Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Environ Microbiome ; 18(1): 38, 2023 Apr 26.
Article de Anglais | MEDLINE | ID: mdl-37098635

RÉSUMÉ

Pollinators, including solitary bees, are drastically declining worldwide. Among the factors contributing to this decline, bee pathogens and different land uses are of relevance. The link between the gut microbiome composition and host health has been recently studied for social pollinators (e.g. honeybees), whereas the information related to solitary bees is sparse. This work aimed at the characterization of the gut microbiome of the solitary bees Xylocopa augusti, Eucera fervens and Lasioglossum and attempted to correlate the gut microbial composition with the presence and load of different pathogens and land uses. Solitary bees were sampled in different sites (i.e. a farm, a natural reserve, and an urban plant nursery) showing different land uses. DNA was extracted from the gut, 16S rRNA gene amplified and sequenced. Eight pathogens, known for spillover from managed bees to wild ones, were quantified with qPCR. The results showed that the core microbiome profile of the three solitary bees significantly varied in the different species. Pseudomonas was found as the major core taxa in all solitary bees analyzed, whereas Lactobacillus, Spiroplasma and Sodalis were the second most abundant taxa in X. augusti, E. fervens and Lasioglossum, respectively. The main pathogens detected with qPCR were Nosema ceranae, Nosema bombi and Crithidia bombi, although differently abundant in the different bee species and sampling sites. Most microbial taxa did not show any correlation with the land use, apart from Snodgrassella and Nocardioides, showing higher abundances on less anthropized sites. Conversely, the pathogens species and load strongly affected the gut microbial composition, with Bifidobacterium, Apibacter, Serratia, Snodgrassella and Sodalis abundance that positively or negatively correlated with the detected pathogens load. Therefore, pathogens presence and load appear to be the main factor shaping the gut microbiome of solitary bees in Argentina.

2.
Proc Biol Sci ; 284(1859)2017 Jul 26.
Article de Anglais | MEDLINE | ID: mdl-28724728

RÉSUMÉ

Conservation biology can profit greatly from incorporating a phylogenetic perspective into analyses of patterns and drivers of species extinction risk. We applied such an approach to analyse patterns of bumblebee (Bombus) decline. We assembled a database representing approximately 43% of the circa 260 globally known species, which included species extinction risk assessments following the International Union fo Conservation of Nature Red List categories and criteria, and information on species traits presumably associated with bumblebee decline. We quantified the strength of phylogenetic signal in decline, range size, tongue length and parasite presence. Overall, about one-third of the assessed bumblebees are declining and declining species are not randomly distributed across the Bombus phylogeny. Susceptible species were over-represented in the subgenus Thoracobombus (approx. 64%) and under-represented in the subgenus Pyrobombus (approx. 6%). Phylogenetic logistic regressions revealed that species with small geographical ranges and those in which none of three internal parasites were reported (i.e. Crithidia bombi, Nosema spp. or Locustacarus buchneri) were particularly vulnerable. Bumblebee evolutionary history will be deeply eroded if most species from threatened clades, particularly those stemming from basal nodes, become finally extinct. The habitat of species with restricted distribution should be protected and the importance of pathogen tolerance/resistance as mechanisms to deal with pathogens needs urgent research.


Sujet(s)
Abeilles/classification , Abeilles/microbiologie , Extinction biologique , Phylogenèse , Animaux , Crithidia/pathogénicité , Écosystème , Incidence , Nosema/pathogénicité
3.
J Invertebr Pathol ; 129: 36-9, 2015 Jul.
Article de Anglais | MEDLINE | ID: mdl-26031564

RÉSUMÉ

Bombus atratus bumblebees from Colombia that were caught in the wild and from breeding programs were screened for a broad set of bee pathogens. We discovered for the first time Lake Sinai Virus and confirmed the infection by other common viruses. The prevalence of Apicystis bombi, Crithidia bombi and Nosema ceranae was remarkably high. According to other studies the former two could have been co-introduced in South America with exotic bumble bees as Bombus terrestris or Bombus ruderatus. Given the fact that none of these species occur in Colombia, our data puts a new light on the spread of these pathogens over the South American continent.


Sujet(s)
Abeilles/virologie , Animaux , Colombie , Réaction de polymérisation en chaîne
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE