Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 13 de 13
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Molecules ; 29(14)2024 Jul 17.
Article de Anglais | MEDLINE | ID: mdl-39064925

RÉSUMÉ

The effect of H2 activation on the performance of CuFeOx catalyst for low-temperature CO oxidation was investigated. The characterizations of XRD, XPS, H2-TPR, O2-TPD, and in situ DRIFTS were employed to establish the relationship between physicochemical property and catalytic activity. The results showed that the CuFeOx catalyst activated with H2 at 100 °C displayed higher performance, which achieved 99.6% CO conversion at 175 °C. In addition, the H2 activation promoted the generation of Fe2+ species, and more oxygen vacancy could be formation with higher concentration of Oα species, which improved the migration rate of oxygen species in the reaction process. Furthermore, the reducibility of the catalyst was enhanced significantly, which increased the low-temperature activity. Moreover, the in situ DRIFTS experiments revealed that the reaction pathway of CO oxidation followed MvK mechanism at low temperature (<175 °C), and both MvK and L-H mechanism was involved at high temperature. The Cu+-CO and carbonate species were the main reactive intermediates, and the H2 activation increased the concentration of Cu+ species and accelerated the decomposition carbonate species, thus improving the catalytic performance effectively.

2.
Adv Mater ; 36(26): e2400640, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38621196

RÉSUMÉ

Nowadays, high-valent Cu species (i.e., Cuδ +) are clarified to enhance multi-carbon production in electrochemical CO2 reduction reaction (CO2RR). Nonetheless, the inconsistent average Cu valence states are reported to significantly govern the product profile of CO2RR, which may lead to misunderstanding of the enhanced mechanism for multi-carbon production and results in ambiguous roles of high-valent Cu species. Dynamic Cuδ + during CO2RR leads to erratic valence states and challenges of high-valent species determination. Herein, an alternative descriptor of (sub)surface oxygen, the (sub)surface-oxygenated degree (κ), is proposed to quantify the active high-valent Cu species on the (sub)surface, which regulates the multi-carbon production of CO2RR. The κ validates a strong correlation to the carbonyl (*CO) coupling efficiency and is the critical factor for the multi-carbon enhancement, in which an optimized Cu2O@Pd2.31 achieves the multi-carbon partial current density of ≈330 mA cm-2 with a faradaic efficiency of 83.5%. This work shows a promising way to unveil the role of high-valent species and further achieve carbon neutralization.

3.
Front Chem ; 12: 1361930, 2024.
Article de Anglais | MEDLINE | ID: mdl-38549838

RÉSUMÉ

The CuMgAl-x catalysts derived from hydrotalcite precursors with different Mg/Al molar ratios were synthesized and applied to CO2 hydrogenation to methanol reaction. In this study, the effects of Mg/Al molar ratio on the structure and surface properties of CuMgAl-x catalysts were investigated by XRD, N2 adsorption-desorption, SEM, TEM, H2-TPR, CO2-TPD, XPS, and in situ DRIFTS characterization methods. The results showed that an appropriate Mg/Al molar ratio can enhance the Cu-MgO interaction, increasing the basic sites and obtaining suitable acid sites. The dispersion of active Cu on the CuMgAl-x catalysts can be improved by strong Cu-MgO interaction, which enhances the adsorption capacity of CO2 and makes H2 activation easier, accelerates the conversion of intermediate species CO3 * and HCO3 *to HCOO*, and facilitates further conversion to CH3O* and CH3OH. The strong interaction between Cu and MgO was conducive to the formation of Cu+, which can inhibit the desorption of CO in the reverse water gas shift reaction. The CuMgAl-3 catalyst showed the highest CO2 Conversion rate (14.3%), methanol selectivity (94.5%), and STY of methanol (419.3 g⋅kgcat. -1⋅h-1) at 240°C and 2.5 MPa. The results obtained in this paper can provide a new idea for the design of high-performance catalysts for CO2 hydrogenation to methanol.

4.
ACS Appl Mater Interfaces ; 16(5): 6562-6568, 2024 Feb 07.
Article de Anglais | MEDLINE | ID: mdl-38273704

RÉSUMÉ

A key challenge in electrocatalysis remains controlling a catalyst's structural, chemical, and electrical properties under reaction conditions. While organic coatings showed promise for enhancing the selectivity and stability of catalysts for CO2 electroreduction (CO2RR), their impact on the chemical state of underlying metal electrodes has remained unclear. In this study, we show that organic thin films on polycrystalline copper (Cu) enable retaining Cu+ species at reducing potentials down to -1.0 V vs RHE, as evidenced by operando Raman and quasi in situ X-ray photoelectron spectroscopy. In situ electrochemical atomic force microscopy revealed the integrity of the porous organic film and nearly unaltered Cu electrode morphology. While the pristine thin film enhances the CO2-to-ethylene conversion, the addition of organic modifiers into electrolytes gives rise to improved CO2RR performance stability. Our findings showcase hybrid metal-organic systems as a versatile approach to control, beyond morphology and local environment, the oxidation states of catalysts and energy conversion materials.

5.
Angew Chem Int Ed Engl ; 62(43): e202307907, 2023 Oct 23.
Article de Anglais | MEDLINE | ID: mdl-37515455

RÉSUMÉ

Carbon-carbon (C-C) coupling of organic halides has been successfully achieved in homogeneous catalysis, while the limitation, e.g., the dependence on rare noble metals, complexity of the metal-ligand catalylst and the poor catalyst stability and recyclability, needs to be tackled for a green process. The past few years have witnessed heterogeneous photocatalysis as a green and novel method for organic synthesis processes. However, the study on C-C coupling of chloride substrates is rare due to the extremely high bond energy of C-Cl bond (327 kJ mol-1 ). Here, we report a robust heterogeneous photocatalyst (Cu/ZnO) to drive the homo-coupling of benzyl chloride with high efficiency, which achieves an unprecedented high selectivity of bibenzyl (93 %) and yield rate of 92 % at room temperature. Moreover, this photocatalytic process has been validated for C-C coupling of 10 benzylic chlorides all with high yields. In addition, the excellent stability has been observed for 8 cycles of reactions. With detailed characterization and DFT calculation, the high selectivity is attributed to the enhanced adsorption of reactants, stabilization of intermediates (benzyl radicals) for the selective coupling by the Cu loading and the moderate oxidation ability of the ZnO support, besides the promoted charge separation and transfer by Cu species.

6.
Chemosphere ; 331: 138746, 2023 Aug.
Article de Anglais | MEDLINE | ID: mdl-37121281

RÉSUMÉ

Cu-loaded zeolites are widely investigated in selective catalytic reduction of nitrogen oxide, but effects of zeolite topologies on formed active species and the changing tendency remain unexplored. In this work, catalytic turnover frequencies (TOF) of Cu loaded ZSM-5, Beta, MOR, and SSZ-13 were first determined. The topology-localized Cu species in these zeolites were analyzed by temperature-programmed reduction of H2. Then Multiple Linear Regression distinguished TOF contributions (kj, s-1·mol-1) of the Cu species. Density functional theory calculated NH3 dehydrogenation energy of the Cu species. As a result, topologies with more node atoms showed bigger kj and lower dehydrogenation energies simultaneously. The best topology in each zeolite was 10-membered ring (ZSM-5), 6-membered ring facing a 12-membered ring (Beta), 8-membered ring (MOR), and cha cage (SSZ-13). Moreover, cha cage-localized Cu2+ exhibited the largest kj and the lowest dehydrogenation energy among all the Cu species. This work reveals topology-catalysis relationships in the zeolite, which benefits zeolite design for enhanced catalytic performances.


Sujet(s)
Zéolites , Ammoniac , Oxydoréduction , Oxydes d'azote , Monoxyde d'azote , Catalyse
7.
J Colloid Interface Sci ; 638: 686-694, 2023 May 15.
Article de Anglais | MEDLINE | ID: mdl-36774880

RÉSUMÉ

Cu-SAPO-34 is a promising catalyst for abatement of NO via selective catalytic reduction with NH3 (NH3-SCR), but its hydrothermal stability needs to be enhanced. In this work, the Cu-SAPO-34 catalysts with different P/Al ratios of 0.8, 1.0 and 1.2 were prepared, and the temperature window with NO conversion >90% (T90) for all catalysts were similar (160-570 °C). The T90 of Cu-SAPO-34 with P/Al of 0.8 dramatically decreased (220-470 °C) after hydrothermal treatment, and interestingly, the catalysts with high P/Al ratios (1.0 and 1.2) remained high activity. The T90 of the aged catalysts with P/Al of 1.2 was 155-525 °C. The characterizations showed that the increase of P/Al ratio not only enhanced the crystallinity but also enlarged the grain size of catalysts, which were conducive to the zeolite framework stability. Moreover, the Cu-SAPO-34 with large grain size facilitated the conversion of CuO to isolated Cu2+ ions as well as inhibited the aggregation of Cu species. Furthermore, the large grain sized catalysts provided more acid sites, and thus, the catalysts presented excellent hydrothermal stability. In situ DRIFTS analysis confirmed the existence of both Langmuir-Hinshelwood and Eley-Rideal pathway over the catalyst with a P/Al ratio of 1.2. This work provided a facile method to promote the hydrothermal stability of Cu-based zeolite catalysts.

8.
J Environ Sci (China) ; 126: 445-458, 2023 Apr.
Article de Anglais | MEDLINE | ID: mdl-36503771

RÉSUMÉ

Series of Cu-USY zeolite catalyst with different Cu loading content were synthesized through simple impregnation method. The obtained catalysts were subjected to selective catalytic reduction of NOx with NH3 (NH3-SCR) performance evaluation, structural/chemical characterizations such as X-ray diffraction (XRD), N2 adsorption/desorption, H2 temperature-programmed reduction (H2-TPR), NH3 temperature-programmed desorption (NH3-TPD) as well as detailed in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) experiments including CO adsorption, NH3 adsorption and NO+O2 in situ reactions. Results show that Cu-USY with proper Cu loading (in this work 5Cu-USY with 5 wt.% Cu) could be promising candidates with highly efficient NH3-SCR catalytic performance, relatively low byproduct formation and excellent hydrothermal stability, although its SO2 poisoning tolerability needs alleviation. Further characterizations reveal that such catalytic advantages can be attributed to both active cu species and surface acid centers evolution modulated by Cu loading. On one hand, Cu species in the super cages of zeolites increases with higher Cu content and being more conducive for NH3-SCR reactivity. On the other hand, higher Cu loading leads to depletion of Brønsted acid centers and simultaneous formation of abundant Lewis acid centers, which facilitates NH4NO3 reduction via NH3 adsorbed on Lewis acid centers, thus improving SCR reactivity. However, Cu over-introduction leads to formation of surface highly dispersed CuOx, causing unfavorable NH3 oxidation and inferior N2 selectivity.


Sujet(s)
Acides de Lewis , Zéolites , Catalyse , Adsorption , Spectrométrie de masse , Température
9.
Front Chem ; 10: 912550, 2022.
Article de Anglais | MEDLINE | ID: mdl-35646814

RÉSUMÉ

Metal-support interaction has been one of the main topics of research on supported catalysts all the time. However, many other factors including the particle size, shape and chemical composition can have significant influences on the catalytic performance when considering the role of metal-support interaction. Herein, we have designed a series of CuxO/ZnO catalysts as examples to quantitatively investigate how the metal-support interaction influences the catalytic performance. The electronic metal-support interactions between CuxO and ZnO were regulated successfully without altering the structure of CuxO/ZnO catalyst. Due to the lower work function of ZnO, electrons would transfer from ZnO to CuO, which is favorable for the formation of higher active Cu species. Combined experimental and theoretical calculations revealed that electron-rich interface result from interaction was favorable for the adsorption of oxygen and CO oxidation reaction. Such strategy represents a new direction to boost the catalytic activity of supported catalysts in various applications.

10.
J Colloid Interface Sci ; 622: 1-10, 2022 Sep 15.
Article de Anglais | MEDLINE | ID: mdl-35490612

RÉSUMÉ

Different Cu precursors were adopted to adjust the isolated Cu2+ ions and CuO species in the Cu-SSZ-13 catalysts. The Cu2+ ions were mainly located at eight-member rings in the catalysts with the Cu precursors of Cu(NO3)2 (Fresh-I) and CuSO4 (Fresh-II), while that located at six-member rings in the catalysts with the Cu precursors of CuCl2 (Fresh-III) and Cu(CH3COO)2 (Fresh-IV). All catalysts showed>90% of NO conversion and 100% of N2 selectivity at 200-680 °C. Fresh-I and Fresh-II catalysts showed an unexpected increase of the high-temperature activity after hydrothermal treatment. The characterizations revealed that the hydrothermal treatment promoted the production of CuO species, which accelerated the adsorption of NOx species to enhance the high-temperature SCR activity. Moreover, the SCR reaction pathway changed from Langmuir-Hinshelwood to Eley-Rideal mechanisms for the Fresh-II catalyst after the hydrothermal treatment, which was verified by in situ DRIFTS.


Sujet(s)
Ammoniac , Catalyse , Cuivre , Ions , Oxydoréduction
11.
Molecules ; 26(9)2021 May 02.
Article de Anglais | MEDLINE | ID: mdl-34063240

RÉSUMÉ

In this study, IR studies of the coadsorption of ethanol and CO on Cu+ cations evidenced the transfer of electrons from ethanol to Cu+, which caused the lowering of the frequency of the band attributed to CO bonded to the same Cu+ cation due to the more effective π back donation of d electrons of Cu to antibonding π* orbitals of CO. The reaction of ethanol with acid sites in zeolite HFAU above 370 K produced water and ethane, polymerizing to polyethylene. Ethanol adsorbed on zeolite Cu(2)HFAU containing acid sites and Cu+exch also produced ethene, but in this case, the ethene was bonded to Cu+ and did not polymerize. C=C stretching, which is IR non-active in the free ethene molecule, became IR active, and a weak IR band at 1538 cm-1 was present. The reaction of ethanol above 370 K in Cu(5)NaFAU zeolite (containing small amounts of Cu+exch and bigger amounts of Cu+ox, Cu2+exch and CuO) produced acetaldehyde, which was further oxidized to the acetate species (CH3COO-). As oxygen was not supplied, the donors of oxygen were the Cu species present in our zeolite. The CO and NO adsorption experiments performed in Cu-zeolite before and after ethanol reaction evidenced that both Cu+ox and Cu2+ (Cu2+exch and CuO) were consumed by the ethanol oxidation reaction. The studies of the considered reaction of bulk CuO and Cu2O as well as zeolites, in which the contribution of Cu+ox species was reduced by various treatments, suggest that ethanol was oxidized to acetaldehyde by Cu2+ox (the role of Cu+ox could not be elucidated), but Cu+ox was the oxygen donor in the acetate formation.

12.
J Environ Sci (China) ; 96: 55-63, 2020 Oct.
Article de Anglais | MEDLINE | ID: mdl-32819699

RÉSUMÉ

In this work, a series of Cu-ZSM-5 catalysts with different SiO2/Al2O3 ratios (25, 50, 100 and 200) were synthesized and investigated in n-butylamine catalytic degradation. The n-butylamine can be completely catalytic degradation at 350°C over all Cu-ZSM-5 catalysts. Moreover, Cu-ZSM-5 (25) exhibited the highest selectivity to N2, exceeding 90% at 350°C. These samples were investigated in detail by several characterizations to illuminate the dependence of the catalytic performance on redox properties, Cu species, and acidity. The characterization results proved that the redox properties and chemisorption oxygen primarily affect n-butylamine conversion. N2 selectivity was impacted by the Brønsted acidity and the isolated Cu2+ species. Meanwhile, the surface acid sites over Cu-ZSM-5 catalysts could influence the formation of Cu species. Furthermore, in situ diffuse reflectance infrared Fourier transform spectra was adopted to explore the reaction mechanism. The Cu-ZSM-5 catalysts are the most prospective catalysts for nitrogen-containing volatile organic compounds removal, and the results in this study could provide new insights into catalysts design for VOC catalytic oxidation.


Sujet(s)
Silice , Butylamines , Catalyse , Oxydoréduction , Études prospectives
13.
J Hazard Mater ; 387: 122007, 2020 04 05.
Article de Anglais | MEDLINE | ID: mdl-31901842

RÉSUMÉ

SCR activity of Cu-SAPO-34 catalyst was reduced by alkali metal ions. The alkali metals ions (Li+, Na+ and K+) have shown irregular influences on Cu-SAPO-34. The order of poisoning strengths under 400 °C was found to be: Na+ > K+ > Li+, which is not consistent with the basicities of their corresponding metals. Experimental results and calculations showed that the alkali metal ions readily replace H+ and Cu2+/Cu+ ions. These exchanges result in the loss of Brønsted acid sites and migration of isolated Cu2+ ions in Cu-SAPO-34, which decrease the NH3-SCR activity. Both the basicity and ion diameter will affect the exchanging behavior of an alkali ion. Na+ and Li+ ions will influence both H+ and Cu2+/Cu+ ions but K+ ions only preferably replace the H+. We hypothesize that K+ cannot enter into a small ring (6-membered ring) to replace a Cu2+/Cu+ ion because of its large ion diameter. The displaced Cu2+/Cu+ ions will transfer to adjacent unbonded Al site to form a CuAlO2 species.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE