Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 3.657
Filtrer
1.
Rinsho Ketsueki ; 65(8): 784-789, 2024.
Article de Japonais | MEDLINE | ID: mdl-39231709

RÉSUMÉ

Recent advances in sequencing technologies have clarified the driver gene landscape in Philadelphia chromosomenegative (Ph-) myeloproliferative neoplasms (MPNs) and progressed understanding of MPN pathogenesis. Beyond mutations in the main three drivers of MPN, namely JAK2, MPL and CALR, somatic mutations in the epigenetic regulators and RNA splicing factors have been identified and their association with transformation to myelofibrosis and acute myeloid leukemia have been determined. Clonal expansion of hematopoietic cells with driver mutations (clonal hematopoiesis) has been detected in healthy individuals, especially in elderly people. In MPN patients, however, initial driver mutations such as those in JAK2 and DNMT3A have been shown to be acquired in utero or during childhood. In this review, I will summarize the recent findings about clonal evolution in MPN and the role of driver mutations.


Sujet(s)
Évolution clonale , Mutation , Syndromes myéloprolifératifs , Humains , Syndromes myéloprolifératifs/génétique
2.
Circ Res ; 2024 Sep 05.
Article de Anglais | MEDLINE | ID: mdl-39234670

RÉSUMÉ

BACKGROUND: Hypertension incidence increases with age and represents one of the most prevalent risk factors for cardiovascular disease. Clonal events in the hematopoietic system resulting from somatic mutations in driver genes are prevalent in elderly individuals who lack overt hematologic disorders. This condition is referred to as age-related clonal hematopoiesis (CH), and it is a newly recognized risk factor for cardiovascular disease. It is not known whether CH and hypertension in the elderly are causally related and, if so, what are the mechanistic features. METHODS AND RESULTS: A murine model of adoptive bone marrow transplantation was employed to examine the interplay between Tet2 (ten-eleven translocation methylcytosine dioxygenase 2) CH and hypertension. In this model, a subpressor dose of Ang II (angiotensin II) resulted in elevated systolic and diastolic blood pressure as early as 1 day after the challenge. These conditions led to the expansion of Tet2-deficient proinflammatory monocytes and bone marrow progenitor populations. Tet2-deficiency promoted renal CCL5 chemokine expression and macrophage infiltration into the kidney. Consistent with macrophage involvement, Tet2-deficiency in myeloid cells promoted hypertension when mice were treated with a subpressor dose of Ang II. The hematopoietic Tet2-/- condition led to sodium retention, renal inflammasome activation, and elevated levels of IL (interleukin)-1ß and IL-18. Analysis of the sodium transporters indicated NCC (Na+-Cl- cotransporter) and NKCC2 activation at residues Thr53 and Ser105, respectively. Administration of the NLRP3 inflammasome inhibitor MCC950 reversed the hypertensive state, sodium retention, and renal transporter activation. CONCLUSIONS: Tet2-mediated CH sensitizes mice to a hypertensive stimulus. Mechanistically, the expansion of hematopoietic Tet2-deficient cells promotes hypertension due to elevated renal immune cell infiltration and activation of the NLRP3 inflammasome, with consequences on sodium retention. These data indicate that carriers of TET2 CH could be at elevated risk for the development of hypertension and that immune modulators could be useful in treating hypertension in this patient population.

3.
Sci Rep ; 14(1): 20486, 2024 09 03.
Article de Anglais | MEDLINE | ID: mdl-39227700

RÉSUMÉ

Recent advances in imaging suggested that spatial organization of hematopoietic cells in their bone marrow microenvironment (niche) regulates cell expansion, governing progression, and leukemic transformation of hematological clonal disorders. However, our ability to interrogate the niche in pre-malignant conditions has been limited, as standard murine models of these diseases rely largely on transplantation of the mutant clones into conditioned mice where the marrow microenvironment is compromised. Here, we leveraged live-animal microscopy and ultralow dose whole body or focal irradiation to capture single cells and early expansion of benign/pre-malignant clones in the functionally preserved microenvironment. 0.5 Gy whole body irradiation (WBI) allowed steady engraftment of cells beyond 30 weeks compared to non-conditioned controls. In-vivo tracking and functional analyses of the microenvironment showed no change in vessel integrity, cell viability, and HSC-supportive functions of the stromal cells, suggesting minimal inflammation after the radiation insult. The approach enabled in vivo imaging of Tet2+/- and its healthy counterpart, showing preferential localization within a shared microenvironment while forming discrete micro-niches. Notably, stationary association with the niche only occurred in a subset of cells and would not be identified without live imaging. This strategy may be broadly applied to study clonal disorders in a spatial context.


Sujet(s)
Hématopoïèse clonale , Niche de cellules souches , Animaux , Souris , Niche de cellules souches/effets des radiations , Cellules souches hématopoïétiques/effets des radiations , Cellules souches hématopoïétiques/métabolisme , Irradiation corporelle totale , Souris de lignée C57BL , Suivi cellulaire/méthodes , Microscopie intravitale/méthodes
4.
Proc Natl Acad Sci U S A ; 121(38): e2321525121, 2024 Sep 17.
Article de Anglais | MEDLINE | ID: mdl-39250660

RÉSUMÉ

A major next step in hematopoietic stem cell (HSC) biology is to enhance our quantitative understanding of cellular and evolutionary dynamics involved in undisturbed hematopoiesis. Mathematical models have been and continue to be key in this respect, and are most powerful when parameterized experimentally and containing sufficient biological complexity. In this paper, we use data from label propagation experiments in mice to parameterize a mathematical model of hematopoiesis that includes homeostatic control mechanisms as well as clonal evolution. We find that nonlinear feedback control can drastically change the interpretation of kinetic estimates at homeostasis. This suggests that short-term HSC and multipotent progenitors can dynamically adjust to sustain themselves temporarily in the absence of long-term HSCs, even if they differentiate more often than they self-renew in undisturbed homeostasis. Additionally, the presence of feedback control in the model renders the system resilient against mutant invasion. Invasion barriers, however, can be overcome by a combination of age-related changes in stem cell differentiation and evolutionary niche construction dynamics based on a mutant-associated inflammatory environment. This helps us understand the evolution of e.g., TET2 or DNMT3A mutants, and how to potentially reduce mutant burden.


Sujet(s)
Différenciation cellulaire , Hématopoïèse , Cellules souches hématopoïétiques , Mutation , Animaux , Cellules souches hématopoïétiques/cytologie , Cellules souches hématopoïétiques/métabolisme , Souris , Hématopoïèse/génétique , Hématopoïèse/physiologie , DNA methyltransferase 3A/métabolisme , Homéostasie , DNA (cytosine-5-)-methyltransferase/métabolisme , DNA (cytosine-5-)-methyltransferase/génétique , Modèles biologiques , Lignage cellulaire , Dioxygenases , Protéines de liaison à l'ADN/génétique , Protéines de liaison à l'ADN/métabolisme , Évolution clonale , Modèles théoriques
6.
Sci Total Environ ; 952: 175940, 2024 Aug 30.
Article de Anglais | MEDLINE | ID: mdl-39218083

RÉSUMÉ

Microplastics are heterogeneously distributed in soils. However, it is unknown whether soil microplastic heterogeneity affects plant growth and root foraging responses and whether such effects vary with plant species and microplastic types. We grew each of seven herbaceous species (Platycodon grandiflorus, Trifolium repens, Portulaca oleracea, Medicago sativa, Taraxacum mongolicum, Perilla frutescenst, and Paspalum notatum) in heterogeneous soil (patches without microplastics and patches with 0.2 % microplastics) and homogeneous soil (patches with 0.1 % microplastics). Three microplastic types were tested: polypropylene (PP), polyacrylonitrile (PAN), and polyester (PET). P. frutescens showed no response to soil microplastic heterogeneity. For P. grandiflora, microplastic heterogeneity tended to decrease its biomass (total, shoot and root) when the microplastic was PAN and also shoot biomass when it was PET, but had no effect when it was PP. For T. repens, microplastic heterogeneity promoted biomass when PAN was used, decreased total and root biomass when PET was used, but showed no effect when PP was used. Microplastic heterogeneity increased biomass of P. oleracea and decreased that of M. sativa when PET was used, but had no effect when PP or PAN was used. For T. mongolicum, microplastic heterogeneity reduced biomass when the microplastic was PAN, tended to increase total and root biomass when it was PP, but showed no effect when it was PET. For P. notatum, microplastic heterogeneity increased biomass when the microplastic was PP, decreased it when PET was used, but had no effect when PAN was used. However, biomass of none of the seven species showed root foraging responses at the patch level. Therefore, soil microplastic heterogeneity can influence plant growth, but such effects depend on species and microplastic types and are not associated with root foraging. Our findings highlight the roles of soil microplastic heterogeneity, which may influence species interactions and community structure and productivity.

7.
IJID Reg ; 12: 100415, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39253689

RÉSUMÉ

Objectives: We describe the clonal spread of New Delhi metallo-ß-lactamase (NDM) 1-producing Pseudomonas aeruginosa isolates belonging to the ST773 clone in Spain and the Netherlands, associated with the transfer of Ukrainian patients during the war. Methods: Between March and December 2022, nine NDM-1-producing P. aeruginosa ST773 isolates were recovered from nine Ukrainian patients evacuated to two Spanish (n = 3) and five Dutch (n = 6) hospitals. Antimicrobial susceptibility testing was studied (Sensititre, Microscan, EUCAST-2023). Whole genome sequencing (Illumina, Oxford-Nanopore) was used to analyze the genetic relatedness, the resistome, and the prophage content. Results: All NDM-1-producing P. aeruginosa ST773 isolates exhibited resistance to all tested antimicrobials except colistin, aztreonam, and cefiderocol. Genomic analysis revealed that all isolates had an identical resistome and a chromosomally encoded integrative conjugative element carrying the bla NDM-1 gene. The core genome multilocus sequence typing and core genome single nucleotide polymorphisms analysis showed highly related isolates, irrespective of country of isolation, distant from other NDM-1-ST773 P. aeruginosa not collected in Ukraine. Both analysis revealed two closely related clusters, spanning the Spanish and Dutch isolates. In addition, a high content of prophages was identified in all strains, most of them in more than one isolate simultaneously, regardless of their origin country. Moreover, an identical phage tail-like bacteriocin cluster was identified in all NDM-1-ST773 P. aeruginosa. Conclusions: We report a clonal dissemination of NDM-producing P. aeruginosa ST773 to the Netherlands and Spain associated with patients from Ukraine. Our work highlights the importance of genomic surveillance and to understand the dynamics of resistance in multidrug-resistant bacteria after the transfer of patients from conflict zones. International collaboration is crucial to address global antimicrobial resistance.

8.
Oecologia ; 2024 Aug 12.
Article de Anglais | MEDLINE | ID: mdl-39134878

RÉSUMÉ

Many invasive plants can reproduce through both seeds and clonal growth. In habitats, interacting seedlings may originate from the same mother, and interacting ramets originating from the same plant may not be adjacent to each other in the stolon, particularly for vines that can show curved growth. However, in a homogeneous environment, how kinship and integration between adjacent/non-adjacent ramets affect plant growth and feedback with soil biota has been less studied. We address these questions using an invasive stoloniferous vine Mikania micrantha. We found that sibling groups and stranger groups did not differ in biomass production, root allocation and feedback with soil biota, indicating that kin recognition is unlikely in M. micrantha. For two-ramet stolon fragments in which interacting ramets were adjacent to each other, older ramets allocated more biomass to roots than younger ramets when integrated, particularly in comparison with disconnected ramets from different genotypes, indicating that a division of labor was induced. For four-ramet stolon fragments in which there were two unrooted ramets between the two rooted, interacting ramets, integration increased biomass allocation to roots, possibly because only two of the four ramets could absorb belowground resources and a lower shoot allocation decreased aboveground light competition. When inoculated with soil biota conditioned by the four-ramet integrated fragments, plants of M. micrantha also increased biomass allocation to roots. These results indicate that the distance between interacting ramets in the stolon may affect the integration effect and feedback with soil biota in clonal plants.

9.
Adv Gerontol ; 37(3): 266-275, 2024.
Article de Russe | MEDLINE | ID: mdl-39139119

RÉSUMÉ

The number of somatic mutations among all tissues increases along with age. This process was well-studied in hematopoietic stem cells (HSCs). Some mutations lead to a proliferative advantage and expansion of HSCs to form a dominant clone. Clonal hematopoiesis is general in the elderly population. Clonal hematopoiesis of indeterminate potential (CHIP) is a more common phenomenon in the elderly and is defined as somatic mutations in clonal blood cells without any other hematological malignancies. The development of CHIP is an independent risk factor for hematological malignancies, cardiovascular diseases, and reduced overall survival. CHIP is frequently associated with mutations in DNMT3A and TET2 genes involved in DNA methylation. The epigenetic human body clocks have been developed based on the age-related changes in methylation, making it possible to detect epigenetic aging. The combination of epigenetic aging and CHUP is associated with adverse health outcomes. Further research will reveal the significance of clonal hematopoiesis and CHIP in aging, acquiring various diseases, and determining the feasibility of influencing the mutagenic potential of clones.


Sujet(s)
Vieillissement , Hématopoïèse clonale , Épigenèse génétique , Humains , Vieillissement/physiologie , Vieillissement/génétique , Hématopoïèse clonale/génétique , Mutation , Méthylation de l'ADN , Cellules souches hématopoïétiques/métabolisme , DNA methyltransferase 3A , Tumeurs hématologiques/génétique , Tumeurs hématologiques/diagnostic , Dioxygenases , Hématopoïèse/génétique , Hématopoïèse/physiologie , DNA (cytosine-5-)-methyltransferase/génétique
10.
J Clin Oncol ; : JCO2401487, 2024 Aug 02.
Article de Anglais | MEDLINE | ID: mdl-39094067

RÉSUMÉ

BACKGROUND: Therapy-related myeloid neoplasm (t-MN) is a life-threatening complication of autologous peripheral blood stem cell (PBSC) transplantation for non-Hodgkin lymphoma (NHL). Prior studies report an association between clonal hematopoiesis (CH) in PBSC and risk of t-MN, but small samples precluded examination of risk within specific sub-populations. METHODS: Targeted DNA sequencing was performed to identify CH mutations in PBSC from a retrospective cohort of 984 NHL patients (median age at transplant 57y; range: 18-78). Fine-Gray proportional subdistribution hazard regression models estimated association between number of CH mutations and t-MN, adjusting for demographic, clinical, and therapeutic variables. Secondary analyses evaluated association between CH and t-MN among males and females. RESULTS: CH was identified in PBSC from 366 patients (37.2%). t-MN developed in 60 patients after median follow-up of 5y. Presence of ≥2 mutations conferred increased t-MN risk (adjusted hazard ratio [aHR]=2.10, 95% confidence interval [CI]=1.08-4.11, p=0.029). CH was associated with increased t-MN risk among males (aHR=1.83, 95%CI=1.01-3.31) but not females (aHR=0.56, 95%CI=0.15-2.09). Although prevalence and type of CH mutations in PBSC was comparable, the 8y cumulative incidence of t-MN was higher among males vs. females with CH (12.4% vs. 3.6%) but was similar between males and females without CH (4.9% vs. 3.9%). Expansion of CH clones from PBSC to t-MN was seen only among males. CONCLUSIONS: Presence of CH mutations in PBSC confers increased risk of t-MN after autologous transplantation in male but not female patients with NHL. Factors underlying sex-based differences in risk of CH progression to t-MN merit further investigation.

11.
Mol Ther Methods Clin Dev ; 32(3): 101294, 2024 Sep 12.
Article de Anglais | MEDLINE | ID: mdl-39104575

RÉSUMÉ

Adeno-associated virus (AAV)-based vectors are used clinically for gene transfer and persist as extrachromosomal episomes. A small fraction of vector genomes integrate into the host genome, but the theoretical risk of tumorigenesis depends on vector regulatory features. A mouse model was used to investigate integration profiles of an AAV serotype 5 (AAV5) vector produced using Sf and HEK293 cells that mimic key features of valoctocogene roxaparvovec (AAV5-hFVIII-SQ), a gene therapy for severe hemophilia A. The majority (95%) of vector genome reads were derived from episomes, and mean (± standard deviation) integration frequency was 2.70 ± 1.26 and 1.79 ± 0.86 integrations per 1,000 cells for Sf- and HEK293-produced vector. Longitudinal integration analysis suggested integrations occur primarily within 1 week, at low frequency, and their abundance was stable over time. Integration profiles were polyclonal and randomly distributed. No major differences in integration profiles were observed for either vector production platform, and no integrations were associated with clonal expansion. Integrations were enriched near transcription start sites of genes highly expressed in the liver (p = 1 × 10-4) and less enriched for genes of lower expression. We found no evidence of tumorigenesis or fibrosis caused by the vector integrations.

12.
Int J Hematol ; 2024 Aug 08.
Article de Anglais | MEDLINE | ID: mdl-39112743

RÉSUMÉ

The age-related expansion of hematopoietic stem cell clones carrying somatic mutations is known as clonal hematopoiesis and is linked to hematologic malignancies, cardiovascular diseases, and increased mortality. As the risk for adverse outcomes increases substantially with clone size, a precise understanding of the mechanisms that promote clonal expansion is crucial to identify potential therapeutic targets. Clonal expansion and progression to myeloid malignancies are driven by a complex interplay of cell-intrinsic and extrinsic factors that remain incompletely understood. Here, we review how recently proposed methods to estimate clonal expansion rates have been implemented to study the natural history of clonal hematopoiesis and identify factors that promote clonal expansion. We discuss how these factors relate to progression to myeloid malignancies and recapitulate recent risk prediction models. While we are still in the early stages of understanding clonal expansion, analysis of large-scale biobank data in combination with experimental models will help to discover causal factors promoting or suppressing clone growth, define mechanisms, and identify potential targets for clinical intervention in the future.

13.
J Cardiovasc Aging ; 4(1)2024 Jan.
Article de Anglais | MEDLINE | ID: mdl-39119355

RÉSUMÉ

Clonal hematopoiesis (CH) is a prevalent condition that results from somatic mutations in hematopoietic stem cells. When these mutations occur in "driver" genes, they can potentially confer fitness advantages to the affected cells, leading to a clonal expansion. While most clonal expansions of mutant cells are generally considered to be asymptomatic since they do not impact overall blood cell numbers, CH carriers face long-term risks of all-cause mortality and age-associated diseases, including cardiovascular disease and hematological malignancies. While considerable research has focused on understanding the association between CH and these diseases, less attention has been given to exploring the regulatory factors that contribute to the expansion of the driver gene clone. This review focuses on the association between environmental stressors and inherited genetic risk factors in the context of CH development. A better understanding of how these stressors impact CH development will facilitate mechanistic studies and potentially lead to new therapeutic avenues to treat individuals with this condition.

14.
Ann Bot ; 2024 Aug 10.
Article de Anglais | MEDLINE | ID: mdl-39126662

RÉSUMÉ

BACKGROUND AND AIMS: Clonal growth is widespread among herbaceous plants, and helps them to cope with environmental heterogeneity through resource integration via connecting clonal organs. Such integration is considered to balance heterogeneity by translocation of resources from rich to poor patches. However, such an 'equalisation' strategy is only one of several possible strategies. Under certain conditions, a strategy emphasising acropetal movement and exploration of new areas or a strategy of accumulating resources in older ramets may be preferred. The optimal strategy may be determined by environmental conditions, such as resource availability and level of light competition. We aimed to summarise possible translocation strategies in a conceptual analysis and to examine translocation in two species from different habitats. METHODS: Resource translocation was compared between two closely related species from different habitats with contrasting productivity. The study examined the bidirectional translocation of carbon and nitrogen in pairs of mother and daughter ramets grown under light heterogeneity (one ramet shaded) at two developmental stages using stable-isotope labelling. KEY RESULTS: At the early developmental stage, both species translocated resources toward daughters and the translocation was modified by shading. Later, the species of low-productivity habitats, Fragaria viridis, translocated carbon to shaded ramets (both mother and daughter), according to the 'equalisation' strategy. In contrast, the species of high-productivity habitats, Potentilla reptans, did not support shaded mother ramets. Nitrogen translocation remained mainly acropetal in both species. CONCLUSIONS: The two studied species exhibited different translocation strategies, which may be linked to the habitat conditions experienced by each species. The results indicate that we need to consider different possible strategies. We emphasise the importance of bidirectional tracing in translocation studies and the need for further studies to investigate the translocation patterns in species from contrasting habitats using a comparative approach.

15.
Rinsho Ketsueki ; 65(7): 702-708, 2024.
Article de Japonais | MEDLINE | ID: mdl-39098022

RÉSUMÉ

Myelodysplastic syndrome (MDS) is a refractory cancer that arises from hematopoietic stem cells and predominantly affects elderly adults. In addition to driver gene mutations, which are also found in clonal hematopoiesis in healthy elderly people, systemic inflammation caused by infection or collagen disease has long been known as an extracellular factor in the pathogenesis of MDS. Wild-type HSCs have an "innate immune memory" that functions in response to infection and inflammatory stress, and my colleagues and I used an infection stress model to demonstrate that the innate immune response by the TLR-TRIF-PLK-ELF1 pathway is similarly critical in impairment of hematopoiesis and dysregulation of chromatin in MDS stem cells. This revealed that not only are MDS stem cells expanded by the TRAF6-NF-kB pathway, the innate immune response is also involved in generating MDS stem cells. In this review, I will present research findings related to "innate immune memory," one of the pathogenic mechanisms of blood cancer, and discuss future directions for basic pathological research and potential therapeutic development.


Sujet(s)
Transformation cellulaire néoplasique , Tumeurs hématologiques , Mutation , Humains , Tumeurs hématologiques/génétique , Transformation cellulaire néoplasique/génétique , Infections , Immunité innée , Syndromes myélodysplasiques/génétique , Animaux , Stress physiologique
16.
Future Oncol ; : 1-16, 2024 Aug 05.
Article de Anglais | MEDLINE | ID: mdl-39101448

RÉSUMÉ

We describe in this review the historical evidence leading up to the concept and design of Vigil and subsequent clinical applications including safety and efficacy in a randomized, controlled Phase IIB trial. Vigil (gemogenovatucel-T) is a unique triple function targeted immunotherapy that demonstrates preclinical and clinical systemic anticancer activity. Construction of Vigil involves harvest of autologous malignant tissue for neoantigen targeting (ideally containing clonal neoantigens) followed by a two-day process involving transfection with a plasmid to provide a permissive 'training environment' for the patient's immune system. Transfected plasmid components contain an expressive human GMCSF DNA segment to enhance anticancer immune functional response and a second component expressing bi-shRNAfurin which reduces TGFß isomers (TGFß1 and TGFß2) thereby reducing cancer inhibition of the targeted immune response. Results generated to date justify advancement to confirmatory clinical trials supporting product regulatory approval.


Vigil is an anticancer treatment that employs three methods of enhancing the body's immune system to identify and kill cancer cells. The construction of Vigil involves cancer cells from the same person being treated (personalized therapy) in combination with added anticancer genetic signals to enhance the number and function anti-anticancer immune cells and to guide the immune cells to the cancer and not to normal organs of the body. In this manner, an army of immune cells are created that can move to attacking the cancer using blood vessels to get to the cancer anywhere it tries to grow in the body. One study (Phase I) performed with this product to determine safety and dose range demonstrated an optimal dose and schedule. Another study (Phase IIA) showed initial clinical benefit. A third more complex study (Phase IIB) in patients treated with Vigil compared with standard of care without Vigil demonstrated the ability to prolong the patients life and time without their cancer getting worse without any significant side effects associated with the treatment in a unique subset of ovarian cancer patients, those with the ability to repair their DNA. Based on the composite of these results, Vigil is an attractive targeted immunotherapy justified for late-stage clinical testing.

17.
Cancers (Basel) ; 16(15)2024 Jul 24.
Article de Anglais | MEDLINE | ID: mdl-39123361

RÉSUMÉ

Clonal hematopoiesis (CH), the relative expansion of mutant clones, is derived from hematopoietic stem cells (HSCs) with acquired somatic or cytogenetic alterations that improve cellular fitness. Individuals with CH have a higher risk for hematological and non-hematological diseases, such as cardiovascular disease, and have an overall higher mortality rate. Originally thought to be restricted to a small fraction of elderly people, recent advances in single-cell sequencing and bioinformatics have revealed that CH with multiple expanded mutant clones is universal in the elderly population. Just a few years ago, phylogenetic reconstruction across the human lifespan and novel sensitive sequencing techniques showed that CH can start earlier in life, decades before it was thought possible. These studies also suggest that environmental factors acting through aberrant inflammation might be a common theme promoting clonal expansion and disease progression. However, numerous aspects of this phenomenon remain to be elucidated and the precise mechanisms, context-specific drivers, and pathways of clonal expansion remain to be established. Here, we review our current understanding of the cellular mechanisms driving CH and specifically focus on how pro-inflammatory factors affect normal and mutant HSC fates to promote clonal selection.

18.
Plants (Basel) ; 13(15)2024 Jul 31.
Article de Anglais | MEDLINE | ID: mdl-39124238

RÉSUMÉ

Understanding the growth dynamics of spore-bearing clonal plant sporophytes and the influence of abiotic and biotic factors is crucial for predicting the persistence of club moss populations and implementing effective habitat management techniques. Despite this, the longevity and development of club-moss populations are rarely studied. This study adopted an integrated approach to assess the probability of repetitive young sporophyte recruitment via sexual propagation in Lycopodium annotinum L. and Lycopodium clavatum L. The size-age problem of clonal spore-bearing forest plants and their niche segregation were addressed. The canopy characteristics, insolation, small-scale disturbance, and genetic polymorphism were studied in temperate semi-natural Scots pine forests in Lithuania. Based on the size of the clones discovered, we hypothesize that initial sporophyte emergence occurred in 20-year-old pine stands, with subsequent sporophyte emergence continuing over time. The emergence was related to small-scale disturbances. High genetic polymorphism indicates that all sporophyte stands studied likely emerged via sexual reproduction. According to Ellenberg values, L. annotinum is related to shady habitats, but our findings show both species coexisting abundantly in the more open habitat, supposedly more suitable for L. clavatum.No significant differences in vegetation relevés and light availability was detected using hemispheric images.

19.
Gynecol Oncol ; 190: 18-27, 2024 Aug 10.
Article de Anglais | MEDLINE | ID: mdl-39128337

RÉSUMÉ

BACKGROUND: Individuals with germline BRCA1 and BRCA2 pathogenic variants (BRCA carriers) are at high risk of developing high grade serous ovarian carcinoma (HGSC). HGSC is predominantly driven by TP53 mutations, but mutations in this gene are also commonly found in non-cancerous tissue as a feature of normal human aging. We hypothesized that HGSC predisposition in BRCA carriers may be related to increased TP53 somatic evolution, which could be detectable by ultra-deep sequencing of TP53 mutations in gynecological liquid biopsies. METHODS: Duplex sequencing was used to identify TP53 mutations with high sensitivity in peritoneal washes and cervical liquid-based cytology (LBC) collected at surgery from 60 individuals including BRCA1 and BRCA2 carriers, and non-carriers. TP53 mutation pathogenicity was compared across groups and with TP53 cancer mutations. RESULTS: TP53 mutations were more abundant in cervical LBC than in peritoneal washes but increased with age in both sample types. In peritoneal washes, but not in cervical LBC, pathogenic TP53 mutation burden was increased in BRCA1 carriers compared to non-carriers, independently of age. Five individuals shared identical pathogenic TP53 mutations in peritoneal washes and cervical LBC, but not in blood. CONCLUSIONS: Ultra-deep sequencing of TP53 mutations in peritoneal washes collected at surgery reveals increased burden of pathogenic TP53 mutations in BRCA1 carriers. This excess of pathogenic TP53 mutations might be linked to the elevated risk of HGSC in these individuals. In some patients, concordant TP53 mutations were found in peritoneal washes and cervical LBCs, but the cell of origin remains unknown and deserves further investigation.

20.
Sci Rep ; 14(1): 18917, 2024 08 14.
Article de Anglais | MEDLINE | ID: mdl-39143154

RÉSUMÉ

Clonal haematopoiesis of indeterminate potential (CHIP) has been associated with many adverse health outcomes. However, further research is required to understand the critical genes and pathways relevant to CHIP subtypes, evaluate how CHIP clones evolve with time, and further advance functional characterisation and therapeutic studies. Large epidemiological studies are well placed to address these questions but often collect saliva rather than blood from participants. Paired saliva- and blood-derived DNA samples from 94 study participants were sequenced using a targeted CHIP-gene panel. The ten genes most frequently identified to carry CHIP-associated variants were analysed. Fourteen unique variants associated with CHIP, ten in DNMT3A, two in TP53 and two in TET2, were identified with a variant allele fraction (VAF) between 0.02 and 0.2 and variant depth ≥ 5 reads. Eleven of these CHIP-associated variants were detected in both the blood- and saliva-derived DNA sample. Three variants were detected in blood with a VAF > 0.02 but fell below this threshold in the paired saliva sample (VAF 0.008-0.013). Saliva-derived DNA is suitable for detecting CHIP-associated variants. Saliva can offer a cost-effective biospecimen that could both advance CHIP research and facilitate clinical translation into settings such as risk prediction, precision prevention, and treatment monitoring.


Sujet(s)
Hématopoïèse clonale , DNA methyltransferase 3A , Protéines de liaison à l'ADN , Salive , Humains , Salive/métabolisme , Hématopoïèse clonale/génétique , Protéines de liaison à l'ADN/génétique , Protéines de liaison à l'ADN/métabolisme , Femelle , Mâle , ADN/génétique , Dioxygenases/génétique , Protéines proto-oncogènes/génétique , Protéine p53 suppresseur de tumeur/génétique , Protéine p53 suppresseur de tumeur/métabolisme , DNA (cytosine-5-)-methyltransferase/génétique , DNA (cytosine-5-)-methyltransferase/métabolisme , Adulte , Adulte d'âge moyen , Sujet âgé , Allèles
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE