Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 246
Filtrer
1.
Ecol Appl ; : e3020, 2024 Aug 18.
Article de Anglais | MEDLINE | ID: mdl-39155464

RÉSUMÉ

Defoliation by eastern spruce budworm is one of the most important natural disturbances in Canadian boreal and hemi-boreal forests with annual area affected surpassing that of fire and harvest combined, and its impacts are projected to increase in frequency, severity, and range under future climate scenarios. Deciding on an active management strategy to control outbreaks and minimize broader economic, ecological, and social impacts is becoming increasingly important. These strategies differ in the degree to which defoliation is suppressed, but little is known about the downstream consequences of defoliation and, thus, the implications of management. Given the disproportionate role of headwater streams and their microbiomes on net riverine productivity across forested landscapes, we investigated the effects of defoliation by spruce budworm on headwater stream habitat and microbiome structure and function to inform management decisions. We experimentally manipulated a gradient of defoliation among 12 watersheds during a spruce budworm outbreak in the Gaspésie Peninsula, Québec, Canada. From May through October of 2019-2021, stream habitat (flow rates, dissolved organic matter [DOM], water chemistry, and nutrients), algal biomass, and water temperatures were assessed. Bacterial and fungal biofilm communities were examined by incubating six leaf packs for five weeks (mid-August to late September) in one stream reach per watershed. Microbiome community structure was determined using metabarcoding of 16S and ITS rRNA genes, and community functions were examined using extracellular enzyme assays, leaf litter decomposition rates, and taxonomic functional assignments. We found that cumulative defoliation was correlated with increased streamflow rates and temperatures, and more aromatic DOM (measured as specific ultraviolet absorbance at 254 nm), but was not correlated to nutrient concentrations. Cumulative defoliation was also associated with altered microbial community composition, an increase in carbohydrate biosynthesis, and a reduction in aromatic compound degradation, suggesting that microbes are shifting to the preferential use of simple carbohydrates rather than more complex aromatic compounds. These results demonstrate that high levels of defoliation can affect headwater stream microbiomes to the point of altering stream ecosystem productivity and carbon cycling potential, highlighting the importance of incorporating broader ecological processes into spruce budworm management decisions.

2.
Environ Res ; : 119790, 2024 Aug 13.
Article de Anglais | MEDLINE | ID: mdl-39147189

RÉSUMÉ

Historic gardens are green spaces characterised by tree stands with several veteran specimens of high artistic and cultural value. Such valuable plant components have to cope with biotic and abiotic stress factors as well as ongoing senescence processes. Maintaining tree health is therefore crucial to preserve their ecosystem services, but also to protect the monument and visitor health. In this context, finding smart, fast and cost-effective management solutions to monitor health and detect critical conditions for both stands and individual veteran trees can promote garden conservation. For this reason, we developed a novel framework based on Sentinel2 imagery, LiDAR sources and automatic cameras to identify risk spots regarding trees in historic gardens. The pilot study area consists of two closed Italian gardens from the 16th century, which were analysed as a unique Historic Garden System (HGS). The tree health status at stand level was assessed using a criterion based on the Normalised Difference Vegetation Index weighed on tree volume (NDVIt) and validated by a visual crown defoliation assessment. At the veteran tree level, the health status of four veteran trees defined by the NDVIt was also evaluated using green chromatic coordinates (GCC) obtained from digital images acquired by cameras at daily intervals during one growing season. The 33% of the tree population was classified as being in poor health, i.e. "at risk". Veteran trees classified as "at risk" showed an anticipation of phenological phases and a lower GCC compared to reference trees. Despite variability determined by Sentinel medium resolution, the proposed framework showed good accuracy (0.74) for monitoring historical gardens. The semi-automatic risk point mapping system tested here proved to be effective in facilitating the management of historic gardens, which in turn could be applied in the wider context of urban greening.

3.
Plant Direct ; 8(8): e626, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39166257

RÉSUMÉ

Shoot branches grow from axillary buds and play a crucial role in shaping shoot architecture and determining crop yield. Shade signals inactivate phytochrome B (phyB) and induce bud dormancy, thereby inhibiting shoot branching. Prior transcriptome profiling of axillary bud dormancy in a phyB-deficient mutant (58M, phyB-1) and bud outgrowth in wild-type (100M, PHYB) sorghum genotypes identified differential expression of genes associated with flowering, plant hormones, and sugars, including SbCN2, SbNCED3, SbCKX1, SbACO1, SbGA2ox1, and SbCwINVs. This study examined the expression of these genes during bud dormancy induced by shade and defoliation in 100M sorghum. The aim was to elucidate the molecular mechanisms activated by shade in axillary buds by comparing them with those activated by defoliation. The expression of marker genes for sugar levels suggests shade and defoliation reduce the sugar supply to the buds and induce bud dormancy. Intriguingly, both shade signals and defoliation downregulated SbNCED3, suggesting that ABA might not play a role in promoting axillary bud dormancy in sorghum. Whereas the cytokinin (CK) degrading gene SbCKX1 was upregulated solely by shade signals in the buds, the CK inducible genes SbCGA1 and SbCwINVs were downregulated during both shade- and defoliation-induced bud dormancy. This indicates a decrease in CK levels in the dormant buds. Shade signals dramatically upregulated SbCN2, an ortholog of the Arabidopsis TFL1 known for inhibiting flowering, whereas defoliation did not increase SbCN2 expression in the buds. Removing shade temporarily downregulated SbCN2 in dormant buds, further indicating its expression is not always correlated with bud dormancy. Because shade signals also trigger a systemic early flowering signal, SbCN2 might be activated to protect the buds from transitioning to flowering before growing into branches. In conclusion, this study demonstrates that shade signals activate two distinct molecular mechanisms in sorghum buds: one induces dormancy by reducing CK and sugars, whereas the other inhibits flowering by activating SbCN2. Given the agricultural significance of TFL1-like genes, the rapid regulation of SbCN2 by light signals in axillary buds revealed in this study warrants further investigation to explore its potential in crop improvement strategies.

4.
Physiol Plant ; 176(4): e14427, 2024.
Article de Anglais | MEDLINE | ID: mdl-39005156

RÉSUMÉ

The perennity of grassland species such as Lolium perenne greatly depends on their ability to regrow after cutting or grazing. Refoliation largely relies on the mobilization of fructans in the remaining tissues and on the associated sucrose synthesis and transport towards the basal leaf meristems. However, nothing is known yet about the sucrose synthesis pathway. Sucrose Phosphate Synthase (SPS) and Sucrose Synthase (SuS) activities, together with their transcripts, were monitored during the first hours after defoliation along the leaf axis of mature leaf sheaths and elongating leaf bases (ELB) where the leaf meristems are located. In leaf sheaths, which undergo a sink-source transition, fructan and sucrose contents declined while SPS and SuS activities increased, along with the expression of LpSPSA, LpSPSD.2, LpSuS1, LpSuS2, and LpSuS4. In ELB, which continue to act as a strong carbon sink, SPS and SuS activities increased to varying degrees while the expression of all the LpSPS and LpSuS genes decreased after defoliation. SPS and SuS both contribute to refoliation but are regulated differently depending on the source or sink status of the tissues. Together with fructan metabolism, they represent key determinants of ryegrass perennity and, more generally, of grassland sustainability.


Sujet(s)
Fructanes , Régulation de l'expression des gènes végétaux , Glucosyltransferases , Prairie , Lolium , Feuilles de plante , Protéines végétales , Saccharose , Lolium/enzymologie , Lolium/génétique , Lolium/métabolisme , Glucosyltransferases/métabolisme , Glucosyltransferases/génétique , Feuilles de plante/métabolisme , Feuilles de plante/génétique , Fructanes/métabolisme , Protéines végétales/métabolisme , Protéines végétales/génétique , Saccharose/métabolisme
5.
Fungal Biol ; 128(5): 1907-1916, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-39059846

RÉSUMÉ

The rubber tree (Hevea brasiliensis) is one of the major domesticated crops planted commercially for the production of natural rubber (NR) worldwide. In recent years, rubber trees in the Southern states of India and other rubber-producing countries have experienced a severe leaf spot disease, characterized by the appearance of several brown circular spots in the initial stage, which later spread all over the lamina of fully matured leaves, leading to yellowing and defoliation. The causal organism of this Circular Leaf Spot (CLS) disease has not been conclusively identified in any previous studies. In this study, we collected infected leaf samples from various locations in the South Indian states. We aimed to identify the actual fungal pathogen that causes the CLS disease on rubber trees. Based on the morphological and molecular analysis of the most frequently isolated fungi from infected leaf samples were identified as Colletotrichum siamense and Colletotrichum fructicola. Pathogenicity tests also confirmed the involvement of isolated Colletotrichum spp. in the development of CLS disease. These findings provide valuable insights into understanding the CLS disease and its impact on rubber cultivation. To our knowledge, it is the first report of C. siamense and C. fructicola associated with CLS disease of rubber trees in India.


Sujet(s)
Colletotrichum , Hevea , Maladies des plantes , Feuilles de plante , Hevea/microbiologie , Colletotrichum/génétique , Colletotrichum/isolement et purification , Colletotrichum/classification , Maladies des plantes/microbiologie , Inde , Feuilles de plante/microbiologie , ADN fongique/génétique , Phylogenèse , Analyse de séquence d'ADN , Données de séquences moléculaires
6.
Environ Monit Assess ; 196(7): 616, 2024 Jun 14.
Article de Anglais | MEDLINE | ID: mdl-38874785

RÉSUMÉ

Forest pests pose a major threat to ecosystem services worldwide, requiring effective monitoring and management strategies. Recently, satellite remote sensing has emerged as a valuable tool to detect defoliation caused by these pests. Lymantria dispar, a major forest pest native to Japan, Siberia, and Europe, as well as introduced regions in North America, is of particular concern. In this study, we used Sentinel-2 satellite imagery to estimate the defoliation area and predict the distribution of L. dispar in Toyama Prefecture, central Japan. The primary aim was to understand the spatial distribution of L. dispar. The normalized difference vegetation index (NDVI) difference analysis estimated a defoliation area of 7.89 km2 in Toyama Prefecture for the year 2022. MaxEnt modeling, using defoliation map as occurrence data, identified the deciduous forests between approximately 35° and 50° at elevations of 400 m and 700 m as highly suitable for L. dispar. This predicted suitability was also high for larval locations but low for egg mass locations, likely due to differences in larval habitats and ovipositing sites. This study is the first attempt to utilize NDVI-based estimates as a proxy for MaxEnt. Our results showed higher prediction accuracy than a previous study based on the occurrence records including larvae, adults, and egg masses, indicating better discrimination of the distribution of L. dispar defoliation. Therefore, our approach to integrating satellite data and species distribution models can potentially enhance the assessment of areas affected by pests for effective forest management.


Sujet(s)
Surveillance de l'environnement , Forêts , Animaux , Surveillance de l'environnement/méthodes , Japon , Imagerie satellitaire , Technologie de télédétection , Écosystème , Papillons de nuit/physiologie , Larve
7.
Ecol Evol ; 14(5): e11336, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38711485

RÉSUMÉ

The preservation or removal of apical meristem in Leymus chinensis is contingent upon grazing intensity and has a significant impact on above- and belowground biomass, nutritive value, and sustainability of L. chinensis grassland. However, this topic remains understudied. Therefore, a manipulative trial was conducted to induce grazing defoliation through mowing, where two post-grazing heights (preservation or removal of the apical meristem) and four pre-grazing plant heights (i.e., 18, 24, 31, and 35 cm) are combined factorially to create gradients of grazing intensities, resulting in a total of eight treatments. Additionally, two identical control treatments are also incorporated. Our results showed that apical meristem removal at various pre-grazing heights resulted in varying degrees of increased grazing intensities, thereby enhancing the nutritive value of L. chinensis. However, this practice also led to detrimental effects on the plant's carbohydrates reserve as well as herbage mass. The results indicated that although defoliation in treatments involving apical meristem removal resulted in the highest number of frequent cuttings, it did not confer any advantages in terms of herbage mass and nutrient preserves, except for herbage nutritive values when compared to treatments involving apical meristem preservation. The apical meristem preservation treatments demonstrated the highest CP yield over a 2-year period compared to the apical meristem removal treatments. Furthermore, within these apical meristem preservation treatments, only when the pre-grazing height is 35 cm and post-grazing height is 17 cm, there is no significant decrease in above- and belowground biomass. This establishes this specific defoliation regime as an optimal and effective management strategy for L. chinensis grassland.

8.
Front Plant Sci ; 15: 1333816, 2024.
Article de Anglais | MEDLINE | ID: mdl-38633458

RÉSUMÉ

Low temperatures decrease the thidiazuron (TDZ) defoliation efficiency in cotton, while cyclanilide (CYC) combined with TDZ can improve the defoliation efficiency at low temperatures, but the mechanism is unknown. This study analyzed the effect of exogenous TDZ and CYC application on cotton leaf abscissions at low temperatures (daily mean temperature: 15°C) using physiology and transcriptomic analysis. The results showed that compared with the TDZ treatment, TDZ combined with CYC accelerated cotton leaf abscission and increased the defoliation rate at low temperatures. The differentially expressed genes (DEGs) in cotton abscission zones (AZs) were subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses to compare the enriched GO terms and KEGG pathways between the TDZ treatment and TDZ combined with CYC treatment. TDZ combined with CYC could induce more DEGs in cotton leaf AZs at low temperatures, and these DEGs were related to plant hormone and reactive oxygen species (ROS) pathways. CYC is an auxin transport inhibitor. TDZ combined with CYC not only downregulated more auxin response related genes but also upregulated more ethylene and jasmonic acid (JA) response related genes at low temperatures, and it decreased the indole-3-acetic acid (IAA) content and increased the JA and 1-aminocyclopropane-1-carboxylic acid (ACC) contents, which enhanced cotton defoliation. In addition, compared with the TDZ treatment alone, TDZ combined with CYC upregulated the expression of respiratory burst oxidase homologs (RBOH) genes and the hydrogen peroxide content in cotton AZs at low temperatures, which accelerated cotton defoliation. These results indicated that CYC enhanced the TDZ defoliation efficiency in cotton by adjusting hormone synthesis and response related pathways (including auxin, ethylene, and JA) and ROS production at low temperatures.

9.
PeerJ ; 12: e17218, 2024.
Article de Anglais | MEDLINE | ID: mdl-38685937

RÉSUMÉ

'Allen Eureka' is a bud variety of Eureka lemon with excellent fruiting traits. However, it suffers from severe winter defoliation that leads to a large loss of organic nutrients and seriously affects the tree's growth and development as well as the yield of the following year, and the mechanism of its response to defoliation is still unclear. In order to investigate the molecular regulatory mechanisms of different leaf abscission periods in lemon, two lemon cultivars ('Allen Eureka' and 'Yunning No. 1') with different defoliation traits were used as materials. The petiole abscission zone (AZ) was collected at three different defoliation stages, namely, the pre-defoliation stage (CQ), the mid-defoliation stage (CZ), and the post-defoliation stage (CH). Transcriptome sequencing was performed to analyze the gene expression differences between these two cultivars. A total of 898, 4,856, and 3,126 differentially expressed genes (DEGs) were obtained in CQ, CZ, and CH, respectively, and the number of DEGs in CZ was the largest. GO analysis revealed that the DEGs between the two cultivars were mainly enriched in processes related to oxidoreductase, hydrolase, DNA binding transcription factor, and transcription regulator activity in the defoliation stages. KEGG analysis showed that the DEGs were concentrated in CZ and involved plant hormone signal transduction, phenylpropanoid biosynthesis, glutathione metabolism, and alpha-linolenic acid metabolism. The expression trends of some DEGs suggested their roles in regulating defoliation in lemon. Eight gene families were obtained by combining DEG clustering analysis and weighted gene co-expression network analysis (WGCNA), including ß-glucosidase, AUX/IAA, SAUR, GH3, POD, and WRKY, suggesting that these genes may be involved in the regulation of lemon leaf abscission. The above conclusions enrich the research related to lemon leaf abscission and provide reliable data for the screening of lemon defoliation candidate genes and analysis of defoliation pathways.


Sujet(s)
Citrus , Analyse de profil d'expression de gènes , Régulation de l'expression des gènes végétaux , Feuilles de plante , Transcriptome , Citrus/génétique , Citrus/métabolisme , Citrus/croissance et développement , Feuilles de plante/génétique , Feuilles de plante/métabolisme , Facteurs de transcription/génétique , Facteurs de transcription/métabolisme
10.
Tree Physiol ; 44(4)2024 Apr 03.
Article de Anglais | MEDLINE | ID: mdl-38526975

RÉSUMÉ

The loss of leaves and needles in tree crowns and tree mortality are increasing worldwide, mostly as a result of more frequent and severe drought stress. Scots pine (Pinus sylvestris L.) is a tree species that is strongly affected by these developments in many regions of Europe and Asia. So far, changes in metabolic pathways and metabolite profiles in needles and roots on the trajectory toward mortality are unknown, although they could contribute to a better understanding of the mortality mechanisms. Therefore, we linked long-term observations of canopy defoliation and tree mortality with the characterization of the primary metabolite profile in needles and fine roots of Scots pines from a forest site in the Swiss Rhone valley. Our results show that Scots pines are able to maintain metabolic homeostasis in needles over a wide range of canopy defoliation levels. However, there is a metabolic tipping point at around 80-85% needle loss. Above this threshold, many stress-related metabolites (particularly osmoprotectants, defense compounds and antioxidants) increase in the needles, whereas they decrease in the fine roots. If this defoliation tipping point is exceeded, the trees are very likely to die within a few years. The different patterns between needles and roots indicate that mainly belowground carbon starvation impairs key functions for tree survival and suggest that this is an important factor explaining the increasing mortality of Scots pines.


Sujet(s)
Pinus sylvestris , Feuilles de plante , Racines de plante , Arbres , Pinus sylvestris/métabolisme , Racines de plante/métabolisme , Feuilles de plante/métabolisme , Arbres/métabolisme , Métabolome
11.
Tree Physiol ; 44(3)2024 Feb 11.
Article de Anglais | MEDLINE | ID: mdl-38349799

Sujet(s)
Arbres
12.
Plant Cell Environ ; 47(2): 482-496, 2024 Feb.
Article de Anglais | MEDLINE | ID: mdl-37877185

RÉSUMÉ

As heatwave frequency increases, they are more likely to coincide with other disturbances like insect defoliation. But it is unclear if high temperatures after defoliation impact canopy recovery or leaf traits which may affect response to further stressors like drought. To examine these stressor interactions, we subjected defoliated (DEF) and undefoliated (UNDEF) oak saplings to a simulated spring heatwave of +10°C for 25 days. We measured gas exchange, leaf area recovery, carbohydrate storage, turgor loss point (ΨTLP ), and minimum leaf conductance (gmin ). During the heatwave, stem respiration exhibited stronger thermal acclimation in DEF than UNDEF saplings, while stomatal conductance and net photosynthesis increased. The heatwave did not affect leaf area recovery or carbohydrate storage of DEF saplings, but reflush leaves had higher gmin than UNDEF leaves, and this was amplified by the heatwave. Across all treatments, higher gmin was associated with higher daytime stomatal conductance and a lower ΨTLP . The results suggest defoliation stress may not be exacerbated by higher temperatures. However, reflush leaves are less conservative in their water use, limiting their ability to minimise water loss. While lower ΨTLP could help DEF trees maintain gas exchange under mild drought, they may be more vulnerable to dehydration under severe drought.


Sujet(s)
Résistance à la sécheresse , Feuilles de plante , Feuilles de plante/physiologie , Arbres/physiologie , Sécheresses , Eau/physiologie , Glucides , Photosynthèse/physiologie
13.
J Adv Res ; 58: 31-43, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-37236544

RÉSUMÉ

INTRODUCTION: Defoliation by applying defoliants before machine picking is an important agricultural practice that enhances harvesting efficiency and leads to increased raw cotton purity. However, the fundamental characteristics of leaf abscission and the underlying genetic basis in cotton are not clearly understood. OBJECTIVES: In this study, we aimed to (1) reveal the phenotypic variations in cotton leaf abscission, (2) discover the whole-genome differentiation sweeps and genetic loci related to defoliation, (3) identify and verify the functions of key candidate genes associated with defoliation, and (4) explore the relationship between haplotype frequency of loci and environmental adaptability. METHODS: Four defoliation-related traits of 383 re-sequenced Gossypium hirsutum accessions were investigated in four environments. The genome-wide association study (GWAS), linkage disequilibrium (LD) interval genotyping and functional identification were conducted. Finally, the haplotype variation related to environmental adaptability and defoliation traits was revealed. RESULTS: Our findings revealed the fundamental phenotypic variations of defoliation traits in cotton. We showed that defoliant significantly increased the defoliation rate without incurring yield and fiber quality penalties. The strong correlations between defoliation traits and growth period traits were observed. A genome-wide association study of defoliation traits identified 174 significant SNPs. Two loci (RDR7 on A02 and RDR13 on A13) that significantly associated with the relative defoliation rate were described, and key candidate genes GhLRR and GhCYCD3;1, encoding a leucine-rich repeat (LRR) family protein and D3-type cell cyclin 1 protein respectively, were functional verified by expression pattern analysis and gene silencing. We found that combining of two favorable haplotypes (HapRDR7 and HapRDR13) improved sensitivity to defoliant. The favorable haplotype frequency generally increased in high latitudes in China, enabling adaptation to the local environment. CONCLUSION: Our findings lay an important foundation for the potentially broad application of leveraging key genetic loci in breeding machine-pickable cotton.


Sujet(s)
Étude d'association pangénomique , Gossypium , Gossypium/génétique , Amélioration des plantes , Génomique , Feuilles de plante
14.
Sci Total Environ ; 912: 168561, 2024 Feb 20.
Article de Anglais | MEDLINE | ID: mdl-37981128

RÉSUMÉ

Forest insect outbreaks cause significant reductions in the forest canopy through defoliation and tree mortality that modify the storage and flow of water, potentially altering catchment runoff and stream discharge patterns. Despite a growing understanding of the impacts of insect outbreaks on the hydrology of broadleaf forests, little is known about these impacts to catchment hydrology in northern conifer-dominated forests. We measured the effects of cumulative defoliation by spruce budworm (Choristoneura fumiferana) on stream discharge and runoff in 12 experimental catchments (6.33-9.85 km2) across the central Gaspé Peninsula in eastern Québec, Canada over a three-year period (2019-2021). Six catchments were aerially treated with BtK (Bacillus thuringiensis kurstaki) insecticide to suppress the outbreak and six catchments were left untreated, leading to a defoliation gradient across the study sites. Stage-discharge relationships were established between June and October from 2019 to 2021. Stream volumetric discharge (r = 0.71, p < 0.01, t(34) = 5.85), runoff (r = 0.55, p < 0.01, t(34) = 3.81) and runoff ratios (r = 0.67, p < 0.01, t(33) = 5.19) were all strongly positively correlated with cumulative defoliation intensity, likely by reducing available water storage in the catchment and therefore enhancing runoff generation. Seasonally, volumetric discharge, runoff, and runoff ratios were more strongly correlated with defoliation in the summer than autumn months, likely because available catchment storage was more limited following the freshet. Overall, we found that insect defoliation impacts forested catchment hydrology similar to other landscape disturbances, and such consequences should be considered in forest management and the control of forest insect outbreaks.


Sujet(s)
Papillons de nuit , Picea , Tracheobionta , Animaux , Forêts , Eau
15.
Braz. j. biol ; 84: e252836, 2024. tab, ilus
Article de Anglais | LILACS, VETINDEX | ID: biblio-1360210

RÉSUMÉ

The bioecology and infestation aspects of Neotuerta platensis Berg, 1882 (Lepidoptera: Noctuidae) on plants are poorly known. This insect fed on the leaves of common purslane, Portulaca oleracea L. (Portulacaceae) for two consecutive years, which triggered its study in the following five years in Januária, Minas Gerais State, Brazil. The objective of this work was to study the bioecology and infestation aspects of N. platensis on P. oleracea plants in the field and laboratory. The mean duration (± SD) of the egg, larva and pupa stages was 3.6 ± 0.89, 11.5 ± 2.81 and 10.7 ± 1.97 days, respectively. The mean numbers of egg masses and eggs per female (± SD) were 3.8 ± 1.16 and 891.6 ± 116.83, respectively. The percentage of infested plants was 59, 74, 0, 78 and 75% and the mean numbers of larvae per plant (± SD) ranged from 0.7 ± 0.45 to 1.6 ± 0.49 individuals, respectively from 2015 to 2019. Neotuerta platensis larvae infested P. oleracea plants in four out of five years evaluated.


Os aspectos de bioecologia e infestação de Neotuerta platensis Berg, 1882 (Lepidoptera: Noctuidae) em plantas são pouco conhecidos. Esse inseto se alimentou das folhas de beldroega comum, Portulaca oleracea L. (Portulacaceae) por dois anos consecutivos, o que desencadeou seu estudo nos cinco anos seguintes em Januária, Minas Gerais, Brasil. O objetivo deste trabalho foi estudar a bioecologia e os aspectos da infestação de N. platensis em plantas de P. oleracea em campo e laboratório. A duração média (± DP) dos estágios de ovo, larva e pupa foi de 3,6 ± 0,89, 11,5 ± 2,81 e 10,7 ± 1,97 dias, respectivamente. Os números médios de posturas e ovos por fêmea (± DP) foram de 3,8 ± 1,16 e 891,6 ± 116,83, respectivamente. A porcentagem de plantas infestadas foi de 59, 74, 0, 78 e 75% e os números médios de larvas por planta (± DP) variaram de 0,7 ± 0,45 a 1,6 ± 0,49 indivíduos, respectivamente de 2015 a 2019. Larvas de N. platensis infestaram plantas de P. oleracea em quatro dos cinco anos avaliados.


Sujet(s)
Animaux , Portulaca/parasitologie , Larve , Lepidoptera
16.
Braz. j. biol ; 842024.
Article de Anglais | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469351

RÉSUMÉ

Abstract The bioecology and infestation aspects of Neotuerta platensis Berg, 1882 (Lepidoptera: Noctuidae) on plants are poorly known. This insect fed on the leaves of common purslane, Portulaca oleracea L. (Portulacaceae) for two consecutive years, which triggered its study in the following five years in Januária, Minas Gerais State, Brazil. The objective of this work was to study the bioecology and infestation aspects of N. platensis on P. oleracea plants in the field and laboratory. The mean duration (± SD) of the egg, larva and pupa stages was 3.6 ± 0.89, 11.5 ± 2.81 and 10.7 ± 1.97 days, respectively. The mean numbers of egg masses and eggs per female (± SD) were 3.8 ± 1.16 and 891.6 ± 116.83, respectively. The percentage of infested plants was 59, 74, 0, 78 and 75% and the mean numbers of larvae per plant (± SD) ranged from 0.7 ± 0.45 to 1.6 ± 0.49 individuals, respectively from 2015 to 2019. Neotuerta platensis larvae infested P. oleracea plants in four out of five years evaluated.


Resumo Os aspectos de bioecologia e infestação de Neotuerta platensis Berg, 1882 (Lepidoptera: Noctuidae) em plantas são pouco conhecidos. Esse inseto se alimentou das folhas de beldroega comum, Portulaca oleracea L. (Portulacaceae) por dois anos consecutivos, o que desencadeou seu estudo nos cinco anos seguintes em Januária, Minas Gerais, Brasil. O objetivo deste trabalho foi estudar a bioecologia e os aspectos da infestação de N. platensis em plantas de P. oleracea em campo e laboratório. A duração média (± DP) dos estágios de ovo, larva e pupa foi de 3,6 ± 0,89, 11,5 ± 2,81 e 10,7 ± 1,97 dias, respectivamente. Os números médios de posturas e ovos por fêmea (± DP) foram de 3,8 ± 1,16 e 891,6 ± 116,83, respectivamente. A porcentagem de plantas infestadas foi de 59, 74, 0, 78 e 75% e os números médios de larvas por planta (± DP) variaram de 0,7 ± 0,45 a 1,6 ± 0,49 indivíduos, respectivamente de 2015 a 2019. Larvas de N. platensis infestaram plantas de P. oleracea em quatro dos cinco anos avaliados.

17.
Ecol Evol ; 13(12): e10790, 2023 Dec.
Article de Anglais | MEDLINE | ID: mdl-38053787

RÉSUMÉ

The larvae of speckled emperor moths (Gynanisa maja) are important plant defoliators in savanna ecosystems of southern Africa and a valuable food resource for indigenous communities. Population explosions of G. maja larvae can negatively impact an area's primary productivity thereby altering herbivory patterns and associated ecosystem processes. Harvests of the larvae enhance socio-economic livelihoods of local people by providing a source of protein and improving household incomes. We report on a population outbreak of G. maja larvae that occurred in south-eastern Zimbabwe between December 2022 and January 2023 and discuss the ecological and social significance of the event. A total biomass weight of 5811 tons of G. maja larvae was estimated over the area of the outbreak and extensive defoliation was recorded in Colophospermum mopane trees. We could not associate the outbreak with any obvious environmental conditions and speculate that it may have been caused by subtle triggers that are not easily identified.

18.
Genes (Basel) ; 14(11)2023 Nov 15.
Article de Anglais | MEDLINE | ID: mdl-38003024

RÉSUMÉ

Cotton is an economically important crop. However, the yield gain in cotton has stagnated over the years, probably due to its narrow genetic base. The introgression of beneficial variations through conventional and molecular approaches has helped broaden its genetic base to some extent. The growth habit of cotton is one of the crucial factors that determine crop maturation time, yield, and management. This study used 44 diverse upland cotton genotypes to develop high-yielding cotton germplasm with reduced regrowth after defoliation and early maturity by altering its growth habit from perennial to somewhat annual. We selected eight top-scoring genotypes based on the gene expression analysis of five floral induction and meristem identity genes (FT, SOC1, LFY, FUL, and AP1) and used them to make a total of 587 genetic crosses in 30 different combinations of these genotypes. High-performance progeny lines were selected based on the phenotypic data on plant height, flower and boll numbers per plant, boll opening date, floral clustering, and regrowth after defoliation as surrogates of annual growth habit, collected over four years (2019 to 2022). Of the selected lines, 8×5-B3, 8×5-B4, 9×5-C1, 8×9-E2, 8×9-E3, and 39×5-H1 showed early maturity, and 20×37-K1, 20×37-K2, and 20×37-D1 showed clustered flowering, reduced regrowth, high quality of fiber, and high lint yield. In 2022, 15 advanced lines (F8/F7) from seven cross combinations were selected and sent for an increase to a Costa Rica winter nursery to be used in advanced testing and for release as germplasm lines. In addition to these breeding lines, we developed molecular resources to breed for reduced regrowth after defoliation and improved yield by converting eight expression-trait-associated SNP markers we identified earlier into a user-friendly allele-specific PCR-based assay and tested them on eight parental genotypes and an F2 population.


Sujet(s)
Fibre de coton , Locus de caractère quantitatif , Cartographie chromosomique , Amélioration des plantes , Génotype
19.
Glob Chang Biol ; 29(22): 6336-6349, 2023 Nov.
Article de Anglais | MEDLINE | ID: mdl-37688536

RÉSUMÉ

Forest decline events have increased worldwide over the last decades being holm oak (Quercus ilex L.) one of the tree species with the most worrying trends across Europe. Since this is one of the tree species with the southernmost distribution within the European continent, its vulnerability to climate change is a phenomenon of enormous ecological importance. Previous research identified drought and soil pathogens as the main causes behind holm oak decline. However, despite tree health loss is a multifactorial phenomenon where abiotic and biotic factors interact in time and space, there are some abiotic factors whose influence has been commonly overlooked. Here, we evaluate how land use (forests versus savannas), topography, and climate extremes jointly determine the spatiotemporal patterns of holm oak defoliation trends over almost three decades (1987-2014) in Spain, where holm oak represents the 25% of the national forested area. We found an increasing defoliation trend in 119 out of the total 134 holm oak plots evaluated, being this defoliation trend significantly higher in forests compared with savannas. Moreover, we have detected that the interaction between topography (which covariates with the land use) and summer precipitation anomalies explains trends of holm oak decline across the Mediterranean region. While a higher occurrence of dry summers increases defoliation trends in steeper terrains where forests dominate, an inverse relationship was found in flatter terrains where savannas are mainly located. These opposite relationships suggest different causal mechanisms behind decline. Whereas hydric stress is likely to occur in steeper terrains where soil water holding capacity is limited, soil waterlogging usually occurs in flatter terrains what increases tree vulnerability to soil pathogens. Our results contribute to the growing evidence of the influence of local topography on forest resilience and could assist in the identification of potential tree decline hotspots and its main causes over the Mediterranean region.

20.
J Insect Sci ; 23(4)2023 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-37632793

RÉSUMÉ

Systena frontalis (F.) (Coleoptera: Chrysomelidae), also known as the red-headed flea beetle, is a defoliating pest of a variety of crop systems, such as ornamentals and food crops. Leaf consumption by this beetle renders ornamental nursery plants, such as hydrangeas (Hydrangea paniculata Siebold, Hydrangeaceae), unsaleable. In Virginia, this insect has become a major pest at commercial nurseries, and their feeding potential on affected crops has not been quantified. In this study, the extent of their damage to individual leaves and host preference between leaf ages were determined. The rate of defoliation on mature and young hydrangea leaves was measured over 24 and 48 h and between different numbers of adults. A single adult caused up to 10% damage to a young leaf or 5% to a whole mature leaf in 24 h. Without choice, there was a higher percent damage to young leaves. When the size of leaves was controlled by cut-out mature leaves, the area damaged was still higher in young leaves when compared with mature leaves. Adult feeding between mature or young leaves was further investigated by choice assays on a caged plant and within a containerized system. In these choice assays, adults inflicted higher percent damage on mature leaves in both caged plant assays and containerized direct choice assays. The choice assays were more similar to field conditions than the nonchoice assays. This demonstrates that S. frontalis showed a preference for mature leaves over young leaves within hydrangeas.


Sujet(s)
Coléoptères , Hydrangea , Hydrangeaceae , Magnoliopsida , Animaux , Produits agricoles , Feuilles de plante
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE