Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 35.351
Filtrer
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124940, 2025 Jan 05.
Article de Anglais | MEDLINE | ID: mdl-39173319

RÉSUMÉ

Mefloquine, a widely used antimalarial agent, has spurred ongoing research into the development of derivatives with enhanced efficacy and reduced side effects. In this investigation, we synthesized two compounds containing N-allyl or N-tert-butylacetamid groups. A chiral liquid chromatography with polysaccharide chiral stationary phase was utilized to separate the enantiomers of both derivatives. We employed spectroscopic chiroptical and non-polarizable methods such as electronic and vibrational circular dichroism, infrared absorption and ultraviolet spectroscopies. Combined with density functional theory calculations, the stable conformers were found in solution and their spectra were subsequently simulated. We elucidated the three-dimensional structure of the enantiomerically pure compounds and assigned the absolute configuration of all prepared derivatives using both experimental and simulated spectra.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124997, 2025 Jan 05.
Article de Anglais | MEDLINE | ID: mdl-39173322

RÉSUMÉ

Polylactic acid (PLA) straws hold eco-friendly potential; however, residual diisocyanates used to enhance the mechanical strength can generate carcinogenic primary aromatic amines (PAAs), posing health risks. Herein, we present a rapid, comprehensive strategy to detecting PAAs in 18 brands of food-grade PLA straws and assessing their migration into diverse food simulants. Surface-enhanced Raman spectroscopy was conducted to rapidly screen straws for PAAs. Subsequently, qualitative determination of migrating PAAs into various food simulants (4 % acetic acid, 10 % ethanol, 50 % ethanol) occurred at 70 °C for 2 h using liquid chromatography-mass spectrometry. Three PAAs including 4,4'-methylenedianiline, 2,4'-methylenedianiline, and 2,4-diaminotoluene were detected in all straws. Specifically, 2,4-diaminotoluene in 50 % ethanol exceeded specific migration limit of 2 µg/kg, raising safety concerns. Notably, PAAs migration to 10 % and 50 % ethanol surpassed that to 4 % acetic acid within a short 2-hour period. Moreover, PLA straws underwent varying degrees of shape changes before and after migration. Straws with poly(butylene succinate) resisted deformation compared to those without, indicating enhanced heat resistance, while poly(butyleneadipate-co-terephthalate) improved hydrolysis resistance. Importantly, swelling study unveiled swelling effect wasn't the primary factor contributing to the increased PAAs migration in ethanol food simulant, as there was no significant disparity in swelling degrees across different food simulants. FT-IR and DSC analysis revealed higher PAAs content in 50 % ethanol were due to highly concentrated polar ethanol disrupting hydrogen bonds and van der Waal forces holding PLA molecules together. Overall, minimizing contact between PLA straws and alcoholic foods is crucial to avoid potential safety risks posed by PAAs.


Sujet(s)
Amines , Polyesters , Analyse spectrale Raman , Polyesters/composition chimique , Analyse spectrale Raman/méthodes , Chromatographie en phase liquide/méthodes , Amines/analyse , Amines/composition chimique , Spectrométrie de masse/méthodes , Contamination des aliments/analyse , Emballage alimentaire ,
3.
Methods Mol Biol ; 2848: 249-257, 2025.
Article de Anglais | MEDLINE | ID: mdl-39240527

RÉSUMÉ

The production of Adeno-associated virus (AAV) vectors in the lab setting has typically involved expression in adherent cells followed by purification through ultracentrifugation in density gradients. This production method is, however, not easily scalable, presents high levels of cellular impurities that co-purify with the virus, and results in a mixture of empty and full capsids. Here we describe a detailed AAV production protocol that overcomes these limitations through AAV expression in suspension cells followed by AAV affinity purification and AAV polishing to separate empty and full capsids, resulting in high yields of ultra-pure AAV that is highly enriched in full capsids.


Sujet(s)
Dependovirus , Vecteurs génétiques , Dependovirus/génétique , Dependovirus/isolement et purification , Vecteurs génétiques/génétique , Humains , Capside/composition chimique , Capside/métabolisme , Virion/isolement et purification , Virion/génétique , Cellules HEK293 , Chromatographie d'affinité/méthodes , Ultracentrifugation/méthodes , Protéines de capside/isolement et purification , Protéines de capside/génétique , Protéines de capside/composition chimique , Protéines de capside/métabolisme
4.
Methods Mol Biol ; 2852: 255-272, 2025.
Article de Anglais | MEDLINE | ID: mdl-39235749

RÉSUMÉ

Metabolomics is the study of low molecular weight biochemical molecules (typically <1500 Da) in a defined biological organism or system. In case of food systems, the term "food metabolomics" is often used. Food metabolomics has been widely explored and applied in various fields including food analysis, food intake, food traceability, and food safety. Food safety applications focusing on the identification of pathogen-specific biomarkers have been promising. This chapter describes a nontargeted metabolite profiling workflow using gas chromatography coupled with mass spectrometry (GC-MS) for characterizing three globally important foodborne pathogens, Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella enterica, from selective enrichment liquid culture media. The workflow involves a detailed description of food spiking experiments followed by procedures for the extraction of polar metabolites from media, the analysis of the extracts using GC-MS, and finally chemometric data analysis using univariate and multivariate statistical tools to identify potential pathogen-specific biomarkers.


Sujet(s)
Marqueurs biologiques , Microbiologie alimentaire , Chromatographie gazeuse-spectrométrie de masse , Listeria monocytogenes , Métabolomique , Métabolomique/méthodes , Chromatographie gazeuse-spectrométrie de masse/méthodes , Marqueurs biologiques/analyse , Microbiologie alimentaire/méthodes , Listeria monocytogenes/métabolisme , Listeria monocytogenes/isolement et purification , Salmonella enterica/métabolisme , Escherichia coli O157/métabolisme , Escherichia coli O157/isolement et purification , Maladies d'origine alimentaire/microbiologie , Métabolome
5.
Protein Expr Purif ; 225: 106584, 2025 Jan.
Article de Anglais | MEDLINE | ID: mdl-39178976

RÉSUMÉ

Lipases comprise the third most commercialized group of enzymes worldwide and those of microbial origin are sought for their multiple advantages. Agro-industrial waste can be an alternative culture medium for producing lipases, reducing production costs and the improper disposal of waste frying oil (WFO). This study aimed to produce yeast lipases through submerged fermentation (SF) using domestic edible oil waste as inducer and alternative culture medium. The optimal culture conditions, most effective inducer, and purification method for a new lipase from Moesziomyces aphidis BRT57 were identified. Yeast was cultured in medium containing green coconut pulp and WFO waste for 72 h. The maximum production of lipases in SF occurred in a culture medium containing WFO and yeast extract at 48 and 72 h of incubation, with enzyme activities of 8.88 and 11.39 U mL-1, respectively. The lipase was isolated through ultrafiltration followed by size exclusion chromatography, achieving a 50.46 % recovery rate. To the best of our knowledge, this is the first study to report the production and purification of lipases from M. aphidis, demonstrating the value of frying oil as inducer and alternative medium for SF, contributing to the production of fatty acids for biodiesel from food waste.


Sujet(s)
Cocos , Triacylglycerol lipase , Triacylglycerol lipase/isolement et purification , Triacylglycerol lipase/composition chimique , Triacylglycerol lipase/biosynthèse , Triacylglycerol lipase/métabolisme , Cocos/composition chimique , Huiles végétales/composition chimique , Fermentation , Protéines fongiques/isolement et purification , Protéines fongiques/composition chimique , Protéines fongiques/biosynthèse , Protéines fongiques/génétique
6.
Protein Expr Purif ; 225: 106595, 2025 Jan.
Article de Anglais | MEDLINE | ID: mdl-39197671

RÉSUMÉ

We previously reported a chromatography system for purifying immunoglobulin M (IgM) using N,N,N',N'-ethylenediaminetetrakis(methylenephosphonic acid)-modified zirconia particles that selectively absorb immunoglobulins. Here, we report a simple procedure for preparing biotinylated IgM from hybridoma culture medium using this zirconia-based chromatography system. The culture medium of an IgM-producing hybridoma cell line was used as the starting sample solution, and the IgM in the medium was concentrated and partially purified by zirconia chromatography. Next, 9-(biotinamido)-4,7-dioxanonanoic acid N-succinimidyl ester was added to react with the proteins in the sample. Subsequently, only the biotinylated IgM was isolated by Capto Core 400 polishing column chromatography. The entire process was easy to perform, could be completed within 2 h, and provided highly pure biotin-labeled IgM. This procedure is expected to be applicable to the labeling of IgM with various compounds and drugs.


Sujet(s)
Biotinylation , Milieux de culture , Hybridomes , Immunoglobuline M , Immunoglobuline M/composition chimique , Immunoglobuline M/isolement et purification , Animaux , Milieux de culture/composition chimique , Souris , Zirconium/composition chimique , Biotine/composition chimique
7.
Food Chem ; 462: 141015, 2025 Jan 01.
Article de Anglais | MEDLINE | ID: mdl-39216375

RÉSUMÉ

Various strategies are being explored to reduce the formation of undesirable compounds during the thermal processing of foods. This study investigates the impact of incorporating annatto seed powder (Bixa orellana L.) into beef patties to reduce the formation of heterocyclic amines (HAs) during charcoal-grilling and pan-frying. A three-level full factorial design was used to assess the effect of both annatto seed powder concentration and cooking times on HAs formation. The results showed that HA formation increased with longer cooking times and decreased with higher concentrations of annatto seed powder. A significant reduction in HA content was observed in both charcoal-grilled and pan-fried beef patties when annatto seed powder was added, with a particularly notable 91 % reduction at the 1 % addition level. These findings demonstrate that the addition of annatto seed powder is a highly effective strategy for reducing HA formation in beef patties. CHEMICAL COMPOUNDS STUDIED IN THIS ARTICLE: 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) (PubChem CID: 62275); 2-amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline (4,8-DiMeIQx) (PubChem CID: 104739); 2-amino-3,7,8-trimethylimidazo[4,5-f]quinoxaline (7,8-DiMeIQx) (PubChem CID: 104855); 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) (PubChem CID: 1530); 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1) (PubChem CID: 5284474); 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2) (PubChem CID: 5284476); 2-amino-9H-pyrido[2,3-b]indole (AαC) (PubChem CID: 62805); 2-amino-3-methyl-9H-pyrido[2,3-b]indole (MeAαC) (PubChem CID: 62244); Bixin (PubChem CID: 5281226).


Sujet(s)
Amines , Charbon de bois , Cuisine (activité) , Extraits de plantes , Graines , Graines/composition chimique , Bovins , Animaux , Amines/composition chimique , Amines/analyse , Charbon de bois/composition chimique , Extraits de plantes/composition chimique , Bixaceae/composition chimique , Poudres/composition chimique , Composés hétérocycliques/composition chimique , Composés hétérocycliques/analyse , Température élevée , Produits carnés/analyse , Caroténoïdes
8.
Protein Expr Purif ; 225: 106583, 2025 Jan.
Article de Anglais | MEDLINE | ID: mdl-39168394

RÉSUMÉ

In recombinant protein purification, differences in isoelectric point (pI)/surface charge and hydrophobicity between the product and byproducts generally form the basis for separation. For bispecific antibodies (bsAbs), in many cases the physicochemical difference between product and byproducts is subtle, making byproduct removal considerably challenging. In a previous report, with a bsAb case study, we showed that partition coefficient (Kp) screening for the product and byproducts under various conditions facilitated finding conditions under which effective separation of two difficult-to-remove byproducts was achieved by anion exchange (AEX) chromatography. In the current work, as a follow-up study, we demonstrated that the same approach enabled identification of conditions allowing equally good byproduct removal by mixed-mode chromatography with remarkably improved yield. Results from the current and previous studies proved that separation factor determination based on Kp screening for product and byproduct is an effective approach for finding conditions enabling efficient and maximum byproduct removal, especially in challenging cases.


Sujet(s)
Anticorps bispécifiques , Protéines recombinantes , Anticorps bispécifiques/composition chimique , Anticorps bispécifiques/isolement et purification , Protéines recombinantes/composition chimique , Protéines recombinantes/génétique , Protéines recombinantes/isolement et purification , Chromatographie d'échange d'ions/méthodes , Humains
9.
Protein Expr Purif ; 225: 106581, 2025 Jan.
Article de Anglais | MEDLINE | ID: mdl-39168393

RÉSUMÉ

Signal peptide (SP) is required for secretion of recombinant proteins and typically cleaved by signal peptidase at its C-region to generate the mature proteins. Miscleavage of the SP is reported occasionally, resulting in a truncated- or elongated-terminal sequence. In the present work, we demonstrated that cation exchange (CEX) chromatography is an effective means for removing SP variants with a case study. With the selected resin/conditions, the chromatographic performance is comparable between runs performed at the low end and high end of load density and elution range. The procedure described in this work can be used as a general approach for resin selection and optimization of chromatographic conditions to remove byproducts that bind more strongly than the product to the selected resin.


Sujet(s)
Signaux de triage des protéines , Chromatographie d'échange d'ions/méthodes , Protéines recombinantes/composition chimique , Protéines recombinantes/génétique , Protéines recombinantes/isolement et purification , Protéines recombinantes/métabolisme , Résines échangeuses de cations/composition chimique , Escherichia coli/génétique , Escherichia coli/métabolisme
10.
Biochemistry (Mosc) ; 89(7): 1251-1259, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-39218022

RÉSUMÉ

Snow (cryotolerant) algae often form red (pink) spots in mountain ecosystems on snowfields around the world, but little is known about their physiology and chemical composition. Content and composition of pigments in the cells of the cryotolerant green microalgae Chloromonas reticulata have been studied. Analysis of carotenoids content in the green (vegetative) cells grown under laboratory conditions and in the red resting cells collected from the snow surface in the Subpolar Urals was carried out. Carotenoids such as neoxanthin, violaxanthin, anteraxanthin, zeaxanthin, lutein, and ß-carotene were detected. Among the carotenoids, the ketocarotenoid astaxanthin with high biological activity was also found. It was established that cultivation of the algae at low positive temperature (6°C) and moderate illumination (250 µmol quanta/(m2⋅s) contributed to accumulation of all identified carotenoids, including extraplastidic astaxanthin. In addition to the pigments, fatty acids accumulated in the algae cells. The data obtained allow us to consider the studied microalgae as a potentially promising species for production of carotenoids.


Sujet(s)
Caroténoïdes , Microalgues , Caroténoïdes/métabolisme , Caroténoïdes/composition chimique , Microalgues/métabolisme , Chlorophyta/métabolisme , Chlorophyta/composition chimique , Basse température , Xanthophylles/métabolisme
11.
Article de Anglais | MEDLINE | ID: mdl-39221991

RÉSUMÉ

Microtubules (MTs) are dynamic cytoskeletal filaments with highly conserved sequences across evolution, polymerizing by the GTP-dependent assembly of tubulin subunits. Despite the sequence conservation, MT polymerization kinetics diverge quantitatively between vertebrate brain, the model plant Arabidopsis and the protozoan Plasmodium. Previously, tubulin purified from seedlings of the plant Vigna sp. (mung) by temperature cycling was found to have a very low critical concentration. However, the lengths of MTs were sub-micron, much shorter than brain tubulin filaments. This was explained in simulations to be the result of the collective effect of high nucleation and GTP hydrolysis rates. Here, we test the effect of GTPase rates of affinity-purified Vigna sp. tubulin on microtubule polymerization and elongation. Affinity-purified mung tubulin is active and has a critical concentration of .37 µM. The GTP-dependent polymerization kinetics are transient, consistent with previous results. Polymerization is stabilized in the presence of either GTP analog GMPPNP (non-hydrolyzable) or GMPCPP (slow-hydrolyzable). Using interference reflection microscopy (IRM) we find polymerization with the non-hydrolysable analog significantly increases filament numbers, while lengths are unaffected for both GTP analogs. However, prolonged incubation with slow-hydrolyzable GMPCPP results in long filaments, pointing to GTP hydrolysis as a key factor determining MT length. We find the average GTPase turnover number of mung tubulin is 22.8 min-1, compared to 2.04 min-1 for goat brain tubulin. Thus modulating GTPase rates affects both nucleation and elongation. This quantitative divergence in kinetics despite high sequence conservation in the GTPase domains of α- and ß-tubulin could help better understand the roles of selective pressure and function in the diverse organisms.

12.
Clin Toxicol (Phila) ; : 1-5, 2024 Sep 02.
Article de Anglais | MEDLINE | ID: mdl-39222265

RÉSUMÉ

INTRODUCTION: Ethion is an organophosphate used as an acaricide and insecticide, that is restricted worldwide. In Colombia, pesticide poisoning is the third most common cause of chemical intoxication. On 9 October 2022, an outbreak of ethion poisoning occurred in Pereira. The aim of this study was to describe the clinical and epidemiological characteristics of the outbreak. METHODS: This is a descriptive study of an outbreak of organophosphate poisoning. The onset of symptoms occurred on 9 October 2022, following the consumption of empanadas. Information was collected on sociodemographic characteristics and clinical manifestations, as well as from paraclinical examinations. Data were obtained from clinical histories, field epidemiological investigations, and inspection visits. Food samples were collected for analysis by gas chromatography-mass spectrometry. Attack rates, proportions, and measures of central tendency, dispersion, and position were calculated. RESULTS: The case definition was met by 37 individuals with a median age of 30 years; all presented with muscarinic symptoms, 29 patients presented with nicotinic symptoms, and 20 patients presented with neurological symptoms. Males were the most affected (57%), and the most common time of symptom onset was 10:00 am. Twenty-three patients (62%) required intensive care unit admission, of whom 14 (38%) required mechanical ventilation. No deaths were reported. Erythrocyte acetylcholinesterase activity was reduced in all patients. Ethion was detected in mass-prepared maize and empanadas at concentrations greater than 0.1 mg/kg. The consumption of empanadas was identified as the common source. DISCUSSION: In Colombia, pesticide poisonings are the third most common type of poisoning caused by chemical substances reported to the National Health Institute through the National Public Health Surveillance System. In the present outbreak, ethion was in empanadas, likely due to contamination of cooking oil. CONCLUSIONS: We describe a large ethion-contaminated food poisoning outbreak reported in Colombia. The main symptoms were muscarinic, and the main treatment measures employed were atropine and respiratory support. Increased awareness of pesticide poisoning and training for food handlers are needed.

13.
J Chromatogr A ; 1736: 465342, 2024 Sep 04.
Article de Anglais | MEDLINE | ID: mdl-39260152

RÉSUMÉ

Simultaneous separation of compounds with multiple chiral centers and highly similar structures presents significant challenges. This study developed a novel supercritical fluid chromatography (SFC) method with reduced organic solvent consumption and robust separation capabilities to address these challenges. The method was applied to simultaneously achieve enantioselective, diastereoselective, and achiral separation of palonosetron hydrochloride and its six impurities. The effects of the polysaccharide-based chiral stationary phase (CSP), modifier, additive, and column temperature on retention and separation were comprehensively evaluated. It was found that a combination of a polysaccharide-based CSP and a single modifier or a mixture of protonic modifiers could not achieve complete separation due to high structural similarity. However, an ADH column and a ternary solvent mixture containing acetonitrile (methanol: acetonitrile: diethylamine, 60:40:0.2, v/v/v) provided satisfying separation, particularly for the enantiomer and diastereomers of palonosetron. Using the optimized method, the enantioselective, diastereoselective, and achiral separation of palonosetron hydrochloride and its six impurities can be accomplished in 18 min under gradient elution. Thermodynamic results indicated that the separation process was entropy driven. A molecular docking study revealed that the separation was mainly achieved through the differences in hydrogen bond and π - π interactions between the analytes and CSP. This study lays the foundation for SFC analysis of palonosetron hydrochloride and provides a reference for the simultaneous SFC separation of the enantiomers, diastereoisomers and structurally similar compounds.

14.
J Chromatogr A ; 1736: 465355, 2024 Sep 07.
Article de Anglais | MEDLINE | ID: mdl-39260150

RÉSUMÉ

Peptide separation selectivity was evaluated for hydrophilic interaction liquid chromatography (HILIC) ZIC-HILIC, ZIC-cHILIC, and XBridge Amide sorbents using formic acid as eluent additive (pH 2.7). Sequence-specific retention prediction algorithms were trained using retention datasets of ∼30,000 peptides for each column. Our retention models were able to attain ∼0.98 R2-value and yielded retention coefficients that can be probed to understand peptide-stationary phase interaction. Overall, the hydrophilicity for these columns decreased when the mobile phase changed pH from 4.5 to 2.7, when using 0.1 % formic acid in the mobile phase. The acidic residues became protonated, and the resultant hydrophilic interaction is dampened at the lower pH, leaving only the basic residues as the primary hydrophilic interactors. Hence, peptides of increasing charge have higher retention. In this comparison between the three columns, ZIC-HILIC has the highest chromatographic resolution between groups of peptides of different charge. From the position-dependent retention coefficients for ZIC-HILIC at pH 2.7, we found that the amino acids at the terminal positions of the peptide modulate the basicity of the N-terminal amino group or the C-terminal Arg/Lys for tryptic peptides. With respect to the separation orthogonality between HILIC and acidic pH RPLC for two dimensional separations, the orthogonality values were lower at pH 2.7 than operating HILIC at pH 4.5 for the first dimension. We also demonstrate that ZIC-HILIC was able to distinguish citrullinated and deamidated peptides based on predicted retention values.

15.
J Chromatogr A ; 1736: 465333, 2024 Sep 10.
Article de Anglais | MEDLINE | ID: mdl-39260151

RÉSUMÉ

A zwitterionic stationary phase comprising pyridinium cations and sulfonate anions was successfully developed through thiol-ene click chemistry. Using seven polar small molecules as probes, the zwitterionic stationary phase showed high separation selectivity and excellent column efficiency (35,200-54,800 plates/m) compared with two commercial columns. The influence of water proportion, salt concentration, and pH in the mobile phase, and column temperature, on the retention of six polar compounds was examined. The retention mechanism was explored by three hydrophilic retention models, Tanaka test and linear solvation energy relationship analysis. For the analysis of sample dairy products (milk powder, milk, and yogurt), the stationary phase was operated in hydrophilic interaction chromatography mode without the addition of buffer salts, facilitating rapid and efficient detection and quantification of melamine. The LOD and LOQ are 0.04 mg⋅g-1 and 0.13 mg⋅g-1, respectively, and the recovery rate is 90.3 - 102.8 %. The zwitterionic stationary phase has the advantages of simple preparation, good method reproducibility, good selectivity and high precision.

16.
Talanta ; 281: 126822, 2024 Sep 10.
Article de Anglais | MEDLINE | ID: mdl-39260255

RÉSUMÉ

Sensitively analyzing phenolic endocrine-disrupting chemicals (EDCs) in environmental substrates and aquatic organisms provides a significant challenge. Here, we developed a novel porous hyper-crosslinked ionic polymer bearing cyano groups (CN-HIP) as adsorbent for the highly efficient solid phase extraction (SPE) of phenolic EDCs in water and fish. The CN-HIP gave an excellent adsorption capability for targeted EDCs over a wide pH range, and the adsorption capacity was superior to that of several common commercial SPE adsorbents. The coexistence of electrostatic forces, hydrogen bond, and π-π interactions was confirmed as the main adsorption mechanism. A sensitive quantitative method was established by coupling CN-HIP based SPE method with high-performance liquid chromatography for the simultaneously determining trace bisphenol A, bisphenol F, bisphenol B and 4-tert-butylphenol in fresh water and fish. The method afforded lower detection limits (S/N = 3) (at 0.03-0.10 ng mL-1 for water and 0.8-4.0 ng g-1 for fish), high accuracy (the recovery of spiked sample at 88.0%-112 %) and high precision (the relative standard deviation < 8.5 %). This work provides a feasible method for detecting phenolic EDCs, and also opens a new perspective in developing functionalized cationic adsorbent.

17.
Talanta ; 281: 126659, 2024 Aug 02.
Article de Anglais | MEDLINE | ID: mdl-39260259

RÉSUMÉ

Gas chromatography is a reference method for gas analysis. As part of efforts to miniaturize gas chromatography systems, the miniaturization of detectors is essential. In this work, we report a new integrated photonic platform for gas chromatography analyte detection. The fabricated silicon die integrates Mach-Zehnder interferometers into low dead volume microfluidic channels, with coherent cost-effective detection scheme with a fixed 850 nm wavelength laser. A proof of concept is demonstrated with the separation and detection of three volatile organic compounds: heptane, octane, and toluene. Peaks' widths at half height range from 1 to 5 s. Peaks are very well resolved by our system, which acquires more than 100 points per second. From a heptane dilution range, we evaluate the limit of detection of our system to be the headspace of a 0.26 % heptane concentration solution. To our knowledge, these are the first integrated Mach-Zehnder interferometers reported for gas chromatography detection. This work could open new strategies for fast low cost and low limit of detection specific gas chromatography silicon micro-detectors.

18.
Phytochem Anal ; 2024 Sep 11.
Article de Anglais | MEDLINE | ID: mdl-39261748

RÉSUMÉ

INTRODUCTION: Aflatoxins, potent carcinogens produced by Aspergillus species, present significant health risks and commonly contaminate herbal products such as Chrysanthemum morifolium. Detecting these toxins in C. morifolium proves challenging due to the complex nature of the herbal matrix and the fluctuating levels of toxins found in different samples. OBJECTIVES: This study aimed to develop and optimize a novel method for the detection of aflatoxins in C. morifolium using dispersive liquid-liquid microextraction combined with high-performance liquid chromatography-fluorescence detection based on quality by design principles. METHODOLOGY: The method involved determining critical method attributes and parameters through the Plackett-Burman design, followed by optimization using the Box-Behnken design. Monte Carlo simulation was employed to establish a design space, which was experimentally verified. Method validation was performed to confirm accuracy, precision, and stability. RESULTS: The developed method exhibited excellent linearity (R2 > 0.9991) for aflatoxins B1, B2, G1, and G2 across a range of concentrations, with recovery rates between 85.52% and 102.01%. The validated method effectively quantified aflatoxins in C. morifolium under different storage conditions, highlighting the impact of temperature and storage time on aflatoxin production. CONCLUSION: This study successfully established a reliable and effective method for the detection of aflatoxins in C. morifolium, highlighting the importance of strict storage conditions to reduce aflatoxin contamination. Using a quality by design framework, the method demonstrated robustness and high analytical performance, making it suitable for routine quality control of herbal products.

19.
Bioanalysis ; : 1-11, 2024 Sep 12.
Article de Anglais | MEDLINE | ID: mdl-39262387

RÉSUMÉ

Aim: This study aims to compare the anti-drug antibody (ADA) interference in four pharmacokinetic (PK) assays across different platforms (AlphaLISA, Gyrolab, LC-MS/MS) and to devise a strategy for ADA interference mitigation to improve the accuracy of measured drug in total PK assays.Materials & methods: Spiked test samples, created to achieve different ADA concentrations in human serum also containing an insulin analogue, were analyzed alongside pooled clinical samples using four assays.Results & conclusion: Interference was observed in all platforms. A novel approach using the Gyrolab mixing CD, including acid dissociation in the PK assay, significantly reduced interference and thereby improved relative error from >99% to ≤20% yielding measurements well within the acceptance criteria. Clinical sample results reinforced findings from the test samples.


[Box: see text].

20.
Heliyon ; 10(17): e36286, 2024 Sep 15.
Article de Anglais | MEDLINE | ID: mdl-39263123

RÉSUMÉ

This study investigates the significance of quantifying amino acids in minute sweat volumes using high-performance liquid chromatography with fluorescence detection. Sweat, a valuable biofluid for non-invasive health monitoring, provides real-time insights into physiological changes. Amino acids, which are critical for various physiological processes, are key to protein synthesis and cellular regulation. Therefore, analyzing sweat's amino acid profiles can offer insights into metabolic states, exercise-induced stress, and potential biomarkers for health conditions. For sensitive analysis, amino acids were derivatized with 4-fluoro-7-nitro-2,1,3-benzoxadiazole (NBD-F), followed by liquid chromatographic separation on an octadecylsilyl column and fluorescence detection. The developed method was validated and applied to human sweat samples, enabling the quantification of 14 amino acids. The most abundant amino acids in the samples were serine, glycine, and alanine, which aligns with prior studies. This method offers a non-invasive and efficient way to screen for diseases by detecting amino acids in sweat, even with minimal sweat volumes. The approach could also be used to analyze other biomolecules in sweat, expanding its potential applications.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE