemic antitumor immune responses with a feature of memory, which led to the effective suppression of the growth, lung metastasis, and recurrence of the tumor. Serving as an exemplary model for the straightforward and potent reshaping of the immune system against tumors, mRDZ offers valuable insights into the development of immunomodulatory nanomaterials for cancer therapy.

9.
Transl Oncol ; 50: 102132, 2024 Oct 01.
Article de Anglais | MEDLINE | ID: mdl-39357464

RÉSUMÉ

Osteosarcoma is the most common bone tumor, and it possesses high metastatic propensity. Although systemic chemotherapy has improved its prognosis, improvements in survival rates have stalled in recent years. Moreover, the prognosis of patients with metastatic osteosarcoma remains poor. Near-infrared photoimmunotherapy (NIR-PIT) is a highly selective cancer therapy that induces immunogenic cell death (ICD), and the therapeutic effects spread to distant metastatic sites. Therefore, NIR-PIT could be useful in both primary and metastatic osteosarcoma treatment. In this study, we investigated the efficacy of NIR-PIT targeting epidermal growth factor receptor (EGFR) in osteosarcoma. The cytotoxic effects of NIR-PIT in osteosarcoma cell lines with different EGFR expression levels (MG63; high, Saos-2; low) were evaluated. NIR-PIT-induced cell death was dependent on the EGFR expression level. After NIR-PIT, swelling and bleb formation, the characteristic morphological changes induced by NIR-PIT associated with necrosis caused by the influx of extracellular fluid, were observed. In addition, the release of the ICD markers lactate dehydrogenase and ATP was detected after NIT-PIT. NIR-PIT significantly suppressed tumor growth in tumor-bearing mice. This study revealed that NIR-PIT targeting EGFR has therapeutic effects and induces ICD in osteosarcoma; thus, it is potentially a novel therapeutic strategy for primary and metastatic osteosarcoma.

10.
Front Pediatr ; 12: 1441891, 2024.
Article de Anglais | MEDLINE | ID: mdl-39350791

RÉSUMÉ

Introduction: Exposure to a range of anti-seizure medications (ASMs) during early brain development adversely impacts neurodevelopmental outcomes in both animal models and in clinical studies. Many ASMs, including phenobarbital, phenytoin, valproate (VPA), and benzodiazepines, are associated with acute neurotoxicity (cell death), impaired synaptic development, and long-term behavioral changes following gestational or neonatal exposure in animals. This is mirrored in clinical studies which show lasting neurodevelopmental deficits following early-life or gestational exposure to these drugs. Brivaracetam (BRV) and perampanel (PER) are two newer generation anti-seizure medications and are of interest based on their mechanisms of action (SV2A modulator, AMPA antagonist, respectively), as other drugs with these mechanisms of action do not trigger acute neurotoxicity. Both BRV and PER show anti-seizure efficacy in developing animals, but potential neurotoxicity of these drugs is unexplored. Methods: To address this gap, we treated postnatal day (P)7 Sprague-Dawley rats with BRV (20, 40, 80 mg/kg) and PER (0.1, 0.9, 2.7 mg/kg), and assessed the induction of cell death across a range of vulnerable brain regions 24 h after exposure. Cell death was assessed using pathogreen staining. Results: In each of the regions examined (dorsal striatum, nucleus accumbens, motor cortex, cingulate cortex, lateral thalamus, septum, hippocampus), VPA, which served as a positive control, significantly increased cell death as measured by the numer of pathogreen positive cells. By contrast, neither BRV nor PER increased the number of pathogreen positive cells in any region examined. Discussion: Our results suggest that BRV and PER may have a positive safety profile-at least with respect to acute induction of cell death - and therefore may offer a safer option for the treatment of early life seizures.

11.
World J Gastrointest Oncol ; 16(9): 3820-3831, 2024 Sep 15.
Article de Anglais | MEDLINE | ID: mdl-39350980

RÉSUMÉ

Despite the continuous developments and advancements in the treatment of gastric cancer (GC), which is one of the most prevalent types of cancer in China, the overall survival is still poor for most patients with advanced GC. In recent years, with the progress in tumor immunology research, attention has shifted toward immunotherapy as a therapeutic approach for GC. Programmed cell death protein 1 (PD-1) inhibitors, as novel immunosuppressive medications, have been widely utilized in the treatment of GC. However, many patients are still resistant to PD-1 inhibitors and experience recurrence in the advanced stages of PD-1 immunotherapy. To reduce the occurrence of drug resistance and recurrence in GC patients receiving PD-1 immunotherapy, to maximize the clinical activity of immunosuppressive drugs, and to elicit a lasting immune response, it is essential to research the tumor microenvironment mechanisms leading to PD-1 inhibitor resistance in GC patients. This article reviews the progress in studying the factors influencing the resistance to PD-1 inhibitors in the GC tumor microenvironment, aiming to provide insights and a basis for reducing resistance to PD-1 inhibitors for GC patients in the future.

12.
Front Immunol ; 15: 1400977, 2024.
Article de Anglais | MEDLINE | ID: mdl-39351226

RÉSUMÉ

Pyroptosis is a form of programmed cell death that is crucial in the development of various diseases, including autoimmune diseases, atherosclerotic diseases, cancer, and pregnancy complications. In recent years, it has gained significant attention in national and international research due to its association with inflammatory immune overactivation and its involvement in pregnancy complications such as miscarriage and preeclampsia (PE). The mechanisms discussed include the canonical pyroptosis pathway of gasdermin activation and pore formation (caspase-1-dependent pyroptosis) and the non-canonical pyroptosis pathway (cysteoaspartic enzymes other than caspase-1). These pathways work on various cellular and factorial levels to influence normal pregnancy. This review aims to summarize and analyze the pyroptosis pathways associated with abnormal pregnancies and pregnancy complications. The objective is to enhance pregnancy outcomes by identifying various targets to prevent the onset of pyroptosis.


Sujet(s)
Complications de la grossesse , Pyroptose , Humains , Grossesse , Femelle , Complications de la grossesse/immunologie , Complications de la grossesse/métabolisme , Animaux , Pré-éclampsie/immunologie , Pré-éclampsie/métabolisme , Transduction du signal
13.
World J Gastroenterol ; 30(36): 4031-4035, 2024 Sep 28.
Article de Anglais | MEDLINE | ID: mdl-39351252

RÉSUMÉ

In recent years, with the extensive application of immunotherapy in clinical practice, it has achieved encouraging therapeutic effects. While enhancing clinical efficacy, however, it can also cause autoimmune damage, triggering immune-related adverse events (irAEs). Reports of immunotherapy-induced gastritis have been increasing annually, but due to its atypical clinical symptoms, early diag-nosis poses a certain challenge. Furthermore, it can lead to severe complications such as gastric bleeding, elevating the risk of adverse outcomes for solid tumor patients if immunotherapy is interrupted. Therefore, gaining a thorough under-standing of the pathogenesis, clinical manifestations, diagnostic criteria, and treatment of immune-related gastritis is of utmost importance for early identification, diagnosis, and treatment. Additionally, the treatment of immune-related gastritis should be personalized according to the specific condition of each patient. For patients with grade 2-3 irAEs, restarting immune checkpoint inhibitors (ICIs) therapy may be considered when symptoms subside to grade 0-1. When restarting ICIs therapy, it is often recommended to use different types of ICIs. For grade 4 irAEs, permanent discontinuation of the medication is necessary.


Sujet(s)
Gastrite , Inhibiteurs de points de contrôle immunitaires , Humains , Inhibiteurs de points de contrôle immunitaires/effets indésirables , Gastrite/immunologie , Gastrite/induit chimiquement , Gastrite/diagnostic , Immunothérapie/effets indésirables , Immunothérapie/méthodes , Tumeurs/traitement médicamenteux , Tumeurs/immunologie
14.
Adv Mater ; : e2412730, 2024 Oct 02.
Article de Anglais | MEDLINE | ID: mdl-39358936

RÉSUMÉ

Nanotechnology has proven its enormous application value in clinical practice. However, current research on nanomedicines mainly focuses on developing nanoparticles as delivery carriers to maximize the bioavailability of therapeutic agents, with little attention on exploring their potential to directly regulate physiological processes. In this study, inspired by the lysosomal swelling caused by excessive accumulation of undegraded substances, this work presents a lysosomal-targeting aggregated nanoparticle (LTANP) for cancer treatment. By rationally engineering surface composition, properties, and interparticle interactions, LTANP achieves efficient tumor accumulation and selective targeted aggregation in lysosomes of cancer cells, leading to unrelievable lysosomal swelling, and ultimately inducing lysosomal membrane permeabilization (LMP) of cancer cells. Further analysis shows that nanoparticle aggregation-mediated LMP can effectively trigger immunogenic cell death (ICD) by impairing autophagy-lysosome pathway, evoking robust antitumor immune responses and reversing tumor immunogenicity from "cold" to "hot" in a melanoma model. Additionally, LTANP can combine with clinically approved programmed death ligand-1 (PD-L1) antibodies to further unleash T cell-mediated antitumor immunity, significantly enhancing antitumor performance, inhibiting tumor recurrence and metastasis. This work demonstrates the potential of rationally engineered nanostructures in directly combating cancer and provides novel insights for the development of advanced nanoparticle-based cancer treatment.

15.
Small ; : e2404211, 2024 Oct 02.
Article de Anglais | MEDLINE | ID: mdl-39358959

RÉSUMÉ

Photodynamic therapy (PDT) is demonstrated to be effective in inducing antitumor immune responses for tumor metastasis treatment. However, tumor hypoxia, inferior tissue penetration of light, and low singlet oxygen (1O2) quantum yield significantly hamper the efficacy of PDT, thus weakening its immune function. Moreover, PDT-mediated neutrophil extracellular traps (NETs) formation can further reduce the therapeutic effectiveness. Herein, the use of defect-rich CoMo-layered double hydroxide (DR-CoMo-LDH) nanosheets as a carrier to load a typical peptidyl arginine deiminase 4 inhibitor, i.e., YW4-03, to construct a multifunctional nanoagent (403@DR-LDH) for PDT/immunotherapy, is reported. Specifically, 403@DR-LDH inherits excellent 1O2 generation activity under 1550 nm laser irradiation and improves the half-life of YW4-03. Meanwhile, 403@DR-LDH plus 1550 nm laser irradiation can stimulate immunogenic cell death to promote the maturation of dendric cells and activation/infiltration of T cells and significantly downregulate H3cit protein expression to inhibit NETs formation, synergistically promoting the antitumor metastasis effect. Taken together, 403@DR-LDH can kill cancer cells and inhibit tumor growth/metastasis under 1550 nm laser irradiation. Single-cell analysis indicates that 403@DR-LDH can regulate the ratio of immune cells and immune-related proteins to improve the tumor immune microenvironment, showing strong efficacy to inhibit the tumor growth, metastasis, and recurrence.

16.
Discov Oncol ; 15(1): 519, 2024 Oct 03.
Article de Anglais | MEDLINE | ID: mdl-39361158

RÉSUMÉ

Copper (Cu) is used as a cofactor in all organisms, and yet it can be toxic at high intracellular concentrations, causing cell death. Diethyldithiocarbamate (DDC) is a Cu ionophore that can transport Cu effectively into the cell. Copper-diethyldithiocarbamate (Cu-DDC) can treat prostate cancer (PCa) and may correlate with the cell death process. However, the specific Cu-DDC-related cell death genes in PCa are still unknown. Information about the Cu-DDC-related cell death genes was obtained from a previous study. Concurrently, the RNA expression profiles and clinical data were downloaded from public databases such as GEO, TCGA, and CPGEA. Using data from TCGA database, the logistic and lasso regression models were generated using R software. The influence of these genes in affecting PCa progression and prognosis was analyzed. Finally, the expression of these genes was verified in clinical samples. We found five Cu-DDC-related cell death genes associated with the occurrence of PCa from GSE35988, a gene dataset, namely, CDKN2A, PRC1, CDK1, SOX2, and ZNF365. CDKN2A, PRC1, and CDK1 are known to influence PCa patients' disease-free survival (DFS) status and were overexpressed, whereas SOX2 and ZNF365 were under-expressed in PCa in the different databases. Some of these genes can affect PCa progression. Consistent with the database results, the mRNA and protein expression of CDKN2A, PRC1, and CDK1 was also higher in clinical samples. In conclusion, we identified five hub genes which are important for Cu-DDC-related cell death process that can predict the development of PCa.

17.
Clin Endosc ; 57(5): 675-682, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39354834

RÉSUMÉ

BACKGROUND/AIMS: Pancreatic cancer poses significant challenges due to its tendency for late-stage diagnosis and high mortality rates. Cryoablation, a technique used to treat various types of cancer, has shown potential in enhancing the prognosis of pancreatic cancer when combined with other therapies. However, its implementation is often limited by the need for lengthy procedures and specialized equipment. This study aims to develop a cryoablation needle optimized for endoscopic ultrasonography to simplify its application in treating pancreatic cancer. METHODS: The study involved conducting cryoablation experiments on swine liver tissue. It utilized cryo-needles to evaluate the extent of cell death across various temperatures and durations of cryoablation. RESULTS: The cryoablation system, which employed liquid carbon dioxide, achieved rapid cooling, reaching temperatures below -60 °C within 30 seconds and maintained the cryoablation process for 200 seconds. These conditions resulted in necrosis of the liver tissue. Notable cellular changes were observed up to 15 mm away from the cryoablation needle. CONCLUSIONS: This experimental study successfully demonstrated the efficacy of using a cryo-needle for cryoablation in swine liver tissue. Further trials involving pancreatic tissue are expected to verify its effectiveness, underscoring the importance of continued research to establish its role as a complementary therapy in pancreatic cancer treatment.

19.
Plant Cell Environ ; 2024 Oct 01.
Article de Anglais | MEDLINE | ID: mdl-39351845

RÉSUMÉ

Desiccation tolerance is a complex biological phenomenon that allows certain plants to survive extreme dehydration and revive upon rehydration. Although significant progress has been made in understanding the physiological and molecular mechanisms involved in desiccation tolerance, recovery mechanisms after prolonged desiccation periods are enigmatic. Combining physiological, biochemical, transcriptomic and metabolomic approaches, we investigated the role of prolonged desiccation on recovery of Selaginella bryopteris. Prolonged desiccation causes a decline in the antioxidant system, leading to accumulation of ROS that hinder recovery by inducing cellular damage. Transcriptome and WGCNA analysis revealed the significance of protective proteins, alternative respiration and protein homeostasis in cellular protection and recovery after short and long-term desiccation. Metabolomic analysis exhibited an increased accumulation of antioxidant compounds, which can be substituted for antioxidant enzymes to maintain cellular protection during prolonged desiccation. The significant role of autophagy and autophagic components was evaluated by H2O2 treatment and phylogenetic analysis of ATG4 and ATG8, which unveiled their substantial role in desiccation tolerance and remarkable conservation of the autophagy-related genes across plant species. Our data demonstrated that prolonged desiccation leads to ROS-induced cell death by extensive autophagy due to enormous loss of protective proteins, antioxidant enzymes and energy resources during desiccation.

20.
Immunol Rev ; 2024 Oct 01.
Article de Anglais | MEDLINE | ID: mdl-39351983

RÉSUMÉ

Inflammasomes are multi-protein complexes that assemble within the cytoplasm of mammalian cells in response to pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs), driving the secretion of the pro-inflammatory cytokines IL-1ß and IL-18, and pyroptosis. The best-characterized inflammasome complexes are the NLRP3, NAIP-NLRC4, NLRP1, AIM2, and Pyrin canonical caspase-1-containing inflammasomes, and the caspase-11 non-canonical inflammasome. Newer inflammasome sensor proteins have been identified, including NLRP6, NLRP7, NLRP9, NLRP10, NLRP11, NLRP12, CARD8, and MxA. These inflammasome sensors can sense PAMPs from bacteria, viruses and protozoa, or DAMPs in the form of mitochondrial damage, ROS, stress and heme. The mechanisms of action, physiological relevance, consequences in human diseases, and avenues for therapeutic intervention for these novel inflammasomes are beginning to be realized. Here, we discuss these emerging inflammasome complexes and their putative activation mechanisms, molecular and signaling pathways, and physiological roles in health and disease.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE