Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 4.882
Filtrer
1.
J Environ Sci (China) ; 147: 22-35, 2025 Jan.
Article de Anglais | MEDLINE | ID: mdl-39003042

RÉSUMÉ

High temperatures and providing sufficient time for the thermal desorption of persistent organic pollutants (POPs) from contaminated clay soils can lead to intensive energy consumption. Therefore, this article provides a critical review of the potential additives which can improve soil texture and increase the volatility of POPs, and then discusses their enhanced mechanisms for contributing to a green economy. Ca-based additives have been used to reduce plasticity of bentonite clay, absorb water and replenish system heat. In contrast, non-Ca-based additives have been used to decrease the plasticity of kaolin clay. The soil structure and soil plasticity can be changed through cation exchange and flocculation processes. The transition metal oxides and alkali metal oxides can be applied to catalyze and oxidize polycyclic aromatic hydrocarbons, petroleum and emerging contaminants. In this system, reactive oxygen species (•O2- and •OH) are generated from thermal excitation without strong chemical oxidants. Moreover, multiple active ingredients in recycled solid wastes can be controlled to reduce soil plasticity and enhance thermal catalysis. Alternatively, the alkali, nano zero-valent iron and nano-TiN can catalyze hydrodechlorination of POPs under reductive conditions. Especially, photo and photo-thermal catalysis are discussed to accelerate replacement of fossil fuels by renewable energy in thermal remediation.


Sujet(s)
Argile , Assainissement et restauration de l'environnement , Polluants du sol , Sol , Argile/composition chimique , Sol/composition chimique , Catalyse , Polluants du sol/composition chimique , Assainissement et restauration de l'environnement/méthodes , Température élevée
2.
J Environ Sci (China) ; 147: 424-450, 2025 Jan.
Article de Anglais | MEDLINE | ID: mdl-39003060

RÉSUMÉ

The electrokinetic (EK) process has been proposed for soil decontamination from heavy metals and organic matter. The advantages of the EK process include the low operating energy, suitability for fine-grained soil decontamination, and no need for excavation. During the last three decades, enhanced and hybrid EK systems were developed and tested for improving the efficiency of contaminants removal from soils. Chemically enhanced-EK processes exhibited excellent efficiency in removing contaminants by controlling the soil pH or the chemical reaction of contaminants. EK hybrid systems were tested to overcome environmental hurdles or technical drawbacks of decontamination technologies. Hybridization of the EK process with phytoremediation, bioremediation, or reactive filter media (RFM) improved the remediation process performance by capturing contaminants or facilitating biological agents' movement in the soil. Also, EK process coupling with solar energy was proposed to treat off-grid contaminated soils or reduce the EK energy requirements. This study reviews recent advancements in the enhancement and hybrid EK systems for soil remediation and the type of contaminants targeted by the process. The study also covered the impact of operating parameters, imperfect pollution separation, and differences in the physicochemical characteristics and microstructure of soil/sediment on the EK performance. Finally, a comparison between various remediation processes was presented to highlight the pros and cons of these technologies.


Sujet(s)
Assainissement et restauration de l'environnement , Métaux lourds , Polluants du sol , Sol , Polluants du sol/composition chimique , Assainissement et restauration de l'environnement/méthodes , Sol/composition chimique , Dépollution biologique de l'environnement
3.
Food Chem ; 462: 140990, 2025 Jan 01.
Article de Anglais | MEDLINE | ID: mdl-39208725

RÉSUMÉ

The frequent occurrence of food safety incidents has aroused public concern about food safety and key contaminants. Foodborne pathogen contamination, pesticide residues, heavy metal residues, and other food safety problems will significantly impact human health. Therefore, developing efficient and sensitive detection method to ensure food safety early warning is paramount. The aptamer-based sensor (aptasensor) is a novel analytical tool with strong targeting, high sensitivity, low cost, etc. It has been extensively utilized in the pharmaceutical industry, biomedicine, environmental engineering, food safety detection, and in other diverse fields. This work reviewed the latest research progress of aptasensors for food analysis and detection, mainly introducing their application in detecting various key food contaminants. Subsequently, the sensing mechanism and performance of aptasensors are discussed. Finally, the review will examine the challenges and opportunities related to aptasensors for detecting major contaminants in food, and advance implementation of aptasensors in food safety and detection.


Sujet(s)
Aptamères nucléotidiques , Techniques de biocapteur , Contamination des aliments , Sécurité des aliments , Nanostructures , Contamination des aliments/analyse , Aptamères nucléotidiques/composition chimique , Techniques de biocapteur/instrumentation , Techniques de biocapteur/méthodes , Nanostructures/composition chimique , Humains , Analyse d'aliment/méthodes , Analyse d'aliment/instrumentation
4.
J Hazard Mater ; 480: 135780, 2024 Sep 10.
Article de Anglais | MEDLINE | ID: mdl-39259996

RÉSUMÉ

Microplastics (MPs) and per- and polyfluoroalkyl substances (PFASs) coexist widely in lakes and affect ecological security. The coexistence characteristics and adsorption-desorption mechanisms between MPs and typical PFASs were explored in a typical eutrophic shallow lake (Taihu Lake). Polyvinyl chloride (PVC) and polyethylene (PE) are the primary types of MPs in Taihu Lake, with average abundances in water and sediment of 18630 n/m3 and 584 n/kg, respectively. The average concentrations of PFASs in water and sediment are 288.93 ng/L and 4.33 ng/g, with short-chain PFASs (C4-C7) being the main pollutants. Perfluorobutanoic acid (PFBA) in both water and sediment contributed 38.48 % and 44.53 %, respectively, followed by hexafluoropropylene oxide dimer acid (HFPO-DA). The morphological characteristics of MPs influence the distribution of long-chain PFAS in lake water, while the presence of HFPO-DA and perfluorohexanoic acid (PFHxA) in sediment is directly linked to the concentration and size of MPs. A combination of field investigations and indoor experiments revealed that the irreversible adsorption characteristics between MPs and HFPO-DA may promote the high cumulative flux of HFPO-DA in sediment, and the biofilm on the surface of MPs significantly accelerates this accumulation process. The results provide a new perspective on the co-transport behavior of emerging pollutants in aquatic environments.

5.
Environ Monit Assess ; 196(10): 901, 2024 Sep 06.
Article de Anglais | MEDLINE | ID: mdl-39237777

RÉSUMÉ

Nowadays, one of the most critical challenges is reduced access to water. Climate change, industrialization, and population growth have caused many countries to suffer from water crises, especially in arid and semi-arid areas. The Culiacan River basin in Sinaloa is a region of great importance in Mexico due to its intensive agricultural activity. Hence, water quality assessment has become a necessity to ensure sustainable water use. This study describes the spatiotemporal water quality features of the Humaya, Tamazula, and Culiacan Rivers within the Culiacan River basin and their sources of contamination. Twenty-two water quality parameters were analyzed from samples taken every 6 months from 2012 to 2020 at 19 sampling sites in the basin. A multivariate statistical analysis revealed significant correlations (r > 0.85) between the water quality parameters. The modified Integrated Water Quality Index (IWQI) identified severe pollution in samples from the urban river section of the basin, while good water quality conditions were found upstream. Severe contamination was observed in 26.32% of the samples, whereas only 13.45% evidenced good water quality. The Water Quality Index (WQI) indicated that 94.74% of the samples presented fair water quality, suggesting that the surface waters of the Culiacan River Basin are suitable for agricultural irrigation. This study provides insights into the current water quality status of the surface waters in the Culiacan River Basin, identifying significant pollution sources and areas of concern. The spatiotemporal dynamics of water quality in the Culiacan River basin revealed the importance of continuous monitoring and effective water management practices to improve water quality and achieve sustainable agricultural practices.


Sujet(s)
Surveillance de l'environnement , Rivières , Polluants chimiques de l'eau , Qualité de l'eau , Rivières/composition chimique , Mexique , Polluants chimiques de l'eau/analyse , Agriculture , Pollution chimique de l'eau/statistiques et données numériques
6.
J Environ Manage ; 370: 122323, 2024 Sep 07.
Article de Anglais | MEDLINE | ID: mdl-39244922

RÉSUMÉ

The increasing chemical pollution of the drinking water is widely concerned. Large number of organic contaminants cannot be removed by conventional water treatment technology due to their low concentration, and long-term exposure may pose significant risks to human health. Which organic contaminants in drinking water should be given more attention has been a topic of great concern in recent years. To identify the organic contaminants that need attention, this research proposes an improved health risk screening method to quantitatively analyze the risks of accumulation, persistence, toxicity, and antibiotic resistance. Compared with conventional method, 26 compounds were added to the improved screening list, including 9 DBPs (e.g., NDMA), 3 antibiotics (e.g., oxytetracycline), PFNA and other compounds. Overall, antibiotics and plasticizers rose in the risk rankings. From the perspective of the proportion of total risk value, a single risk plays a decisive role (more than 99%) in the ranking. This change suggests that antibiotic resistance and the accumulation of organic matter are as important as their toxic risks to humans. 58 compounds were recommended for the priority control organic contaminants list in drinking water. This list provides the necessary information for authoritative regulations to monitor, control, assess, and manage the risks of environmentally relevant compounds in drinking water in China.

7.
Environ Pollut ; : 124912, 2024 Sep 06.
Article de Anglais | MEDLINE | ID: mdl-39245201

RÉSUMÉ

Tire microplastics (TMPs) and antibiotics are emerging pollutants that widely exist in water environments. The coexistence of these pollutants poses severe threats to aquatic organisms. However, the toxicity characteristics and key molecular factors of the combined exposure to TMPs in aquatic organisms remain unknown. Therefore, the joint toxicity of styrene-butadiene rubber TMPs (SBR-TMPs) and 32 antibiotics (macrolides, fluoroquinolones, ß-lactams, sulfonamides, tetracyclines, nitroimidazoles, highly toxic antibiotics, high-content antibiotics, and common antibiotics) in zebrafish was investigated using a full factorial design, molecular docking, and molecular dynamics simulation. Sixty-four combinations of antibiotics were designed to investigate the hepatotoxicity of the coexistence of SBR-TMPs additives and antibiotics in zebrafish. Results indicated that low-order effects of antibiotics (e.g., enoxacin-lomefloxacin and ofloxacin-enoxacin-lomefloxacin) had relatively notable toxicity. The van der Waals interaction between additives and zebrafish cytochrome P450 enzymes primarily affected zebrafish hepatotoxicity. Zebrafish hepatotoxicity was also affected by the ability of SBR-TMPs to adsorb antibiotics, the relation between antibiotics, the affinity of antibiotics docking to zebrafish cytochrome P450 enzymes, electronegativity, atomic mass, and the hydrophobicity of the antibiotic molecules. This study aimed to eliminate the joint toxicity of TMPs and antibiotics and provide more environmentally friendly instructions for using different chemicals.

8.
Chemosphere ; : 143271, 2024 Sep 04.
Article de Anglais | MEDLINE | ID: mdl-39241837

RÉSUMÉ

Microplastics represent a novel category of environmental pollutants, and understanding their interactions with typical xenobiotics is crucial. In this study, we investigated the impact of ionic liquids (ILs) containing herbicidal anions, namely glyphosate [Glyph] and 2,4-dichlorophenoxyacetate [2,4-D], and the surfactant cation - dodecyltrimethylammonium [C12TMA] on acrylonitrile butadiene styrene (ABS) microplastics. The aim of the study was to assess the sorption capacity of microplastics that were present in both untreated and aged form using standard and modified Fenton methods. In addition, impact on toxicity and stress adaptation of the model soil bacterium Pseudomonas putida KT2440 was measured. Upon ageing, ABS microplastics underwent a fivefold increase in BET surface area and total pore volume (from 0.001 to 0.004 cm3/g) which lead to a dramatic increase in adsorption of the cations on ABS microplastics from 40-45% for virgin ABS to 75-80% for aged ABS. Toxicity was mainly attributed to hydrophobic cations in ILs (EC50 ∼ 60-65 mg/dm3), which was also mitigated by sorption on ABS. Furthermore, both cations and anions behaved similarly across different ILs, corresponding chlorides, and substrates used in the ILs synthesis. These findings highlight microplastics potential as hazardous sorbents, contributing to the accumulation of xenobiotics in the environment.

9.
Sci Total Environ ; : 176015, 2024 Sep 04.
Article de Anglais | MEDLINE | ID: mdl-39241882

RÉSUMÉ

The insufficient taking into account of groundwater as a basis for implementing protection measures for coastal wetlands can be related to the damage they are increasingly exposed to. The aim of this study is to demonstrate the pertinence of combining hydrogeological tools with assessment of pollutant fluxes and stable isotopes of O, H and N, as well as groundwater time-tracers to identify past and present pollution sources resulting from human activities and threatening shallow groundwater-dependent ecosystems. A survey combining physico-chemical parameters, major ions, environmental isotopes (18O, 2H, 15N and 3H), with emerging organic contaminants including pesticides and trace elements, associated with a land use analysis, was carried out in southern Italy, including groundwater, surface water and lagoon water samples. Results show pollution of the shallow groundwater and the connected lagoon from both agricultural and domestic sources. The N-isotopes highlight nitrate sources as coming from the soil and associated with the use of manure-type fertilizers related to the historical agricultural context of the area involving high-productivity olive groves. Analysis of EOCs has revealed the presence of 8 pesticides, half of which have been banned for two decades and two considered as pollutant legacies (atrazine and simazine), as well as 15 molecules, including pharmaceuticals and stimulants, identified in areas with human regular presence, including rapidly degradable compounds (caffeine and ibuprofen). Results show that agricultural pollution in the area is associated with the legacy of intensive olive growing in the past, highlighting the storage capacity of the aquifer, while domestic pollution is sporadic and associated with regular human presence without efficient modern sanitation systems. Moreover, results demonstrate the urgent need to consider groundwater as a vector of pollution to coastal ecosystems and the impact of pollutant legacies in planning management measures and policies, with the aim of achieving 'good ecological status' for waterbodies.

10.
Article de Anglais | MEDLINE | ID: mdl-39252627

RÉSUMÉ

INTRODUCTION: Endocrine-disrupting drugs, also called endocrine disruptors or micropollutants, cause serious environmental and public health problems due to their ability to disrupt the endocrine functions of organisms and humans, even at low concentrations. This report provides a summary of current removal techniques, such as activated sludge processes, membrane filtration, adsorption, and membrane bioreactor techniques for endocrine-disrupting chemicals, including their efficiency, limitations, and practical implementation. METHODS: This review evaluates these methods by considering their treatment efficiency, costs, and environmental impact. To curb this menace, several developed countries have distinct strategies, such as physical remediation techniques, biological processes, phytoremediation, and chemical processes to remove endocrine disruptors. RESULTS: In developing nations, most conventional wastewater treatment plants do not even monitor those contaminants due to the low biodegradability and high complexity of such compounds. CONCLUSION: Hence, in this review work, potential endocrine-disrupting chemicals, their impacts, mechanisms of action, consequences for human health, and bio-mitigation strategies reported so far have been discussed in the context of the relevant literature.

11.
Breed Sci ; 74(1): 37-46, 2024 Mar.
Article de Anglais | MEDLINE | ID: mdl-39246437

RÉSUMÉ

We review the undertaking of a field trial of low asparagine wheat lines in which the asparagine synthetase gene, TaASN2, has been knocked out using CRISPR/Cas9. The field trial was undertaken in 2021-2022 and represented the first field release of genome edited wheat in Europe. The year of the field trial and the period since have seen rapid changes in the regulations covering both the field release and commercialisation of genome edited crops in the UK. These historic developments are reviewed in detail. Free asparagine is the precursor for acrylamide formation during high-temperature cooking and processing of grains, tubers, storage roots, beans and other crop products. Consequently, work on reducing the free asparagine concentration of wheat and other cereal grains, as well as the tubers, beans and storage roots of other crops, is driven by the need for food businesses to comply with current and potential future regulations on acrylamide content of foods. The topic illustrates how strategic and applied crop research is driven by regulations and also needs a supportive regulatory environment in which to thrive.

12.
Food Chem X ; 23: 101718, 2024 Oct 30.
Article de Anglais | MEDLINE | ID: mdl-39246690

RÉSUMÉ

Sweet cherry pits, date seeds, and grape seeds are abundant fruit by-products in the Mediterranean region. Assessing their antioxidant capacity is crucial for their valorization. Grape and date seeds exhibited higher concentrations of total phenolic and flavonoid contents, and significant antioxidant capacity. Epicatechin was the main flavonoid in sweet cherry pits and date seeds (29-85 mg/g), while vanillic acid was the predominant phenolic acid across all by-products (5-23 mg/g). However, some sweet cherry pit varieties exceeded Maximum Residue Levels (MRL) for five pesticides, while grape seeds contained thirteen fungicide residues, all below MRL. Ochratoxin A was detected in one date seed but below the limit of quantification. Additionally, grape seeds showed an Al content of approximately 130 mg/kg, along with levels of As, Cd, and Pb. Date seeds exhibited high potential for food and pharmaceutical applications, pending evaluation for chemical contaminants.

13.
Environ Monit Assess ; 196(10): 922, 2024 Sep 11.
Article de Anglais | MEDLINE | ID: mdl-39259319

RÉSUMÉ

Monitoring wild fish health and exposure effects in impacted rivers and streams with differing land use has become a valuable research tool. Smallmouth bass (Micropterus dolomieu) are a sensitive, indicator species that exhibit signs of immunosuppression and endocrine disruption in response to water quality changes and contaminant exposure. To determine the impact of agriculture and development on smallmouth bass health, two sites (a developed/agriculture site and a forested site) in the Susquehanna River watershed, Pennsylvania were selected where bass and water chemistry were sampled from 2015 to 2019. Smallmouth bass were sampled for histopathology to assess parasite and macrophage aggregate density in the liver and spleen, condition factor (Ktl), hepatic gene transcript abundance, hepatosomatic index (HSI), and a health assessment index (HAI). Land use at the developed/agriculture site included greater pesticide application rates and phytoestrogen crop cover and more detections and higher concentrations of pesticides, wastewater-associated contaminants, hormones, phytoestrogens, and mycotoxins than at the forested site. Additionally, at the developed/agriculture site, indicators of molecular changes, including oxidative stress, immune/inflammation, and lipid metabolism-related hepatic gene transcripts, were associated with more contaminants and land use variables. At both sites, there were multiple associations of contaminants with liver and/or spleen macrophage aggregate density, indicating that changes at the molecular level seemed to be a better indicator of exposures unique to each site. The findings illustrate the importance of timing for land management practices, the complex mixtures aquatic animals are exposed to, and the temporal changes in contaminant concentration. Agricultural practices that affect hepatic gene transcripts associated with immune function and disease resistance were demonstrated which could negatively affect smallmouth bass populations.


Sujet(s)
Serran , Surveillance de l'environnement , Rivières , Polluants chimiques de l'eau , Animaux , Pennsylvanie , Surveillance de l'environnement/méthodes , Rivières/composition chimique , Polluants chimiques de l'eau/analyse , Agriculture , Foie , Pesticides
14.
Environ Sci Ecotechnol ; 22: 100473, 2024 Nov.
Article de Anglais | MEDLINE | ID: mdl-39253336

RÉSUMÉ

Understanding how per- and polyfluoroalkyl substances (PFASs) enter aquatic ecosystems is challenging due to the complex interplay of physical, chemical, and biological processes, as well as the influence of hydraulic and hydrological factors and pollution sources at the catchment scale. The spatiotemporal dynamics of PFASs across various media remain largely unknown. Here we show the fate and transport mechanisms of PFASs by integrating monitoring data from an estuarine reservoir in Singapore into a detailed 3D model. This model incorporates hydrological, hydrodynamic, and water quality processes to quantify the distributions of total PFASs, including the major components perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS), across water, particulate matter, and sediments within the reservoir. Our results, validated against four years of field measurements with most relative average deviations below 40%, demonstrate that this integrated approach effectively characterizes the occurrence, sources, sinks, and trends of PFASs. The majority of PFASs are found in the dissolved phase (>95%), followed by fractions sorbed to organic particles like detritus (1.0-3.5%) and phytoplankton (1-2%). We also assess the potential risks in both the water column and sediments of the reservoir. The risk quotients for PFOS and PFOA are <0.32 and < 0.00016, respectively, indicating an acceptable risk level for PFASs in this water body. The reservoir also exhibits substantial buffering capacity, even with a tenfold increase in external loading, particularly in managing the risks associated with PFOA compared to PFOS. This study not only enhances our understanding of the mechanisms influencing the fate and transport of surfactant contaminants but also establishes a framework for future research to explore how dominant environmental factors and processes can mitigate emerging contaminants in aquatic ecosystems.

15.
J Environ Manage ; 370: 122387, 2024 Sep 06.
Article de Anglais | MEDLINE | ID: mdl-39243638

RÉSUMÉ

Microalgal tolerance to emerging contaminants (ECs) such as 1,4 dioxane (DXN) and its impact on phycoremediation performance, algal growth, biomolecules generated, and recycling the produced biomass for biochar production has been rarely reported. Hence, Chlorella vulgaris was cultivated in DXN-free wastewater (WW1) and 100 mg L-1 DXN-laden wastewater (WW2) in 1-liter photobioreactors with an operating volume of 800 ml under controlled conditions: temperature (25 ± 1 °C), light intensity (351 µmol m-2s-1), and photoperiod (12 h light:12 h dark). Interestingly, this microalgal-based system achieved up to 32.79% removal efficiency of DXN in WW2. In addition, there was no significant difference in the removal of COD (90.6% and 86.8%) and NH4-N (74.5% and 76.8%) between WW1 and WW2, respectively. Moreover, the variation in C. vulgaris growth, pigments, lipid, and carbohydrate contents between the two applied wastewaters was negligible. However, there was a significant increase in the protein yield upon exposure to DXN, suggesting the ability of C. vulgaris to secrete various antioxidant and degrading enzymes to detoxify the contaminant. These results were validated by FTIR, SEM, and EDX analysis of C. vulgaris biomass with and without DXN exposure. The harvested biomass was thermally treated at 350 °C for 60 min in an oxygen-free environment. The biochars generated from both algal systems were characterized by comparable morphologies and elemental profiles with sufficient C and N contents, indicating their applicability to enhance the soil properties. The economic evaluation of the combined phycoremediation/pyrolysis system demonstrated a net profit of 596 USD⋅y-1 with a payback period of 6.2 years and fulfilled the objectives of several sustainable development goals (SDGs). This is the first study to point to C. vulgaris as a robust microalgal strain in remediating DXN-laden wastewater accompanied by the potential recyclability of the biomass produced for biochar production.

16.
Article de Anglais | MEDLINE | ID: mdl-39227535

RÉSUMÉ

The present study describes a set of methodological procedures (seldom applied together), including (i) development of an alternative adsorbent derived from abundant low-cost plant biomass; (ii) use of simple low-cost biomass modification techniques based on physical processing and chemical activation; (iii) design of experiments (DoE) applied to optimize the removal of a pharmaceutical contaminant from water; (iv) at environmentally relevant concentrations, (v) that due to initial low concentrations required determination by ultra-performance liquid phase chromatography coupled to mass spectrometry (UPLC-MS/MS). A central composite rotational design (CCRD) was employed to investigate the performance of vegetable sponge biomass (Luffa cylindrica), physically processed (crushing and sieving) and chemically activated with phosphoric acid, in the adsorption of the antibiotic trimethoprim (TMP) from water. The optimized model identified pH as the most significant variable, with maximum drug removal (91.1 ± 5.7%) achieved at pH 7.5, a temperature of 22.5 °C, and an adsorbent/adsorbate ratio of 18.6 mg µg-1. The adsorption mechanisms and surface properties of the adsorbent were examined through characterization techniques such as scanning electron microscopy (SEM), point of zero charge (pHpzc) measurement, thermogravimetric analysis (TGA), specific surface area, and Fourier-transform infrared spectroscopy (FTIR). The best kinetic fit was obtained by the Avrami fractional-order model. The hypothesis of a hybrid behavior of the adsorbent was suggested by the equilibrium results presented by the Langmuir and Freundlich models and reinforced by the Redlich-Peterson model, which achieved the best fit (R2 = 0.982). The thermodynamic study indicated an exothermic, spontaneous, and favorable process. The maximum adsorption capacity of the material was 2.32 × 102 µg g-1 at an equilibrium time of 120 min. Finally, a sustainable and promising adsorbent for the polishing of aqueous matrices contaminated by contaminants of emerging concern (CECs) at environmentally relevant concentrations is available for future investigations.

17.
Chemosphere ; : 143247, 2024 Sep 03.
Article de Anglais | MEDLINE | ID: mdl-39236922

RÉSUMÉ

Removing emergent contaminants, such as pharmaceuticals, and inhibiting bacteria by photocatalysis represents an interesting alternative for water remediation. We report the effective preparation of colored powders containing Ti2O3, Ti3O5, and TiO2, by a simple thermal oxidation reaction of a Ti2O3 precursor from 400 °C to 800 °C. The material obtained at 500 °C (P500 sample) exhibited the highest photocatalytic performance under simulated solar light, reaching 54 % degradation of antibiotic ofloxacin and a bacteria inactivation of 51 % and 62 % for Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), respectively. The superoxide anion radical was the main specie contributing to the photodegradation of ofloxacin, while the hydroxyl radical showed negligible effect. A synergy between the physicochemical properties of the phases in the P500 sample contributes to the electrons transfer, visible light absorption capability and generation of reactive oxygen species, resulting in its remarkable photoactivity. The comparison in terms of surface-specific activity revealed that the P500 sample is more efficient than commercially available TiO2 P25. This fact opens the option of using commercially available Ti2O3 and TiO2 P25 to obtain composites for promoting photoinduced reactions using natural solar light.

18.
Sci Total Environ ; 952: 175906, 2024 Sep 01.
Article de Anglais | MEDLINE | ID: mdl-39226958

RÉSUMÉ

Antibiotic resistance, driven by the proliferation of antibiotic resistance genes (ARGs) and antibiotic resistance bacteria (ARBs), has emerged as a pressing global health concern. Antimicrobial resistance is exacerbated by the widespread use of antibiotics in agriculture, aquaculture, and human medicine, leading to their accumulation in various environmental compartments such as soil, water, and sediments. The presence of ARGs in the environment, particularly in municipal water, animal husbandry, and hospital environments, poses significant risks to human health, as they can be transferred to potential human pathogens. Current remediation strategies, including the use of pyroligneous acid, coagulants, advanced oxidation, and bioelectrochemical systems, have shown promising results in reducing ARGs and ARBs from soil and water. However, these methods come with their own set of challenges, such as the need for elevated base levels in UV-activated persulfate and the long residence period required for photocatalysts. The future of combating antibiotic resistance lies in the development of standardized monitoring techniques, global collaboration, and the exploration of innovative remediation methods. Emphasis on combination therapies, advanced oxidation processes, and monitoring horizontal gene transfer can pave the way for a comprehensive approach to mitigate the spread of antibiotic resistance in the environment.

19.
Water Res ; 266: 122428, 2024 Sep 10.
Article de Anglais | MEDLINE | ID: mdl-39265211

RÉSUMÉ

The utilization of periodate (PI, IO4-) in metal-based advanced oxidation processes (AOPs) for the elimination of emerging contaminants (ECs) have garnered significant attention. However, the commonly used homogeneous metal catalyst Mn(II) performs inadequately in activating PI. Herein, we exploited a novel AOP technology by employing the complex of Mn(II) with the biodegradable picolinic acid (PICA) to activate PI for the degradation of electron-rich pollutants. The performance of the Mn(II)-PICA complex surpassed that of ligand-free Mn(II) and other Mn(II) complexes with common aminopolycarboxylate ligands. Through scavenger, sulfoxide-probe transformation, and 18O isotope-labeling experiments, we confirmed that the dominant reactive oxidant generated in the Mn(II)-PICA/PI system was high-valent manganese-oxo species (Mn(V)=O). Due to its reliance on Mn(V)=O, the Mn(II)-PICA/PI process exhibited remarkable selectivity and strong anti-interference during EC oxidation in complex water matrices. Nine structurally diverse pollutants were selected for evaluation, and their lnkobs values in the Mn(II)-PICA/PI system correlated well with their electrophilic/nucleophilic indexes, EHOMO, and vertical IP (R2 = 0.79-0.94). Additionally, IO4- was converted into non-toxic iodate (IO3-) without producing undesired iodine species such as HOI, I2, and I3-. This study provides a novel protocol for metal-based AOPs using PI in combination with chelating agents and high-valent metal-oxo species formation during water purification.

20.
Environ Pollut ; : 124911, 2024 Sep 10.
Article de Anglais | MEDLINE | ID: mdl-39265772

RÉSUMÉ

Macrolitter, especially macroplastics, (> 0.5 cm) negatively impact freshwater ecosystems, where they can be retained along lake shores, riverbanks, bed sediments or floodplains. Long-term and large-scale assessments of macrolitter on riverbanks and lake shores provide an understanding of litter abundance, composition, and origin in freshwater systems. Combining macrolitter quantification with hydrometeorological variables allows further study of leakage, transport, and accumulation characteristics. Several studies have explored the role of hydrometeorological factors in influencing macrolitter distribution and found that river discharge, runoff, and wind only partially explains its distribution. Other factors, such as land-use features, have not yet been thoroughly investigated. In this study, we provide a country-scale assessment of land-use influence on macrolitter abundance in freshwater systems. We analyzed the composition of the most commonly found macrolitter items (referred to as 'top items', n = 42,565) sampled across lake shores and riverbanks in Switzerland between April 2020 and May 2021. We explored the relationship between eleven land-use features and macrolitter abundance at survey locations (n = 143). The land-use features included buildings, city centers, public infrastructure, recreational areas, forests, marshlands, vineyards, orchards, other land, and rivers and canals. The majority of top items are significantly and positively correlated with land-use features related to urban coverage, notably roads and buildings. Over 60% of top items were found to be correlated with either roads or buildings. Notably, tobacco, food and beverage-related products, as well as packaging and sanitary products, showed strong associations with these urban land-use features. Other types of items, however, did not exhibit a relationship with land-use features, such as industry and construction-related items. Ultimately, this highlights the need to combine measures at the local and regional/national scales for effective litter reduction.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE